
The Standard SpecC Language
Masahiro Fujita

Department of Electronic Engineering
The University of Tokyo

3-8-1, Hongo, Bunkyo, Tokyo, 113-8656, JAPAN
+81-3-5841-6673

fujita@ee.t.u-tokyo.ac.jp

Hiroshi Nakamura
Research Center for Advanced Science and Technology

The University of Tokyo

4-6-1, Komaba, Meguro, Tokyo 153-8904, JAPAN
+81-3-5452-5162

nakamura@rcast.u-tokyo.ac.jp

ABSTRACT
This paper introduces SpecC language, a system level description
language based on C, and its consortium, SpecC Technology
Open Consortium (STOC). Currently SpecC language version 1.0
is publicly available. SpecC technology covers SpecC-based
design “methodology” as well as SpecC language itself. In this
paper not only SpecC language but also SpecC-based design
methodology are briefly discussed. The SpecC language
specification working group (LSWG) under STOC is discussing
on SpecC version 2.0. We also give a summary of the discussions
being made by LSWG targeting version 2.0. We plan to formally
release version 2.0 in the beginning of 2002. The main goal is to
precisely and exactly define the formal semantics of SpecC
language especially on the semantics relating to parallel and
concurrent statements and event control mechanisms. These are
the issues on which SpecC version 1.0 does not give clear and
concise semantics. With these clarifications given by SpecC
version 2.0, varieties of supporting tools for SpecC can
consistently and easily be developed.
Keywords: Hardware Description Language, System Level
Design, C-based Hardware Description, Formal Semantics,
System Synthesis, High-Level Synthesis, Formal Verification

1. Introduction and the SpecC design
methodology
As semiconductor technology advances, entire systems can be
realized within single LSIs as System-on-a-Chip (SoC). Designing
a SoC is a process of entire system design from specification to
implementation design and also a process of both hardware and
software development. Performance of the designed systems fully
depends on both hardware (LSI) and software on top of LSI.
Correct partitioning between software execution and hardware
execution must be taken for high performance with low
implementation cost, and integrated specification for both
software and hardware is indispensable. Therefore, in order to
design SoC, specification process and implementation design
process must be smoothly and tightly coupled.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISSS ’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2000 ACM 1-58113-418-5/01/00010…$5.00.

Figure 1 shows a design flow for SoC. Systems to be designed
have both software and hardware, and IP in various design levels
should be tried to be used as much as possible in order to shorten
the design costs. In the right most part of the figure, the design
levels that are covered by various languages are shown. SpecC is
covering design levels from specification to behaviors. It can
describe both software and hardware seamlessly and a good tool
for rapid prototyping as well.

Two key elements to solve the integration of specification and
design phases in the System-on-a-Chip (SoC) design process are:
1) a consistent and continuous design process from specification
design to implementation design which covers both of software
and hardware; and 2) design reuse, which means not only
component IP but also specification IP and design IP. Over the
years, many languages and data formats have been proposed.
Recently, C/C++ based hardware (LSI) design methodologies are
emerging. However, the current approaches do not efficiently
cover these two key elements. Such approaches include UML,
which is primarily used for specification design, and C/C++ and
VHDL and/or Verilog, which are primarily used for
implementation design.

SpecC-based design methodology is shown in Figure 2. SpecC
covers specification model, architecture model, communication
model, and implementation model with easy access and use of IP
in corresponding design levels. Designers start their design
processes with specification in SpecC. Then appropriate
architectures that realize specifications are explored, and
corresponding communications among components in architecture
models are generated. Finally software models and hardware
models as implementation models are the output of the SpecC
design methodology.

In the following, we briefly review SpecC language version 1.0,
which is currently available, and version 2.0 which is under
discussion and will be available to the public by early next year.
In section 2, we present key ideas of SpecC language version 1.0.
Then in section 3, we give overview of SpecC Technology Open
Consortium (STOC), which is an organization for promotion of
SpecC language. In section 4, we give summary of the discussion
points targeting SpecC version 2.0. Section 5 gives concluding
remarks.

2. SpecC Language
SpecC methodology and language have been designed and
implemented to integrate the specification and the design phases
in the SOC design process. Originally developed at University of
California, Irvine, with sponsorship from several companies,

8781

SpecC language is a system specification description language
based on C. It allows the same semantics and syntax to be used to
represent specifications for a system concept, hardware, software,
and, most importantly, intermediate specification and information
during hardware/software co-design stages.

Right now SpecC version 1.0 is publicly available. One key point
in SpecC is the clear separation between communication and
computation bodies in system level descriptions. With this clear
separation, same descriptions can easily be used both for software
and hardware (or both combined) development. As shown in
Figure 3, in traditional approaches, communication among
concurrent processes are just through shared variables, and
control on the data transfer between the two processes are done by
the statements which are in lined into the two process descriptions.
Therefore, it is not easy or almost impossible to separate
communication and the computation. In SpecC model,
communications among processes are done through channels and
control mechanisms for communication are described explicitly in
the description of channels. This makes it very easy to explicit to
separate the communication from the computation.

Structure hierarchy can also be described in SpecC as shown in
Figure 4. In hierarchical designs, by using channels for
communications, it can be easily seen how things are processed
within a module in a hierarchical design as shown in the figure.

Also, SpecC has several ways to describe targeted control
mechanisms:

Figure 1. SOC Design Flow

Physical
IP

Source
Code IP

System IP

Spec IP

RTL Sim
Source Code

Debugger

Gate Sim
Debugger

CompilationRTL to Logic
Synthesis

P&R

Behavior to RTL
Synthesis

Program
Generation
(Lower CASE)

Co-Sim

HW
Implementation

SW
Implementation

Verification
& Analysis

IP
REUSE

Design
Pattern

Specification
Analysis

Specification
Capturing

System
Co-Design

Detail
Design

Physical
Design

Rapid
Prototyping

VH
DL

/V
er

ilo
g

ED
IF

As
m

Language
Coverage

U
M

L

C
/C

++
/J

av
a

SD
L

Sp
ec

C

C
/C

++
 fo

r H
W

Link

Market Research / Customer Analysis

Product Specification

Specification to
System Behavior Synthesis

System Requirement Analysis
(Upper CASE : Structured Analysis/Structured Design :

Object Oriented Analysis,Object Oriented Design)

8882

(1) Sequential descriptions just like regular C

(2) Specialized syntax for finite state machine descriptions

(3) Explicit way to describe “parallel behaviors”

(4) Explicit way to describe “pipelined behaviors”

Figure 5 and 6 give ideas on sequential, FSM, parallel, and
pipeline statements. Sequential statements are just like regular C
description. By using FSM statements, explicit state transitions
can be clearly described. Parallel statements explicitly describe
parallel execution of multiple processes whereas pipeline
statements give parallel execution of multiple processes in
pipelined ways.

With these flexible descriptions mechanisms, system level
description targeting both software/hardware combined systems
can be smoothly described. Here due to space limit, we briefly
review (2)-(4) with illustrations, since those are main difference
from regular C languages in terms of language constructs.

3. SpecC Technology Open Consortium
(STOC)
STOC was established on November 10, 1999 by 24 companies
and organizations worldwide for securing wide acceptance of a
SpecC language-based methodology. Activities of STOC will be

publicized at the consortium's web site
(http://www.specc.gr.jp/eng), where the introduction of SpecC
technology, the consortium's activities, and research results are
available. Activities of the STOC include two technical working
groups (WG).

• The Case Study WG that examines the ability of SpecC
language through descriptions of real applications, and
collects design knowledge to establish design guidelines or
methodologies. According to the current schedule, a period of
the WG activities is one year, and 14 members will exchange
evaluation results of SpecC language ability and design know-
how based on the specification description experiences.

• The Language Specification WG that maintains and
establishes the specification of SpecC language while
evaluating and enhancing the current specification to improve
its efficiency and application scope. Members are recruited
from worldwide STOC members, and the activity scope also
includes standardization of relevant tools like SpecC
Compiler.

Objectives and current activities of both WGs also can be tracked
from the STOC web site.

4. Discussions for version 2.0
After releasing version 1.0 in early February 2001, LSWG has
identified several issues to be clarified in the language. SpecC is
under revision mainly on the following points:

• Clarification of detailed semantics of SpecC language

• Enhancement of usability by incorporating several syntax
notations

• Others, such as tool friendly issues

Here we briefly summarize the discussions on detailed language
semantics targeting SpecC version 2.0. Since this is under
discussion, anything presented here could change in the future.

4.1 Why Semantics?
SpecC is a system level description language and a wide variety of
designers are expected to use SpecC, including hardware
designers and software designers. Since ways of thinking of
hardware designers are sometimes significantly different from
those of software designers, the semantics of SpecC should be
clearly defined from the viewpoints of both hardware designers
and software designers. The importance of formal semantics is
emphasized also by the fact that varieties of design assistance will
be required for system level design. Specifications in SpecC will
be the input of not only simulation but also synthesis, verification,
and others. As for the synthesis, it would be a case that the
description is partitioned into hardware and software parts, and
the former is then synthesized into RTL hardware. It would be
another case of synthesis that they are bound with IP cores with
modifying communications between cores. Thus, a wide variety
of synthesis tools will emerge for system level design assistance.
The same situation will occur in simulation and verification.
Therefore, the semantics of SpecC should be defined
independently from their execution engines.

8983

The reference manual of SpecC Version 1.0 (LRM v1.0) [1] and
its reference compiler [2] were already published and announced.
Since the formal semantics is yet one of the most important issues,
SpecC Language Specification Working Group [3] is trying to
formalize its semantics, which will be included in the next version
2.0

4.2 Discussions items
One of the characteristics in SpecC is the separation of
computation and communication. The communication can be
specified by using either explicit channel or shared variables.
Whereas the semantics of explicit channel is quite clear, that of
shared variables currently contains ambiguity. This is because the
semantics of parallel behaviors is not well defined. Thus, our
discussion started from the semantics of “par” statement, which
specifies parallel behaviors. SpecC also provides “pipe”
statement to specify pipelined behaviors, which is of course a part
of parallel behaviors. Though the semantics of “pipe” is also
important, we focus on the semantics of “par” at first because
“pipe” can be defined by using “par”. Once the semantics of “par”
is defined clearly, that of “pipe” will be clear.

Concerning to “par”, the following items are picked up for the
discussion.

• What order is permitted in the scheduling? : Is the scheduling
non-preemptive or preemptive? Is it deterministic or not? If it
is non-deterministic, then what degree of non-determinism is
permitted?

• How to assure mutual exclusive access? : In SpecC,
“wait/notify” is provided to support synchronization. However,
no primitives are provided to support mutual exclusion. It will
be helpful to introduce a primitive supporting for mutual
exclusion which is well suited to “wait/notify”.

• Semantics of synchronization primitives? : Synchronization of
concurrent behaviors is a critical issue. However, some of the
rules in LRM v1.0 are vague and the semantics can only be
fully understood with the help of the examples and the note
sections in LRM v1.0. The vague point is the propagation
scope of notified event and the relationship between the scope
and the “simulation time” in SpecC.

• How to disable exceptions temporarily? : In order to handle
asynchronous exceptions correctly, it is required to disable
other exceptions during the execution. Thus, it will be helpful
to introduce some primitives that disable exceptions
temporarily.

• When is variable assignment reflected to other concurrent
behaviors? : This issue is closely related to the first issue.
Without clear definition on the timing of variable assignments,
it is hard to specify concurrent behaviors that share variables.
Thus, it is highly recommended to establish well-defined
semantics on this issue.

Since the first item of scheduling is the most fundamental among
these issues and affects the discussions on the other items, we first
started the discussion on scheduling.

4.3 Semantics of “par”
Figure 7 is an example of parallel behavior. In this example,
behavior a and b are executed in parallel. Behavior a contains
two sequential statements st1 and st2, whereas behavior b
contains one statement st3. The first question is, in which order
these three statements are executed? Given the LRM v1.0, the
scheduling is non-preemptive. Then, not only non-preemptive
scheduling of “st1 -> st2 -> st3” and “st3 -> st1 -> st2”,
but also preemptive scheduling of “st1 -> st3 -> st2” are
permitted.

main(){
par{ a.main();
 b.main();} }

behavior a{
main(){ z=y; /*st1*/
 x=z+20; /*st2*/ }}

behavior b{
main(){ y=x+z+1; /*st3*/ }}

Figure 7. Example of “par” statement

4.3.1 Sequentiality
Before clarifying the concurrency between statements, we have to
define the semantics of sequentiality within a behavior. The
definition is as follows. A behavior is defined on a time interval.
Sequential statements in a behavior are also defined on time
intervals which do not overlap one another and are within the
behavior’s interval.

For example, semantics of behavior a in Figure 7 is defined on
time axis as shown in Figure 8. Suppose the beginning time and
the ending time of behavior a are Tas and Tae respectively, and
those for st1 and st2 are T1s, T1e, T2s, and T2e. Then, the
only constraint which must be satisfied is;

Tas <= T1s < T1e <= T2s < T2e <= Tae

Statements in a behavior are executed sequentially but not always
in continuous ways. That is, a gap may exist between Tas and T1s,
T1e and T2s, and T2e and Tae. The lengths of these gaps are
decided in non-deterministic way. Moreover, the lengths of
intervals, (T1e − T1s) and (T2e − T2s) in Figure 8, are also non-
deterministic.

st1 st2
time

Tas T1s T1e T2s T2e Tae

a.main()

Figure 8. Semantics of Sequentiality

4.3.2 Concurrency
Behaviors invoked by “par” statement are executed concurrently.
The definition of the concurrency is as follows. The beginning
time of all the behaviors invoked by “par” statement are the same,
and the ending time of all the behaviors invoked by “par”
statement are also the same. For example, semantics of “par”

9084

statement in Figure 7 is defined on time axis as shown in Figure 9.
Suppose the beginning time and the ending time of behavior a are
Tas and Tae respectively, and those for behavior b are Tbs, Tbe.
Then, the only constraint which must be satisfied is;

Tas = Tbs, Tae = Tbe

time

Tas Tae

a.main()

b.main()

Tbs Tbe

Figure 9. Semantics of Concurrency
Once the sequentiality and concurrency are defined, the semantics
of the description in Figure 7 is clearly defined as illustrated in
Figure 10. The followings are all the constraints to be satisfied.

• Tas <= T1s < T1e <= T2s < T2e <= Tae (sequentiality in a)

• Tbs<= T3s < T3e <= Tbe (sequentiality in b)

• Tas = Tbs, Tae = Tbe (concurrency between a and b)

st1 st2

time

Tas T1s T1e T2s T2e Tae

a.main()

b.main()

st3

T3s T3eTbs Tbe

Figure 10. Scheduling for the example of Figure 7.
Note that there are no deterministic rules on the lengths of st3
st1, and st2, and on the lengths of the gap between statements,
st3 may overlap with st1 and/or st2, or may not overlap with
st1 or st2.

4.3.3 Atomicity
The next question is whether the overlaps between statements are
permitted or not. The answer depends on the granularity of
atomicity. In the LRM v1.0, atomicity is not described explicitly.

One policy is that each assignment statement is atomic. Under this
policy, overlaps between statements are not permitted. Then, the
statement of “y=x+x”, for example, is always the same as
“y=2*x” because x is not updated by any other statement during
the execution of this statement. Thus, this policy will reduce the
degree of non-determinism. On the other hand, this assumption is
completely different from C language although SpecC is extended
from C language, and thus it would be confusing. For instance, it
is quite ambiguous what will happen if a function call is included
in an assignment statement. Another disadvantage of this policy is
that quality of synthesized hardware and/or software may be

degraded because this atomicity should be guaranteed by
hardware and/or software.

It would be another policy that no atomicity is assumed, which is
opposite to the above policy.

We are also discussing this issue and going to reach the consensus
that no atomicity is guaranteed in any operation, even in the
memory access. Thus, statements may be preempted at any time in
their execution. Due to this feature, overlaps between statements
are permitted. Another result from this feature is “y=x+x” is not
always the same as “y=2*x”. This is because the first read of x
may not be executed at the same time as the second read of x and
because x may be updated by other parallel behaviors between the
two reads. Therefore, if designers would like to use shared
variables in a safe way, they should use those variables with
explicit synchronization.

4.3.4 Relationship with Simulation Time
SpecC has two primitives to support the specification of timing
called “simulation time”: “waitfor” and “do-timing”. Given the
LRM v1.0, “waitfor” statement specifies execution time (or delay).
Whenever the simulator reaches a waitfor statement, the execution
of the current behavior is suspended for the specified amount of
simulation time units. The do-timing construct is used to specify
timing constraints in terms of minimum and maximum number of
time units. The LRM v1.0 says the do-timing construct specifies
synthesis constraints and the way that the simulator performs the
constraint validation is implementation dependent.

In order to make the semantics of sequentiality and concurrency
be sound with these primitives, the relationship between the
length of each interval and the “simulation time” must be defined
soundly. The definition is that the length of each interval on
which a statement is defined is quite small and infinitely close to 0
in “simulation time”'. In other words, execution of each statement
does not change the “simulation time”. Going back to Figure 8,
this definition is intuitively described as “ (T1e − T1s) and (T2e −
T2s), the lengths of statements’ intervals, are infinitely close to 0”.
Note that this definition does allow that (T1s− Tas), (T2s − T1e),
and/or (Tae − T2e), the lengths of gaps, have non-zero value.

main(){
 par{ a.main();
 b.main();} }

behavior a{
 main(){ z=y; /*st1*/
 waitfor(2); /*NEW*/
 x=z+20; /*st2*/ }}

behavior b{
 main(){ y=x+z+1; /*st3*/ }}

Figure 11. Example with “waitfor”
Figure 11 is an example where waitfor(2) statement is
inserted between st1 and st2 of Figure 7. This waitfor(2)
increments “simulation time” by 2. According to the above rule
and the semantics of sequentiality and concurrency, there are three
candidates on the timing when st3 is executed as shown Figure 12.
Note that the length of the interval st3 is infinitely close to 0
whereas the interval of the behavior a and b has the length of 2.

9185

Now, LRM v1.0 gives another rule that says that active threads
are executed without changing the “simulation time”. Thus, st3
must be executed immediately without changing the “simulation
time” before waitfor(2) as shown in Figure 13. Thus, st3
must precede st2 in this example.

st1 st2

time
st3?

waitfor(2)

st3? st3?

a.main()
b.main()

Figure 12. Candidates for Scheduling

st1 st2

time
st3

waitfor(2)

a.main()
b.main()

Figure 13. Scheduling for the example of Figure 6.

main(){
 par{ a.main();
 b.main();} }

behavior a{
 main(){ z=y; /*st1*/
 waitfor(2);
 x=z+20; /*st2*/
 notify e; /*NEW*/}}

behavior b{
 main(){ wait e; /*NEW*/}}
 y=x+z+1; /*st3*/ }}

Figure 14. Example with “wait/notify”

Then, what will happen if st3 is not an active thread?

In SpecC, “wait/notify” statements are used for synchronization.
The semantics is that “wait” statement suspends the current thread
from execution until one of the specified events is “notified”.
Since “wait” suspends a thread for a certain amount of
“simulation time” unit, the next concern is how statements are
scheduled if “wait” statements exist.

Suppose another example of Figure 14 where the synchronization
statement of ``notify/wait'' is inserted into Figure 11. In this
example, “wait e” suspends st3 until the specified event e is
notified by “notify e”. Here, “notify e” is scheduled only
after the completion of st2 due to the sequentiality in behavior a.
Thus, it is guaranteed that st3 is scheduled after st2.
Consequently, the example of Figure 14 is executed as shown in
Figure 15. Note that the scheduling of Figure 15 is one of the
candidates shown in Figure 12.

st1 st2

time
st3waitfor(2)

a.main()
b.main()

synchronization
by “wait/notify”

Figure 15. Scheduling for the example of Figure 8.

5. Concluding Remarks
In this paper we have reviewed the current status of SpecC
languages emphasizing the issues being discussed by LSWG of
STOC. We plan to formally release SpecC language version 2.0 in
the beginning of 2002. Based on the formal semantics, many
supporting tools for SpecC are expected to be available soon.

6. REFERENCES
[1] R. Doemer, A. Gerstlauer, and D. Gajski, “SpecC Language

Reference Manual Version 1.0,”
http://www.specc.gr.jp/eng/tech/SpecC_LRM.pdf.

[2] http://www.ics.uci.edu/~specc/reference/

[3] http://www.specc.gr.jp/eng/wg_lang

9286

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

