
A Scalable and Flexible Data Synchronization Scheme for
Embedded HW-SW Shared-Memory Systems

Om Prakash Gangwal André Nieuwland Paul Lippensy

Embedded Systems Architectures on Silicon
Philips Research Laboratories, The Netherlands

o.p.gangwal@philips.com, andre.nieuwland@philips.com

ABSTRACT
This paper describes the implementation of a data-synchronization
scheme that can be used in the functional description and hard-
ware realization of algorithms for heterogeneous multi-processor
architectures. In this scheme, synchronization primitives are cho-
sen such that they can be implemented efficiently in both hardware
and software on distributed shared memory architectures, without
the need for atomic semaphore instructions. The proposed solu-
tion is flexible as the configuration of the data synchronization is
programmable even after a hardware realization. It is also scalable
since it can be implemented without the need for central resources.
We show with experiments that distributed implementations are
needed for scalable and high performance systems-on-a-chip.

1. INTRODUCTION
Signal-processing functions determine the performance require-

ments for many products based on standards like MPEG-x, DVB,
DAB, and UMTS. This calls for efficient implementations of the
signal processing components of these products. However, because
of evolving standards and changing market requirements, the im-
plementation requires flexibility and scalability as well. A macro-
pipeline setup is a natural way to model these applications, since
streams of data are processed; in this setup the functions (tasks)
are the stages and there are buffers between the stages to form the
pipeline. This is a way to exploit task-level parallelism (TLP), be-
cause all stages can operate in parallel.

In a Multiple Instruction Multiple Data (MIMD) composition
each processor can have its own function on its own data. In this
way it is possible to optimize processors to their function. This
leads to more efficient solutions both in power and area. For exam-
ple, for a demanding application, a RISC-CPU, a VLIW, a DSP, an
ASIP, and dedicated hardware units can be composed into a single
architecture as shown in Figure 1. To fully exploit the available pro-
cessing power, we need an efficient yet scalable and flexible way of
data communication.

yPaul Lippens is currently working with Magma design automa-
tion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

In [1, 2, 3, 4], inter-task data transportation and synchroniza-
tion are combined in a single action (e.g. read/receive/write/send
operations). A survey on communication in HW-SW embedded
systems can be found in [5]. Our proposal is significantly different
from previous art, as we advocate the separation of data transporta-
tion and synchronization. This provides the flexibility to perform
data transportation at a different granularity than synchronization.
This separation is especially advantageous in shared memory ar-
chitectures since only synchronization primitives are needed and
no copying of data is required.

In homogeneous shared-memory multi-processor architectures,
plenty of algorithms for scalable synchronization exist (see [9]). In
this domain, one resource is shared by multiple tasks. This prob-
lem is solved either by spin-lock or barrier algorithms (see [9]),
which require special instructions (e.g. test and set,
swap with memory) or atomic read-modify-write operations.

In standard synchronization algorithms, the same resource may
be claimed multiple times by a specific task before it is claimed
by another task. With data communication, storage for data ele-
ments is claimed by the two tasks in an alternating fashion: First
the storage will be claimed for writing by one task, and thereafter
by another task for reading. Note that when buffering is available,
one task can claim the next storage for data elements before the
other task has read the data elements (stored recently). However,
one task can not claim the same storage for data elements, which
it has filled, until the other task has read that data. As we show in
this paper, we can implement this form of synchronization without
any special instructions such as atomic read-modify-write. Further-
more, we provide an efficient and flexible implementation of these
primitives to support the mapping of signal processing applications
onto heterogeneous multi-processor architectures.

Local
Mem.

Bus

DSP

RISC

MEMORY
(interface)

Bus

Pheripheral

ASIPAddr.
dec.

Bridge

MEMORY
(interface)

Instr.
Cache

Data
Cache

Instr.
Cache

Instr.
Cache

Data
Cache

VLIW Addr.
dec.

Local
Mem.

ASIC

Local
Mem.

Addr.
dec.

Figure 1: A MIMD architecture

The rest of this paper is organized as follows. In Section 2, we
present our target architecture. In Section 3, we introduce the syn-

191

chronization protocol that is used to specify the signal processing
functionality. Section 4 describes the implementation of the proto-
col on a distributed shared-memory architecture. In Section 5, we
present experimental results, followed by conclusions in Section 6.

2. TARGET ARCHITECTURE
In an MIMD setup, the communication infrastructure is as im-

portant as the individual components for the overall performance of
the system. Moreover, while the choice of processing components
depends on the application, the same infrastructure can be used for
several applications as long as this infrastructure is scalable.

A common approach to realize MIMD architectures with a macro-
pipeline setup is to attach a number of (co-)processors to the main
processor using some communication network. The main proces-
sor controls the co-processors, and the co-processors implement
the functionality of the tasks. We call this kind of architecture a
co-processor architecture. In order to control the co-processors,
the main processor either polls (i.e. repeatedly reads) the status of
the co-processors or the co-processors themselves notify (interrupt)
the main processor when their task is finished. In order not to over-
load the main processor, the interrupt rate should be low. Similarly,
the time spent in polling should be low. This can be accomplished
using (very) large grain synchronization. For example, in a video
context, synchronizing on a field or a frame basis.

Large grain synchronization requires large buffers to store the
data to be communicated, which due to their size have to reside in
off-chip memory. Off-chip memory bandwidth is expensive and
power consuming and is already a major bottleneck in systems.
This bottleneck can be subsided if the data remains on chip. Since
the amount of on-chip memory is limited and quite often already
dominant in cost (area), we should look for ways to decrease the
on-chip buffer size. One way to accomplish this is to reduce the
synchronization grain size. However, in a co-processor architec-
ture, this would lead to unacceptable high interrupt rates for the
main processor.

Therefore, we propose a different approach where the
(co-)processors are autonomous with respect to synchronization
and do not require service from a main processor. We call this
kind of architecture a multi-processor architecture. With this ap-
proach, we can go to a smaller grain of synchronization, which
allows smaller buffer sizes, and therefore, enables on-chip commu-
nication. When we use multi-processor architectures for the exam-
ple discussed above, we can synchronize on a line or block basis
instead of synchronizing on a frame or field basis.

Multi-processor architectures are better scalable than co-processor
architectures. Synchronization in a multi-processor architecture is
challenging since all tasks are autonomously scheduled. In this pa-
per, we define and implement a data synchronization protocol for
multi-processor architectures. However, the same protocol can be
used in co-processor architectures.

3. SYNCHRONIZATION PROTOCOL
Our application specification is based on Kahn process networks

[6]. In this model, the overall application is decomposed in a num-
ber of parallel processes communicating via point-to-point unidi-
rectional unbounded channels with first-in-first-out (FIFO) behav-
ior. In this paper, we refer to these processes as tasks. In this model,
when a task wants to read from a channel, and there is no data avail-
able, the task will block. However, write actions are non-blocking.

In our model, FIFOs are bounded since we are addressing effi-
cient implementation of applications and not only the specification.
This means that a task will also block when it wants to write to a
channel if the associated FIFO is full.

We clearly separate synchronization from data transportation
since in a shared memory architecture no copying of data is re-
quired. In this context, data transportation is the set of activi-
ties required to transport the data from one task to another via a
(buffered) channel. Synchronization is the set of activities required
to query/claim/release some amount of the data on a channel. The
synchronization takes place on a per token basis. While a token
is the unit of synchronization, the amount of data associated with a
token can vary. However, the size of a token for each channel is set
at system configuration.

For efficiency reasons, all communication buffer memory is al-
located at setup and is reused during operation. This implies the
reuse of physical channel buffers during operation. Therefore, we
need primitives to claim and release buffer memory space. Since
we communicate tokens, these primitives operate on a per token
basis.

At the data producing side, we want to claim empty token buffers
(claim space) and release full token buffers (release data).
At the consuming side we want to claim filled token buffers
(claim data) and release empty ones (release space).
Claiming a token buffer is blocking, i.e. when no buffer is available
the task blocks. Releasing is non-blocking.

Data *f, *e;
while (1) {
 f = claim_data(ch_in);
 e = claim_space(ch_out);
 process(f,e);
 release_space(ch_in);
 release_data(ch_out);
}

No PipeliningPipelining

ProcessChannel Channel

ch_in ch_out

Process Process

Input channel Output channel

Figure 2: The four synchronization primitives

Figure 2 illustrates the use of the four primitives. The buffers are
visualized as train wagons and channels as rail roads. The middle
task first has to acquire a full wagon at its input channel and an
empty wagon at its output channel. After the processing, the emp-
tied wagon is pushed back on the input channel and the filled one on
the output channel. The initial number of wagons on the railroad
determines how strongly the tasks are coupled. Only one wagon
means that the tasks have to be executed alternately, whereas more
than one wagon allows pipelining (parallel execution) of the tasks.

In our implementation, it is allowed to claim (reserve) a number
of tokens and process them out of order before releasing them in
order. This means that multiple claim primitives can be called
before the corresponding tokens are released by release calls.
Note that in that case the number of buffers on the channel should
be greater or equal to the number of consecutive claim calls, oth-
erwise deadlock occurs.

A non-blocking version of claim data/space primitives
called query data/space is also defined to query the avail-
ability of data/space. That information can be used by a task to
perform some other work until the data/space becomes available,
or in a multi-tasking environment where a task itself could indicate
the readiness for task switching to an operating system or to a task
scheduler.

This synchronization protocol can be extended to exchange to-
kens between more than two tasks as shown in [7].

202

4. IMPLEMENTATIONS OF THE PROTO-
COL

The protocol is defined and implemented such that it is transpar-
ent to the tasks i.e. a task does not have to know whether the task it
is communicating with is implemented in hardware or software.

We describe the implementation of channel FIFO buffers that
are flexible enough to facilitate implementations of the protocol in
hardware and software, in Section 4.1. In Section 4.2, a generic
implementation of synchronization primitives is explained. In Sec-
tion 4.2.1, we explain optimizations for the software implementa-
tion. Optimizations for the hardware implementation are explained
in Section 4.2.2.

4.1 Implementation of channel FIFO buffers
We allocate space in shared memory and control that space in a

FIFO manner to implement a channel buffer. This gives us the flex-
ibility to tune the channel buffer and token sizes for an application
even after we made a hardware realization. Furthermore, one can
change the number of channel buffers and their logical intercon-
nection structure in order to map different applications on the same
hardware. In order to provide FIFO behavior of a buffer, some ad-
ministrative information has to be maintained. The administrative
information contains some static and dynamic values. The static
values are those values that are written only once when the system
is configured. The dynamic values are those values that are modi-
fied while the system is running. Examples of static values are the
size of a token, a base address of the allocated memory, the max-
imum number of tokens in a FIFO (maxtokens) etc. The dynamic
values are a read counter (readc), a write counter (writec) and the
number of filled or empty tokens (ftokens/etokens). Two of the dy-
namic values are necessary and sufficient to control the allocated
space in a FIFO manner. Thus, we have the following minimum
pairs:

1. readc and ftokens/etokens.

2. writec and etokens/ftokens.

3. readc and writec.

Options 1 and 2 introduce a consistency problem. After produc-
ing data, the producing task would increment ftokens. The data
consuming task is supposed to decrement the same variable after
consuming data. For example, when the initial value of ftokens is
4, a producing task increments ftokens’ value from 4 to 5 (after pro-
ducing data) and simultaneously the consuming task connected to
the same channel decrements the same ftokens’ value from 4 to 3
(after consuming data), which results in a wrong value of ftokens
(i.e. either 5 or 3) where the correct value after these operations
should be 4. Since two concurrent tasks modify the same variable,
access to that variable needs to be protected either by means of an
atomic read-modify-write, or by guarding through semaphores.

In addition to the consistency problem with the token field in
options 1 and 2, there is another consistency problem related to
the calculation of the third dynamic value (readc, or writec). For
example, in option 1, when readc is 13 and ftokens is 4, the derived
value of writec is 17 (i.e. 13 + 4). After consuming one token the
consumer task decrements ftokens’ value atomically to 3. At this
moment, the derived value of writec (16, i.e. 13 + 3) is wrong
since the value of readc is not yet incremented to make the value
of writec correct (i.e. 17). Therefore readc and ftokens have to be
updated by a consumer task as an atomic unit to derive the correct
value of writec.

In option 3, a task increments only its own counter i.e. a produc-
ing task increments writec and a consuming task readc. Because

etokens/ftokens are derived from these values, a producer (con-
sumer) task never sees more empty (full) tokens than available at
any time. The ftokens/etokens field can always be derived from the
counter values. The counters are initialized to zero and count mod-
ulo the maxtokens value. To solve the ambiguity problem (whether
FIFO is full or empty) that arises whenever writec and readc are
equal, we extend both values with an extra bit (wrap flag). The
wrap flag is initialized to zero, and toggled when the correspond-
ing counter reaches the maxtokens value. If the counters are equal
and the wrap flags are different then the FIFO is full, otherwise
(with identical wrap flags) the FIFO is empty. The wrap flag in-
creases the range of the counters to twice the size of the maximum
number of tokens in the FIFO, akin the sliding window protocol for
data communication [8]. We choose option 3 since with this option
no consistency problem arises

4.2 Implementations of the primitives
When a claim data call is executed and a full token is avail-

able in the FIFO, a pointer to the token is returned. The token
pointer is calculated from the readc value and some static values.
Similar actions are performed for a claim space call. When the
release space (release data) primitive is called the readc
(writec) counter is incremented.

To facilitate consecutive claim data/space calls, a separate
reservation counter (i.e. readrsvc corresponding to readc and writ-
ersvc corresponding to writec) is implemented. The reservation
counters readrsvc and writersvc behave in the same manner as the
readc or writec. However, they move ahead of them. The reserva-
tion counter value is private for each task. With the addition of the
reservation scheme, a consuming (producing) task would perform
comparisons of the readrsvc (writersvc) and writec(readc) on a
claim data (claim space) call. When the call becomes suc-
cessful, the token pointer corresponding to the reservation counter
readrsvc (writersvc) is calculated and the readrsvc (writersvc) is
incremented. However, the reservation scheme does not change
the actions required for release space (release data) call.
Figure 3 shows a snapshot of a FIFO where two tokens are reserved
for reading (writing) while four tokens are available for reading
(writing). The figure also shows values of readc, readrsvc, writec
and writersvc with associated wrap flag. Random accesses are per-
mitted within the reserved tokens.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��������������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

(0,8) equal (wraps) to (1,0)

(0,6)

(1,4)

(writec)

(1,0)

(1,2)

Read Counter

Write Reserve Counter

Write Counter

Read Reserve Counter
(readrsvc)

(readc)

(writersvc)

Read Reserve Counter
(readrsvc)

data reserved

space reserved

space available

data available

data available

Counter values are represented as pair of (Wrap_flag, Index)

Figure 3: A snapshot of a FIFO with the reservation scheme

In principle, a blocked task polls on the counter value until its
synchronization call becomes successful. This polling-based syn-
chronization scheme is useful, if the counter value is updated around
the same time when a task starts polling. However, polling is not
always efficient since it increases bus load and power consumption.

213

Alternatively, a blocked task can be notified (e.g. by sending a
signal) that the status of the FIFO has been changed. We call this
scheme interrupt-based synchronization. One should choose be-
tween polling-based and interrupt-based synchronization depend-
ing on the expected wait time, with respect to the time required to
serve the wake-up signal.

The signaling should fulfill two requirements. First of all, the
signal should not arrive before the data has reached its destination,
to prevent the activated task from reading old data. Secondly, the
signaling scheme should be scalable since the whole system should
be scalable. We implemented the signaling in a memory mapped
fashion since it is scalable, and eliminates the need for a dedicated
interrupt network. As long as no re-ordering of data is done in the
interconnection network, the memory mapped signals will follow
the data and will not arrive too early.

4.2.1 Optimizations in the software implementation
With an interrupt-based synchronization, a task sends a signal at

every release synchronization call. Whenever an interrupt signal is
received in a generic processor, an interrupt service routine (ISR)
is called. However, a task does not need these signals (hence no
need to execute ISR) if it is not blocked. We reduced the number of
interrupts seen by the processor by introducing a signal controller
(see Figure 4). The signal controller has a mask register to mask
the signal register (i.e. used to store signals written by tasks) during
normal operation and enables the signal register only when the task
is blocked. The signal controller is memory-mapped and instanti-
ated for each generic processor in the architecture.

Interrupt Controller

Other Interrupts

Logical OR

And AndAnd

Interrupt

Mask Reg.

Signal Reg.
Signal Controller

Processor

Bus

Figure 4: A Signal Controller for a processor

4.2.2 Optimizations in the hardware implementation
The hardware implementation of the channel synchronization

protocol is called a channel controller. Channel controllers are in-
stantiated per channel in a synchronization shell that is attached
to an application specific component (see Figure 5). The channel
controller is implemented with a generic bus interface to facilitate
reuse with any particular bus by adding a bus adapter. The syn-
chronization shell has a signal register that is used for receiving
signals in the interrupt-based synchronization scheme. This signal
register is instantiated only once per device. All registers in the
synchronization shell are memory-mapped.

Only one channel controller is implemented in hardware, the
mode (i.e. input or output) of a channel controller is set at the sys-
tem configuration. This controller is instantiated for each channel.

In order to reduce the number of system bus accesses, some ad-
ministrative information values are copied in the channel controller.

Application

Synchronization ShellBus

Sync. IF

Component

Controller
Channel

[input]

Specific

[output]

Channel

B
us

 A
da

pt
er

Signal Reg.

Controller

Figure 5: A Synchronization Shell for an Application Specific
Component

The copied information also helps to reduce the delay in servicing
synchronization calls.

In our implementation, when a coprocessor needs a token ad-
dress (i.e. by a claim data/space call), the token address can
be made available in next clock cycle of the synchronization re-
quest. If more tokens are available then they can also be deliv-
ered every clock cycle, one by one. In this implementation, re-
lease space/data calls also take just one clock cycle for the
task. The release space/data primitives are carried out by
the channel controller. A channel controller running at 100 MHz is
implemented in 0.09 mm2 for 0.18 micron CMOS technology.

5. RESULTS
We have extended our simulation models [10] to include all pre-

viously described implementations of the synchronization primi-
tives. The effect of software and hardware optimizations are pre-
sented as well.

PI−Bus

OutputCPU
MIPS 1900 Task (N)

Memory

Sync shell

Signal controller Sync shell

Task (1)

(a) Multi-processor

Output

CPU

Task (1)

Task (N)

MIPS 1900

Ch id

Signal controller

PI−Bus

Memory

Result

Sync call
Ch id

Result

Sync call

(b) Co-processor

Figure 6: Architecture used for experiments

We built a multi-processor architecture (see Figure 6 a), in which
all tasks are mapped onto hardware modules and synchronization
is performed by the synchronization shells attached to the hardware
modules. On encountering a synchronization call, the task reads the
value of a token pointer if a token is available, otherwise it waits.
A CPU (i.e. a low-power, low-cost MIPS running pSOS) is used

224

to configure the communication channels between the tasks. After
configuration, the CPU goes idle.

We used the same set-up to simulate the classical co-processor
architecture. For this purpose, we modified the synchronization
shells such that the synchronization can be performed by the CPU
(see Figure 6 b). Therefore, we added some (memory mapped)
registers to the shells to hold the cause for a service request (sync-
call), the channel-id for which the request was issued (ch-id), and a
result register (result) to store the value returned by the CPU after
completing the service request (sync-call).

On encountering a synchronization call, a task fills desired syn-
chronization action, channel-index and a zero value in the sync-
call, ch-id and result registers respectively. Subsequently, it sends
an interrupt to the CPU. The interrupt can be sent directly to the
CPU using traditional methods, e.g. daisy-chain, (i.e. co-processor
non-optimized case) or by writing the task index of the task to the
signal register in the signal controller, which is attached to the CPU
(i.e. co-processor optimized case). The task polls the result regis-
ter for a non-zero value. The task uses this value as a pointer to the
requested token when the value of the result register is non-zero.
On receiving an interrupt, the CPU invokes an ISR which identi-
fies the source of the interrupt. Thereafter, the ISR reads the values
of the sync-call and ch-id registers from the synchronization shell
requesting service. Based on these values, the proper synchroniza-
tion call is executed for that task. If the synchronization call does
not pass, due to the fullness or emptiness of the FIFO buffer, the
ISR saves the request until the FIFO buffer is updated by the con-
nected task (producer or consumer). As soon as the FIFO buffer is
updated, the saved synchronization call is invoked and the result is
written in the result register of the pending task.

Task (1)
Output

Task (N)Task (2)
Input

Task (N−1)

Figure 7: Application used in experiments

5.6E+07

8.6E+07

2.6E+07

1.1E+07

4.7E+06
6.7E+06

1.1E+07
1.4E+07

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

7.0E+07

8.0E+07

9.0E+07

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of tasks

N
u

m
b

er
 o

f
cy

cl
es

 t
o

 f
in

is
h

 a
p

p
lic

at
io

n

co-processor not optimized

co-processor optimized

Figure 8: Total time to finish application (using 1000 tokens) in
co-processor architectures

391

238

176

931 938 934 930

157

29 30 30 30

18 18 18 180

100

200

300

400

500

600

700

800

900

1000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of tasks

C
yc

le
s

p
er

 s
yn

c.
 c

al
l

co-processor not optimized

co-processor optimized

multi-processor not optimized

multi-processor optimized

Figure 9: Time per synchronization call

In our experiments, all tasks are only performing synchroniza-
tion to facilitate the analysis of synchronization performance. No
buffer data is accessed. All tasks are connected in a chain in which
every task is passing tokens to the next task (see Figure 7). A fixed
number of tokens, i.e. 1000, are introduced in the system and the
simulation is performed until they reach the last task in the chain.
Each task is mapped onto a separate hardware module, which posts
a new synchronization call one clock cycle after completion of the
previous call. We varied the number of tasks from 4 to 24 in steps
of 4, for both the classical co-processor communication scheme as
for the proposed multi-processor architecture scheme.

The experimental results for the total execution time for the ap-
plication is shown in Figures 8, 10 and the average time per syn-
chronization call is shown in Figure 9.

Figure 8 presents the total execution time on the co-processor
architecture for this application, as a function of the number of
(hardware) tasks. As can be concluded from this figure, the op-
timized co-processor architecture (using our signal controller) re-
quires significantly less cycles (upto a factor of 6 less) than the
non-optimized (traditional interrupt scheme) one. In all variants
of the co-processor architecture, the CPU is fully loaded by serv-
ing interrupts generated by all tasks since all tasks are performing
synchronization at high rates.

As can be seen in figure 9, the average time to execute a synchro-
nization call for the traditional interrupt scheme is nearly constant
over the number of tasks. This time can be reduced significantly
when our signal controller is used (optimized co-processor curve).
Because now, synchronization requests of multiple tasks are ser-
viced within a single ISR execution. Hence, the ISR overhead is
divided among all synchronization calls being serviced.

Due to the large synchronization delay for the co-processor, fine
grain synchronization, which is needed to reduce on-chip buffering,
is hardly possible.

As can be seen from the same figure (Figure 9), the non-optimized
multi-processor architecture is a factor of 5 to 13 faster than the
optimized co-processor architecture with respect to the number
of cycles per synchronization call. The optimized multi-processor
architecture is 8 to 21 times faster than the optimized co-processor

235

4.7E+06

6.7E+06

1.1E+07

1.4E+07

3.4E+05
8.4E+05

1.8E+06

2.8E+06

1.6E+06
1.1E+06

5.0E+052.1E+050.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of tasks

N
u

m
b

er
 o

f
cy

cl
es

 t
o

 f
in

is
h

 a
p

p
lic

at
io

n

co-processor optimized
multi-processor not optimized

multi-processor optimized

Figure 10: Total time to finish application (using 1000 tokens)
in the multi- and optimized co-processor architectures

architecture. Due to the lower synchronization delay, less memory
needs to be allocated for communication buffers.

To support the flexible part of an application, tasks could be
mapped as software running on the CPU. With the co-processor
architecture, these software tasks can not be executed until all in-
terrupts are served. This means that the software tasks are only
executed when hardware tasks (which may be communicating to
software tasks) are silent, e.g. after filling the FIFO buffer. As a
result, the system performance is reduced since all tasks do not ex-
ecute really in parallel, that is, the software tasks are not running
in parallel with the hardware modules because the CPU is (fully)
loaded with the synchronization of the hardware modules.

A solution to improve the performance of this co-processor sys-
tem is to map the centralized synchronizer onto a separate pro-
grammable processor or on dedicated hardware. However, the worst
case dynamic delay for a synchronization call, which is the waiting
time to get its turn on the centralized synchronizer, can be as high
as ((number of tasks� 1) � time per sync call).

Hence, the system performance can be affected by these delays
for a single synchronization call. Moreover, these larger synchro-
nization times result in larger grain-size communication, hence in-
creased buffer space, which is just what we try to minimize.

In all variants of the multi-processor architecture, the CPU is free
to execute (signal processing) tasks since the synchronization is ex-
ecuted in a distributed and autonomous manner. In this case the
software tasks synchronize (through software routines) only with
the hardware (or software) tasks it is actually communicating with.
The hardware tasks use the same shells for communicating with
the software as they would use for communicating with each-other.
Neither software nor hardware tasks need intervention of a ’third
party’, nor are they disturbed by synchronization of others. There-
fore, the synchronization delays are quite low.

Figure 10 shows the run-time of the synchronization application,
for the optimized co-processor architecture and the (non-) opti-
mized multi-processor architectures. From this figure, we can con-
clude that high performance systems need to be implemented using
multi-processor architectures.

6. CONCLUSIONS
In this paper, we have presented an efficient, scalable, and flex-

ible data synchronization protocol for mapping signal processing
functions onto heterogeneous distributed shared memory multi-
processor architectures. We assume that the functionality is ex-
pressed as a set of parallel tasks communicating through FIFO
channels. Both hardware and software implementations of the pro-
tocol are explained. The protocol is transparent to the tasks, i.e. a
task does not know about the protocol implementation and the im-
plementation of the other tasks. This allows us to easily migrate
functionality from hardware to software or from one processor to
another. By experiments we have shown that the distributed im-
plementation of this protocol is 8 to 21 times faster than an opti-
mized centralized implementation. Hence it enables the high syn-
chronization rates required to reduce on-chip buffering. Moreover,
the area overhead of the distributed implementation is limited (i.e.
0.09 mm2 per channel controller for 0.18 micron CMOS technol-
ogy).

7. ACKNOWLEDGMENTS
We would like to thank Albert van der Werf for encouraging this

work. We are grateful to Pieter van der Wolf, Wido Kruijtzer and
Erwin de Kock for providing critical and stimulating feedback to
improve this article.

8. REFERENCES
[1] S. Vercauteren, B. Lin, et al. “Constructing

application-specific heterogeneous embedded architectures
from custom HW/SW applications,” in Proc. of DAC, 1996.

[2] D. Verkest, K. Van Rompaey, et al. “CoWare - A Design
Environment for Heterogeneous Hardware/Software Systems”,
Design Automations for Embedded Systems, 1(4), 357-386,
1996.

[3] E.A. de Kock, G. Essink, et al. “YAPI: Application modeling
for signal processing systems” in Proc. of DAC, 2000, pp.
402–405.

[4] R. Ernst, et al. “Hardware-Software Cosynthesis for
Microcontrollers”, in Proc. of IEE ED&RC, December 1993.

[5] Mattias O’Nils, “Communication within HW/SW Embedded
Systems”, ESDLab, Department of Electronics, Royal Institute
of Technology, Sweden, report no. TRITA-ESD-1997-08,
ESDlab, KTH-Electrum, Electrum 229, S-16440 Kista,
Sweden, 1997.

[6] G. Kahn, “The semantics of a simple language for parallel
programming” in Information Processing, J.L. Rosenfeld, 1974

[7] J. Kang, A. van der Werf, P. Lippens, “Mapping Array
communication on to the FIFO Communication-Towards an
Implementation” in Proc.of International Symposium on
System Synthesis, 2000, pp. 207–213.

[8] Tanenbaum, A. S., Computer Networks, Prentice/Hall
International, Inc., The Netherlands, 1981.

[9] J.M. Mellor-Crummey and M.L. Scott, “Algorithms for
Scalable Synchronization on Shared-Memory
Multiprocessors,” in ACM Trans. on Computers Systems, vol. 9,
Feb. 1991, pp. 21-65.

[10] A.K. Nieuwland, P.E.R. Lippens “A heterogeneous HW-SW
architecture for hand-held multi-media terminals”, in Proc. of
IEEE Workshop on Signal Processing Systems, 1998, pp.
113–122.

246

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

