Loop Fusion for Memory Space Optimization

Antoine Fraboulet Karen Kodary Anne Mignotte
Institut National des Sciences Appliquées de Lyon
20 avenue Albert Einstein
69621 Villeurbanne, France
firstname.lastname@insa-lyon.fr

ABSTRACT
Portable or embedded systems as well as submicron technologies have made the power consumption criterion crucial. Memory is known to be extremely power consuming. Moreover multimedia applications are memory intensive applications. Therefore, we propose new techniques to optimize a behavioral description of multimedia applications before the hardware/software partitioning (Codesign). These transformations are performed on “for” loops that constitute the main parts which handle the arrays of the multimedia code. This paper presents an optimal algorithm to reduce the use of temporary arrays by loop fusion. Although the algorithm is not polynomial, experiments have shown that it is very efficient.

1. INTRODUCTION

Code transformations for the design of an integrated system can be performed at several levels. For instance, Boolean functions minimization can be considered at the gate level. At the Register Transfer Level, transformations are performed on the control state charts by splitting or merging nodes. Moreover, at every stage of the design we can apply transformations used in software compilers [1, 2].

In this paper, we will focus on the design of data flow dominated embedded systems. These systems use signals and data stored in arrays such as images, video and sounds. This type of applications consumes memory for multidimensional data storage. More than a half of the surface of integrated systems of this kind is filled by memory. Memory is known to be power consuming. Therefore, this massive memory made power consumption criteria control compulsory. Power optimization by memory optimization can be done in several ways: the reduction of the size of the memory and improved data-movement strategies over the memory hierarchy.

Once the Hardware-Software partitioning is done, the memory has already been divided. It is therefore very important to make optimizations before this partitioning in order to deal with all the memory in homogeneous vision. Moreover, it allows to optimize both types of memories, the one that will be included in hardware and the one controlled by software.

Methods and tools defined in this paper are specific to Codesign [3] because in the case of software-only compilation the memory is already instantiated in hardware and cannot be tuned. Moreover, the memory is rarely shared in software; a memory cell is used for only one array cell (unless explicitly stated when the designer uses the same name for two non-overlapping objects).

On the opposite, during silicon compilation the physical memory is optimized all along the design chain. In-Place Mapping [4] can allow to share memory by overlapping arrays when possible, memory allocation can select memory modules upon several criteria (size, number of ports) and assignment computes hardware addresses for accessing arrays in memory [5, 6, 7]. The memory is instantiated on-demand and specific modules can be used or even built specifically. This will be the main assumption for memory optimization by code transformations.

All the optimizations undertaken during silicon compilation improve the design starting from a given description. However, a preprocessing source-to-source code transformation similar to the one used in software compilation can be applied on the design in order to improve the efficiency, or enable, further optimizations. The source-to-source transformations we propose are target independent code optimizations. We do not consider specific modeling of the target except that it has, at least, two levels of memory [8], including a cache memory. These transformations are good on general principles and are a complement to transformations that are designed for a specific target platform on which more precise information, such as cache line size or number of registers, can be used to drive further loop transformations [9, 10].

The handling of arrays is done mainly through “for” loops in multimedia applications. These loops form the critical part of the optimizations we want to apply at the Codesign stage. We propose to transform the algorithmic description of a design by exploiting and adapting techniques similar to the ones used in automatic parallelization [2] so as to reduce the size of needed memory and the associated power consumption by enabling powerful optimizations. Further optimizations have to be applied later in the design flow when more architectural parameters are set for the design in order to complete the optimization process. However,
these other steps and interactions between them are beyond
the scope of this article.

In this paper, we will present a “for” loop transformation
to optimize memory size. Loop fusion is a program trans-
formation that collapses several loops into one. Memory
minimization by loop fusion is obtained in our case by re-
ducing the size of temporary arrays that are typically used
to store intermediate results during multimedia processing.

An array written in a loop and read in another one must
be stored in memory between these operations. In order to
be removed from memory an array must be produced and
used within the same loop nest and it must not be used
elsewhere in the code. Once the statements that produce
and consume values stored in an array have been merged
within the same loop body several techniques can be used
to reduce the size of this array or even to completely remove
it.

For instance, scalar replacement [11] techniques can re-
move an entire array from the application’s memory foot-
print as shown on Figure 1. Scalar replacement is a trans-
formation that uses dependence information to find reuse of
array values and expose it by replacing the references with
scalar temporaries.

L1: for i=1 to n
A[i] = ...
endfor
L2: for i=1 to n
a = ...
... = f(A[i])
... = f(a)
endfor

(a) source code (b) after fusion

Figure 1: Scalar replacement after loop fusion

On Figure 1(a) the loop L1 produces values stored in array
A and the loop L2 consumes these values. Merging these two
loops (Figure 1(b)) allow to replace the array A, if not used
elsewhere in the code, by a scalar a thus reducing the size
of needed memory for the application.

Dependencies may not allow to remove completely an
array by scalar replacement. In such cases we can apply in-
tra array storage order optimization [4]. This technique calcu-
lates an address reference window for a given storage order
of a multi-dimensional array. Given the size of this window,
we can “fold” array elements onto the same locations and
hence increase the memory reuse. Intra array storage opti-
mization is illustrated on Figure 2. The array A from source
code on Figure 2(a) is replaced by a window of 2 values a[0]
and a[1] on the fused code (Figure 2(b)).

L1: for i=1 to n
A[i] = ...
endfor
L2: for i=1 to n
a[i%2] = ...
... = f(A[i-1],A[i])
... = f(a[i%2-1], a[i%2])
endfor

(a) source code (b) after fusion

Figure 2: Intra-array storage optimization

Loop fusion increases the number of statements and ac-
cessed arrays within a loop nest. Sometimes loops access
more data than can be handled by a cache. Further code
transformations are needed to complete the optimization
process once the memory hierarchy parameters such as the
number of available registers or cache size and cache line
size are known. In these cases, the iteration space of a loop
can be blocked into sections whose reuse can be captured
by the cache. Strip-mine-and-interchange [2] is a transfor-
mation that achieves this result. Its effect is to shorten the
distance between the source and sink of a dependence so
that it is more likely for data to reside in the cache when
the reuse occurs. Extensive studies for cache optimizations
can be found in [11, 9].

2. MEMORY MINIMIZATION BY LOOP
FUSION

The algorithm we present in this section minimizes in an
optimal way the size of the temporary arrays used in data
dominated applications such as multimedia ones.

Previous algorithms for performing loop fusion have only
considered the case when all loop headers are conformable [12,
13]. We consider a wider class of problems where the loops
being considered for fusion need not have conformable heads-
ers. Loops with non conformable headers can be fused by
using conditional statements to control the execution of op-
erations within the loop nest. Both scalar replacement and
intra array storage optimization techniques can handle con-
ditional control flow.

The algorithm for maximal reuse by loop fusion proposed
by McKinley and Kennedy in [12] has been proven NP-Hard.
Our problem is different from maximal reuse because we do
not constrain all edges to be maximally fused but the com-
plexity still remains exponential. We propose an algorithm
that is efficient in practice and solves our problem with an
optimal solution. A survey on loop fusion algorithms com-
plexity can be found in [14].

2.1 Modeling the Problem

We approximate memory size requirement by the maxi-
mum size of time overlapping arrays. Memory used by non
time overlapping arrays can be reused by inter storage op-
timization [4]. Our Memory Cost function is defined as fol-
lowing:

\[
\text{MemoryCost} = \max_{V_i} \left\{ \sum_{a_i \in \text{Live arrays}(i)} \text{Size}(a_i) \right\}
\]

Where \(t \) is a time slot and \(\text{Size} \) is the storage size of an ar-
ray. Figure 3(b) represents the life time of arrays computed
on Figure 3(a) source code. MemoryCost is maximized dur-
ng loop L4 (see figure 3(b)) and is equal to sum of the size
of arrays a1, a2, a3 and a4.

We use a Data Flow Graph (DFG) \(G = (V, E, A) \) rep-
resentation for modeling the dependencies [2]. Graph nodes
(\(V \)) represent the loop nests and edges (\(E \)) represent data
dependences between these loops. \(A \) is the set of all ar-
rays handled in the source code. Each array \(a_i \in A \) has an
associated weight \(\text{size}(a_i) \).

A data dependence between two array references is repre-
sented by a hybrid distance/direction vector \(\delta = \{\delta_1, \ldots, \delta_n\} \)
with the most precise information derivable. The vector
component represents the data dependency corresponding
left to right from the outermost loop to the innermost one
enclosing the reference.
A graph becomes a multigraph with potentially multiple edges between two nodes. When there are multiple array dependencies between two loops then the array carries the dependence and is weighted by the size of this array. An edge is labeled by only one array and if there exists an edge that carries a dependence which prevents the fusion of its source node and its destination node is called a fusion preventing edge (FPE) and is marked with a slash.

Each edge is labeled by the name of the array \(a \in A \) that carries the dependence and is weighted by the size of this array. An edge is labeled by only one array and if there are multiple array dependencies between two loops then the graph becomes a multigraph with potentially multiple edges between two nodes.

Figure 3: Array variables life time

Figure 4 represents the dependence graph computed from the source code on Figure 3(a). Loops L2 and L3 cannot be fused due to the dependence carried by \(a2 \). If the loops were merged the code would read \(a2[i+1] \) (from L3) before its computation (from L2) in the same iteration.

Two nodes can be merged if and only if none of the dependence are reversed in the fuse loop compared to the original code. An edge that carries a dependency which prevents the fusion of its source node and its destination node is called a fusion preventing edge (FPE) and is marked with a slash.

Each edge is labeled by the name of the array \(a_i \in A \) that carries the dependence and is weighted by the size of this array. An edge is labeled by only one array and if there are multiple array dependencies between two loops then the graph becomes a multigraph with potentially multiple edges between two nodes.

Figure 4: Modeling dependences

Isolated statements are also considered as nodes. Dependencies between code statements and loops are preserved as we perform code reorganization during the transformation. An isolated statement will be represented in the graph as a regular node but all its incoming and outgoing edges will be marked as fusion-preventing ones.

An array can be removed from the memory, or at least minimized in size, if we can fuse all the loops that write into it with the loops that are reading its values. A removable array is marked with a star on the representations (see Figure 5).

2.2 Removable Arrays Detection

In order to remove an array from the program by fusion we need to fuse all the nodes connected by an edge which is labeled by this array in the DFG. An array cannot be removed by fusion there exists an edge \(e = (u, v) \) labeled by this array and there exists a path from \(u \) to \(v \) in the DFG that contains a FPE.

In order to detect all the arrays that could be removed by loop fusion we perform a transitive closure on the DFG as can be seen on Figure 5.

Figure 5: Transitive closure of the DFG for removable array detection

Array \(a2 \) cannot be removed because there is a direct FPE between loops L2 and L3. The same situation occurs for array \(a1 \) where there is a path between L1 and L4 that goes through the FPE (L2,L3). Removing the array \(a1 \) from the memory would require the fusion of loops L1, L2 and L4 and would create a cycle between the newly fused node L124 and L3 in the dependence graph. Such a cycle is not allowed in order to preserve the precedence constraints imposed by data dependencies.

Arrays \(a3 \) and \(a4 \) are marked with a star as they can be removed by merging loops L3, L4 and L5. We call by extension starred edges an edge that carries a dependence on a removable array.

2.3 Conflicts Detection and Resolution

The previous step can detect if an array can be removed from the memory by loop fusion but the detection is local and some problems can arise when we consider the removable arrays altogether. For instance, on Figure 6(a) arrays a and b can be removed if we consider them separately. Unfortunately, removing both at the same time is not feasible. The situation can be more complicated as can be seen on Figure 6(b) where the fusion cannot be performed without creating a dependence cycle between loops (L1,L3,L6) and loops (L2,L4,L5).

In order to complete the fusion process we need to solve all possible conflicts by reducing the set of starred arrays without compromising the global optimality. This resolution is done in two steps, the first one identifies all possible conflicts in the graph and the second one solves all these conflicts in a global optimal way.
dependence cycle composed of, at least, one cycle such as described in Proposition 1. We want to prove that this original (unfused) graph was vector prevents the original graph from being cyclic. Thus, the has been fused is starred and is oriented in a direction that −µ−1 that corresponds to a FPE. If we fuse the last starred edge then we produce a directed cycle in the resulting graph composed of all the edges, of which at least one was an FPE, that were marked −1 (resp. +1) in µ′.

Cycle detection algorithm. We perform cycle detection by exploring the graph for each edge e = (u, v) that is fusion preventing by looking for all cycles from u to v that follows the proposition 1. This implies that we will look for all the cycles µ for which µ contains only starred edges in µ′.

In order to speed up the exploration we use the property that we can stop the exploration on a path µ as soon as we encounter an edge in µ′ that is not starred.

2.3.1 Conflicts Detection

Problems arise when several potential removable arrays are located on a cycle of the graph while part of this cycle contains a FPE. Given µ an elementary cycle of the graph with a given direction over this cycle we denote µ′ the set of edges in the cycle oriented toward the cycle cover direction, µ− is the set of edges oriented the other way round (see [15] for more details). We can associate to µ a vector µ = (µ1, µ2, ... µ|E|) such as:

µi = { \begin{align*} +1 & \text{ if } u \in \mu^+ \\ -1 & \text{ if } u \notin \mu^- \\ 0 & \text{ if } u \notin \mu^+ \cup \mu^- \end{align*} \}

Note that −µ is also a vector associated to the cycle µ with a different cover direction.

PROPOSITION 1. In order to solve all possible problems that would create an illegal fusion we need to detect all undirected elementary cycle µ of the graph such as µ is composed in the following way:

- all +1 (resp. −1) are starred edges
- at least one −1 (resp. +1) is a FPE

PROOF. Assume that we have a fused graph G that is illegal. We want to prove that this original (unfused) graph was composed of, at least, one cycle such as described in Proposition 1. A fused graph G is illegal if it contains an oriented dependence cycle µd. This dependence cycle is composed of FPE or unstarred edges since all the starred edges have been fused. As there was no dependence cycle before the fusion (the original graph is a DAG) the last edge es that has been fused is starred and is oriented in a direction that prevents the original graph from being cyclic. Thus, the vector µ′ associated with the undirected cycle composed of µ ∪ es corresponds to the definition given in proposition 1.

Now we want to prove that if there exists a non oriented cycle in the original graph that follows the proposition 1 the graph resulting from the fusion of all the starred edges will produce an illegal fused graph. Let us suppose that we have fused all but one starred edge from an undirected cycle µ to produce a graph G′. The vector µ′ in G′ has only one +1 (resp. −1) that corresponds to a starred edge and at least

one −1 (resp. +1) that corresponds to a FPE. If we fuse the last starred edge then we produce a directed cycle in the resulting graph composed of all the edges, of which at least one was an FPE, that were marked −1 (resp. +1) in µ′.

Figure 6: Conflict between removable arrays

Figure 7: Graph exploration for conflict detection

We denote C the set of all cycles detected during the exploration of the graph. The next step will solve simultaneously all the dependency problems within these cycles.

2.3.2 Integer Linear Programming Conflict Resolution

In this section we present the ILP formulation [16] for solving dependency cycles conflicts detected in the previous step of the algorithm.

Once all the cycles have been detected we have to solve the global problem to decide which array will be taken out of the set of removable arrays.

We associate a binary variable xa to each starred array a that could be removed but which has been included in a cycle during the previous step. If xa = 0 then the array a will be considered for fusion otherwise (xa = 1) the array will cease to be starred. For multi-graphs (for instance, k edges labeled a1, a2, ..., ak) between two nodes u and v, a new variable xuv is introduced to resume the arrays on this multi-edge. A variable xuv will be set less or equal to each variable xa1, ..., xak associated with the arrays of the multi-edge. If xuv is set to 1 (the multi-edge is removed from a path) then all associated variables will also be set to 1 and all arrays will be unstarred. Otherwise a variable xa can be set to 1 without interfering with other arrays on the multi-edge (equation 3).
For each detected cycle $\mu \in C$ we need to decide which array carried by the edges in $\mu^+ \setminus \mu$ will not be starred anymore. Thus the sum of all the variables x_{a_i} in the μ^+ set of a cycle must be greater than or equal to 1 (equation 2).

The objective function of our ILP is thus to minimize the sum of the size of arrays that have to be removed from the set of all possible starred arrays detected in section 2.2 (equation 1).

$$\min \sum_{a_i \in A} \text{size}_{a_i} \times x_{a_i}, \quad \forall \mu \in C \tag{1}$$

$$\sum_{(u,v) \in \mu^+(c)} x_{uv} \geq 1, \quad \forall \mu \in C \tag{2}$$

$$x_{uv} \leq x_{a_i}, \quad \forall a_i \in (u,v), \forall (u,v) \in E \tag{3}$$

$$x_{a_i} \in \{0,1\}, \quad \forall a_i \in A \tag{4}$$

$$x_{uv} \in \{0,1\}, \quad \forall (u,v) \in E \tag{5}$$

The ILP formulation given by (1), (2), (3), (4) and (5) minimizes the size that cannot be kept starred due to dependence constraints in a graph.

Values $x_{a_i} = 1, \forall i$ are always a feasible solution for the problem. Furthermore any feasible solution has a cost

$$\sum_{a_i \in A} \text{size}_{a_i} \times x_{a_i} \geq 0$$

which ensures that an optimal solution always exists, because of this lower bound.

2.4 Graph Clustering and Fusion

All the edges that are still starred can now be fused. The only remaining step is to compute the clusters that will constitute the transformed dependence graph nodes. We have to ensure that if two nodes u and v will belong to the same cluster then all nodes that belong to a directed path from u to v will also be taken in the cluster. This step can be performed efficiently by computing a modified transitive closure in which if there is a path $u \rightarrow v$, a path $u \rightarrow w$ and a path $w \rightarrow v$ then u, v, and w will be in the same cluster.

Code generation can be performed by writing the code for each loop following the numbering given by a simple order such as the height defined as follow:

$$h(x) = \begin{cases}
0 & \text{if } d^{-}(x) = 0 \\
\max \{h(y), y \rightarrow x \in E\} + 1 & \text{otherwise}
\end{cases}$$

Figure 8 represents the modified dependence graph and the code corresponding to the loop fusion. Arrays a3 and a4 can be now replaced by scalars within the loop L’3.

3. EXPERIMENTATIONS

We have implemented this algorithm and tested it using randomly generated graphs. We have chosen to generate graphs that are a lot more complex than graphs that can be found in real applications. Generated graphs were ranging from 10 to 30 nodes for which the number of edges was twice the number of nodes. Each edge has the probability of $1/3$ to be fusion preventing and all weights were randomly chosen between 1 and 100. Arrays were constrained to belong to a path (writing in an array cannot be done by two potentially parallel loops). The number of in-edges (edges pointing to a node) was limited to 10 for each node as well as the number of out-edges (edges going out of a node). This limit is very high compared to real application codes and plays a major role for the cycle enumeration step.

Tests were done on 21,000 different graphs. We used the ILP solver LP_SOLVE freely available from its ftp site [17]. Although the cycle enumeration step is exponential in the theory as well as the ILP resolution, we achieved an average calculation time of 0.050 seconds per graph (including cycle enumeration and ILP resolution) on a Pentium II running at 450 MHz. The average potential gain in size (arrays that were completely fused) was 60.7% and the average number of fused arrays was 61.8%.

4. FUTURE WORK AND CONCLUSION

We have presented in this paper an optimal algorithm to minimize the memory size needed by temporary arrays in an application. This algorithm has a theoretical exponential complexity due to its cycle enumeration step and its Integer Linear Program but is very efficient in practice. Furthermore, real life problem size are usually small as the number of nodes in our graph represents the number of loop nests in a program.

Our memory optimization cost function, unlike many others in the literature, does not rely on any memory hierarchy parameter and loop fusion for memory minimization can be applied as a general preprocessing step before any other optimization.

As it is a source to source transformation it can be easily integrated to an existing CAD tool-chain as a design preprocessor that can be run prior the traditional design flow. Thus, it will enable new optimizations obtained using existing memory and power management techniques in CAD tools. The power and memory interest of this automatic approach is on the one hand to reduce the design time by extracting optimizations for the description and on the other hand to improve the development quality by a tool which will propose interactive transformations that a designer could have missed.

We would like to combine the present work with our loop alignment techniques developed for memory accesses optimization [18]. Loop alignment can help to remove FPE from the original graph and can also reduce the dependence distance between statements. Loop fusion combined with loop alignment improves data locality within a loop nest. Once
a loop has been aligned, improved scalar replacement and intra array storage optimization results can be achieved over the data for both memory size and data locality.

5. REFERENCES

