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ABSTRACT 
FPGAs have been growing at a rapid rate in the past few years. 
Their ever-increasing gate densities and performance capabilities 
are making them very popular in the design of digital systems.  In 
this paper we discuss the state-of-the-art in FPGA physical design. 
Compared to physical design in traditional ASICs, FPGAs pose a 
different set of requirements and challenges. Consequently the 
algorithms in FPGA physical design have evolved differently 
from their ASIC counterparts. Apart from allowing FPGA users to 
implement their designs on FPGAs, FPGA physical design is also 
used extensively in developing and evaluating new FPGA 
architectures. Finally, the future of FPGA physical design is 
discussed along with how it is interacting with the latest FPGA 
technologies.   
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1. INTRODUCTION 
Field Programmable Gate Arrays (FPGA) have revolutionized 
digital system design in the past 15 years. Their programmability 
and fast time-to-market have made them very popular with digital 
system designers. About 5 years ago, FPGAs were being used 
primarily as glue logic in a system. Now, with the arrival of multi-
million gate FPGAs and the availability of a variety of system-
level features on them, FPGAs are being used to design complete 
systems. 

FPGAs are used in systems for a variety of different reasons. 
Their use can be classified into four broad categories [10]. They 
are: 

Production use: In this category, FPGAs are an integral part of 
the system in production. Further, due to low volume 
requirements or rapidly changing market conditions, there is no 
migration plan to ASICs. Since they are part of production 
systems, the performance requirements for FPGAs may be very 
high. 

Pre-production use: This category of FPGA use is very similar to 
production use in all respects except one: the use of FPGAs is 

temporary and only until an equivalent ASIC is deployed. 
Typically, FPGAs in pre-production use indicate a very tight time-
to-market requirement that cannot be met by ASICs. Similar to 
FPGAs in production use, the performance requirements could be 
very high. 

Prototyping: FPGAs in this category are used primarily to 
prototype a system. The volume requirements are fairly small and 
the performance requirements may not be stringent. 

Emulation: Emulation is an effective way of functionally 
debugging the system and FPGAs are sometimes used to emulate 
complete systems. The volume requirements are very small and 
the performance requirements are not critical. 

Figure 1. shows the relative usage of FPGAs in these 4 categories. 

 
Figure 1. FPGA Use 

As can be seen in the figure, production and pre-production 
systems comprise the overwhelming majority of FPGA use: a far 
cry from the days when FPGAs were primarily used for 
prototyping and emulation. This directly implies that the time-to-
market and high FPGA performance requirements are crucial 
determinants of FPGA software. 
The rapid growth and adoption of FPGAs in digital systems can 
be traced to three main factors: Business climate, FPGA device 
features and density, and FPGA software. 
Business Climate: The business factors that have contributed to 
the success of FPGAs are reduced time-to-market and lower 
lifecycle costs. With respect to time-to-market, FPGAs have 
proved to be very valuable in reducing the system design cycle. 
Additionally, their re-programmability implies that late feature 
requirements or bugs caught late in the design cycle are easier and 
less expensive to fix than ASICs. The re-programmability for 
FPGAs is also important in lowering the overall lifecycle costs of 
the system since new features and modifications can be 
implemented in systems that have already been deployed in the 
field. 
FPGA device features and density: Another reason for the 
popularity of FPGAs among system designers is the addition of 
several system-level features on FPGAs. Not long ago, FPGAs 
consisted primarily of configurable logic elements and routing. 
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However, in the last 5 years, vendors have started implementing a 
wide variety of system-level features on their FPGAs such as 
embedded block RAMs; multiple system clocks with associated 
clock management circuitry; I/Os that can be configured 
according to several I/O standards, and embedded processors. 
Along with the addition of system-level features, the gate 
densities of FPGAs have also grown by orders of magnitude in the 
past 5 years. For example, in 1996, the largest FPGA offered by 
Xilinx®, the XC4025 consisted of 25000 equivalent user-
programmable gates. Today, Xilinx offers the X2V6000 that can 
implement an equivalent of 6 million user-programmable gates. 
The combination of system-level features and the large number of 
user-programmable gates allow FPGAs to implement complete 
systems on a chip. 
FPGA Software: Another important reason for the popularity of 
FPGAs is the FPGA design software. By FPGA software we mean 
the software that is provided by FPGA and FPGA-CAD vendors 
to FPGA users to implement their design on an FPGA. Current 
FPGA software tools give the user the sophistication and 
capability to start with behavioral and RTL-level descriptions and 
compile multi-million gate systems in a matter of a few hours. 
Such fast compile times along with the software’s ease-of-use 
have shortened the FPGA design cycle and have fueled the rapid 
adoption of FPGAs in systems. 
In this paper we will restrict our attention to FPGA physical 
design software that is used in implementing the user’s design on 
the FPGA. It is important to clarify that we will not be discussing 
the physical design software used for the actual layout of the 
FPGA silicon by the FPGA vendors. Instead, we will be 
discussing the software used in the implementation of the user’s 
design on the configurable logic and routing elements on the 
FPGA. 
Most FPGA vendors rely on third-party EDA vendors to provide 
synthesis and schematic-based design entry mechanisms. On the 
other hand, FPGA vendors are typically the primary source for the 
physical implementation tools such as placement, routing, and 
configuration programming. The primary reason for this is that the 
physical implementation software is very closely tied to the FPGA 
architecture. In fact it is developed simultaneously with new 
FPGA architectures. The algorithms for these FPGA physical 
implementation tools started out as algorithmic modifications to 
classical ASIC physical design algorithms. However, over time, 
they have evolved in subtle but different ways from classical 
ASIC physical design algorithms. 
This paper will discuss the state-of-the-art in physical design 
algorithms for FPGAs and contrast them with those algorithms for 
ASICs. To understand physical design for FPGAs, it is instructive 
to understand the requirements that drive FPGAs. In the next 
section, we will discuss the requirements of FPGA physical 
design software and contrast it with ASIC physical design 
software. In Section 3 the typical FPGA design flow is described. 
We define the placement and routing problems for FPGAs along 
with a discussion of some basic algorithms for them. We conclude 
with some thoughts on the future of FPGA physical design 
software. 

2. ASICs and FPGAs 
In this section, we discuss features of FPGAs and FPGA design 
cycles that have important ramifications for FPGA software. 

2.1 Design Cycle 
The FPGA design cycle can be divided into 3 phases: the 
evaluation phase, the design and debugging phase, and the 
production phase. In the evaluation phase, the designer is 
typically evaluating the FPGA for possible implementation of 
their design. In this phase, the designers evaluate the estimated 
ASIC performance of their design and compare it with an 
estimated FPGA performance of their design. Additionally, users 
may also evaluate different FPGA architectures and vendors. In 
this phase, the FPGA physical design tools are required to be very 
fast and must provide a result that provides a reasonably close 
estimation of the final system performance. 
At the other end of the FPGA design cycle is the production 
phase, where a design is very close to being complete. Typically, 
late features or last minute bugs are fixed in this stage. In this 
phase, FPGA physical design software must focus on getting the 
best possible performance (or at least a result no worse than 
before) at the cost of some additional runtime. 
The majority of the time in the FPGA design cycle is spent in the 
debug phase. This is the phase where the designer implements 
their design, configures the FPGA, and debugs specific functional 
units of their design. This requires the FPGA software to produce 
a result with reasonably good performance in a very short time. In 
this phase, it is more important that the software run fast than it is 
to produce the highest possible circuit frequency. This is because 
the time to compile a design to an FPGA is considered “dead 
time” when the designer cannot look at the results on the bench 
and hence is not very productive. The “turns-per-day” metric is, 
therefore, of paramount importance. In other words, it is very 
important to allow the user to iterate several times a day during 
this phase. Furthermore, since 90% of the total number of design 
compilations are done in the debug phase, faster compile times are 
of paramount importance for FPGA physical design software in 
this phase. 
Depending on the design phase, the primary requirement for the 
FPGA physical design software changes from extremely fast 
compile times to extremely good circuit performance by trading 
off one for the other. In the evaluation and debug phase, runtime 
is of primary importance and circuit performance, while still being 
important, is of secondary importance. In the production phase, 
circuit performance is of primary importance, while runtime of the 
software is not as important. 
While we see that the primary requirements for the FPGA design 
software can change from very fast compile times to very high 
frequency implementations it is important to note that the 
underlying FPGA value proposition of faster time-to-market 
makes compile times that are greater than 10-12 hours 
unacceptable. This is a very important requirement for FPGA 
software since this perceived upper limit on the amount of time a 
single compilation run can take has not scaled with the increase in 
the FPGA device and design sizes. For example, in the same time 
it took to completely place and route the largest FPGA device of 
25000 gates five years ago, it is now not only possible but 
expected that a multi-million gate design be placed and routed. 

2.2 Deep Sub-micron Effects 
A few years ago, FPGAs used process technology that lagged the 
state-of-the-art. However, in recent years, due partly to their 
regular structure and high volumes (i.e. volumes in which FPGAs 
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are manufactured by the vendors), FPGAs have not only become 
the technology leaders but have actually become the drivers for 
the latest process advances in the semiconductor fabrication 
facilities. 
Inherent in the state-of-the-art processes come the set of 
challenges referred to as deep sub-micron effects. With ASICs, 
the designer has to account for all the deep sub-micron effects in 
their design. Consequently, ASIC software must provide users 
with tools to address these deep sub-micron challenges. However, 
in the case of FPGAs, the FPGA vendors design their FPGAs 
such that the end user of FPGAs does not have to directly account 
for many of the deep sub-micron effects. Of course, a result of this 
design is that some FPGA performance may be sacrificed.  
However, not having to account for some of these deep sub-
micron effects simplifies not only the design cycle for FPGA users 
but also the development of FPGA software. 
Currently, FPGA software does not concern itself with some deep 
sub-micron effects such as cross-talk and signal integrity to as 
great an extent as ASIC software. For example, even at 0.13u 
FPGA software does not have to contend seriously with these 
deep sub-micron effects. Of course, as geometries get smaller, 
FPGA software may have to start accounting for these DSM 
effects since the FPGA architecture itself may not be able to 
completely shield the user from having to account for them. 
While FPGA users do not have to concern themselves with most 
DSM effects, some DSM effects such as the dominance of routing 
delays over logic delays are effects that the first FPGAs have had 
to deal with. In fact, the dominance of routing delays over logic 
delays in FPGAs is not a result of the sub-micron geometries but 
more a result of the FPGA architecture. The reason for this is that 
a typical FPGA connection consists of a combination of metal and 
one or more programmable interconnect points (PIP) that are 
usually implemented as pass gates. These pass gates make the 
routing delay dominate the logic delay in FPGAs. 
This dominance of routing delay has influenced architecture 
decisions of FPGAs. While it is not possible to reduce the routing 
delay beyond a certain amount, most FPGA architectures attempt 
to at least make the routing delays highly predictable leading to 
physical design algorithms that thoroughly exploit this 
characteristic. 

2.3 Software Complexity 
One of the interesting requirements on FPGA physical design 
software stems from the fact that most system designers designing 
ASICs are primarily logic designers. Consequently, separate 
teams of dedicated engineers handle the physical design aspect of 
the ASIC design. These separate teams have gathered significant 
expertise in physical design over time and are expert users of the 
ASIC physical design software. On the other hand, designers 
using FPGAs do not have separate teams of engineers dedicated to 
handling the physical design. Instead, the system designers have 
to focus on both the logic and physical design aspects of their 
design. This in no way implies that ASIC designers are not 
concerned with physical design; they expect physical design 
concerns and try to mitigate them with their design. FPGA 
designers, on the other hand, do not expect physical design issues 
to crop up in their design and expect it to be a fairly “hands-off” 
process. This situation demands that FPGA physical design 
software be made as easy to use as possible. 

Another factor that forces FPGA physical design software to be 
simple and require less support is the economics of FPGA 
software. Given the relatively low cost of FPGA software 
compared to ASIC design software, the support costs account for 
a large fraction of the overall cost. This imposes the requirement 
that FPGA software need as little support as possible. This 
requirement for FPGA physical design software manifests itself as 
a tendency to hide a lot of the tool and algorithm complexities 
from the user. 

2.4 FPGA Device Densities 
One of the important reasons that FPGA physical design software 
differs from ASIC software is that like mask programmed gate 
arrays, FPGAs are available only in certain vendor determined 
gate densities. There isn’t a continuum of devices that can be used 
depending on the size of a given design. This implies that the 
amount of logic and routing available in an FPGA device is fixed 
and pre-determined. Even the least bit of over-utilization of 
device resources forces the user to migrate to the next larger 
FPGA device, and consequently, increases the dollar cost for the 
design significantly. 
Another way to view this phenomenon is that the marginal cost of 
using additional resources in an FPGA is zero unless the total 
demand of resources exceeds capacity of the FPGA, in which case 
the marginal cost jumps sharply reflecting the difference in the 
cost of the next FPGA device. This implies that it is not necessary 
for FPGA physical design software to minimize the resource 
usage if the capacity limit for the FPGA device is not reached. On 
the other hand, if the design must be developed with future 
additions and modifications in mind, it becomes important to 
minimize resource usage to allow for future expandability. 
Consequently, FPGA software must not simply minimize the 
number of resources (area). Instead, it must focus on the optimal 
use of the existing resources. 

2.5 New Architecture Development 
To improve the runtimes of FPGA CAD tools and to improve the 
performance of the implemented designs on new FPGA 
architectures, FPGA vendors develop CAD tools in parallel with 
new architectures. Vendors will typically model architecture 
features in the software and evaluate them even before committing 
them to silicon. In fact, FPGA software is usually available much 
earlier than the FPGA silicon. This is in complete contrast to 
ASIC vendors where the process and the new generations of 
ASICs are developed with minimal, if any, involvement from the 
EDA tool vendors. 
New FPGA architectures are evaluated for cost, routability, and 
performance with the help of the FPGA CAD tools. In fact, on 
several occasions specific features are added or removed from the 
architecture to facilitate faster runtimes or better performance 
from the FPGA CAD tools.  
This requirement for concurrent development of the architecture 
and the FPGA CAD tools has important implications for FPGA 
CAD tools. For example, for new architecture evaluation, FPGA 
software should include general algorithms that can be easily 
modified. This is preferred to specialized heuristics that are 
heavily tuned to specific architectures.  While the architecture 
development CAD tools may be internal tools and not visible to 
the FPGA user, they are, nonetheless, important in our discussion 
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since they have greatly influenced FPGA software and 
architecture.  

3. FPGA Physical design Software 
A typical FPGA design flow is shown in Figure 2. The FPGA 
implementation flow can divided into 3 main phases, design entry 
which includes HDL or schematic entry mechanisms; the design 
implementation phase which typically consists of synthesis and 
technology mapping, followed by placement, routing, and bit-
stream generation; and the design verification phase which 
consists of various simulation and verification tools. 

 
Figure 2. FPGA Design Flow. 

The design entry phase is identical to the ASIC design flow. 
Considering the high gate densities of contemporary designs, 
hardware description languages such as Verilog and VHDL are 
the current method of choice for design entry. The design 
verification phase is also similar to the ASIC design flow. Design 
verification in the form of formal verification or functional 
simulation can be done directly on the design entry. On the other 
hand, verification such as back annotation and timing simulation 
can also be performed on the implemented design. 
The part of the FPGA flow that we will concern ourselves in this 
paper is the design implementation phase. The design 
implementation phase can be mainly divided into synthesis, 
placement, and routing. FPGA synthesis tools have been 
traditionally developed by synthesis vendors rather than the 
FPGA vendors. On the other hand, as discussed earlier, the FPGA 
vendors themselves have been the primary developers of the 
physical design tools such placement, routing and bit-stream 
generation. 
In the design implementation phase, the first task is of synthesis 
and technology mapping. An input HDL description is 
synthesized and mapped into logic elements such as Lookup-
tables (LUTs), Flip-flops, I/O blocks etc. that  are the basic 
building blocks of the target FPGA architecture. The resulting 
netlist consists of these logic elements connected together to 
implement the user design. 
This netlist is used as the input to the placement tool that places 
these elements on the FPGA sites that implement these logic 
elements. After all the logic elements are placed appropriately on 
sites on the FPGAs, they are connected together by the routing 
tool. Once the placement and routing is completed, the FPGA is 
configured to implement the design. The placement of the logic 
elements in the design net-list on the logic element sites on the 
FPGA dictates the configuration of those logic element sites. 

Similarly, the routing of the logic elements implies that specific 
routing resources are configured in order to achieve the required 
connections. 

3.1 FPGA Model 
Before we discuss more details of the physical design flow, let us 
first describe a traditional FPGA. The traditional model of the 
FPGA is shown in Figure 3. 

 
Figure 3. Traditional FPGA Architecture 

As shown in the figure, an FPGA consists of a 2-dimensional 
array of logic blocks. These logic blocks can be further 
decomposed into a hierarchical collection of different logic 
elements such as   LUTs, Flip-flops and Muxes etc. The figure 
shows each logic element consisting of 4 sub-blocks where each 
sub-block consists of a 4-input LUT and a Flip-flop. There is a 
local routing network within the logic block that provides very 
fast and almost complete connectivity with all other logic 
elements within the logic block. On the periphery of the FPGA are 
the programmable I/O blocks through which the FPGA connects 
to the external world. 
Connecting these logic and I/O blocks is a mesh of uncommitted 
routing resources that can be programmed to achieve different 
connections. The routing fabric is represented as a set of routing 
resources and a set of switch and connection blocks. Connection 
blocks connect the routing resources to the pins of the logic block 
while the switch blocks connect different routing resources that 
are incident to the switch block. Typically, there is a hierarchy of 
routing resources i.e., some resources can connect to switching 
and connection blocks in adjacent tiles, others can connect to 
blocks that are a specific distance apart, and some can connect all 
the blocks in the same row or column on the FPGA. 
While FPGA architectures differ in the kinds of logic elements, 
the number of logic elements, the amount of routing resources, 
and the routing fabric, they can be abstracted down to the model 
shown in Fig. 3. 

3.2 Placement 
As discussed earlier, synthesis creates a netlist consisting of a set 
of logic elements and a set of connections between them. Since, 
the synthesis step involves technology mapping, these logic 
elements can be directly mapped to the logic element resources on 
the FPGA device. Given a list of logic elements, connected to 
each other by nets, the placement problem can then be defined as 
placing these logic elements on the available logic element sites 
on the FPGA such that the connections between them, as specified 
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by the nets, can be routed completely using the available routing 
fabric of the FPGA. As one can see, it is almost identical to the 
classical ASIC placement problem. 
Let us now take a detailed look at the objective functions, 
constraints, and the algorithms for FPGA placement. 

3.2.1 Placement Metrics 
FPGA placement must place all the instances such that they can 
be completely routed while achieving the required timing 
constraints. Typically, this can be achieved with the use of 
classical ASIC placement objective functions such as minimizing 
the total wire-length and reducing the maximum congestion. 
While complex placement objective functions can be used to 
closely model the routing fabric, it is generally found that the 
most efficient metrics for FPGAs are those that are simple yet 
quite accurate. Therefore, bounding box wire-lengths, cut 
numbers, and simple congestion metrics are popular FPGA 
placement metrics. Complex and computationally expensive cost 
functions are almost always avoided due to the overarching goal 
of faster run-times. This preference for simple yet reasonably 
accurate objective functions is even reflected during new FPGA 
architecture development where one of the primary goals is to 
allow placement to use simple and fast metrics to accurately 
reflect the placement on the FPGA architecture. 
One of the interesting ways FPGA placement differs from ASIC 
placement is in their use of routing delay estimation. Unlike 
ASICs where estimating routing delays may involve detailed RC-
tree analysis and computations, FPGA placement algorithms 
usually use much simpler methods that are unique to FPGAs. In 
FPGAs, the routing fabric dictates that for optimal routing of a 
connection, a certain number and type of routing resources must 
be used. Critical signals must be routed using these optimal 
routing patterns for best performance. Other non-critical signals 
may be routed using different routing resources. During 
placement, it is possible to pre-compute the routing delay for the 
critical signals based on these optimal routing patterns. For the 
remaining non-critical signals, a similar approach of pre-
computing typical delays can be used. This method leads to very 
fast yet very accurate routing delay estimation.  
An important distinction of FPGA routing delays is that, unlike 
ASICs, they are non-continuous in nature. This means that they 
are not necessarily proportional to the length of the connection. 
This is due to the presence of fixed length routing resources in the 
architecture.  
Since computing fast and accurate routing delays during 
placement is very essential to achieve good placement results, 
FPGA vendors pay special attention to this aspect and design 
architectures where the routing delay estimation can be made 
more predictable and fast. 

3.2.2 Placement Algorithms 
FPGA placement uses a variety of different algorithms similar to 
the ones available for use in ASIC placement. Iterative algorithms 
such as simulated annealing algorithms are very popular primarily 
due to the ease with which complex FPGA constraints can be 
modeled. Another reason iterative algorithms are widely used in 
FPGA placement is that these algorithms can be easily modified 
to trade-off execution time and quality. As we discussed earlier, 
depending on the design phase, the placement algorithm might be 

either required to run quickly and produce a reasonable result or 
to produce superior results with longer runtimes. 
Typically, the logic elements of FPGAs are arranged in a 
hierarchical fashion. For example, in the Xilinx Virtex™ family 
of FPGAs, a combination of 2 look up tables (LUTs) and 2 flip-
flops is referred to as a slice. Two such slices make up a 
configurable logic block (CLB), and the entire FPGA consists of a 
2-dimensional array of CLBs. Logic elements at different levels in 
the hierarchy have different connectivity and configuration 
specifications. For example, the reason that LUTs and flip-flops 
are grouped together in a slice is to allow for efficient registering 
of combinational logic functions. Additionally, the control signals 
to the LUTs and flip-flops in the same slice may be shared and 
their configuration may be constrained. This means that not all 
combinations of LUTs and flip-flops can be placed in a single 
slice.  
An important decision that must be made for FPGA placement is 
its unit of placement. If the unit of placement is too fine e.g. LUTs 
and flip-flops, placement will have to deal with a very large 
number of movable objects which in turn will have a deleterious 
effect on runtime. Additionally, a coarser unit of placement such 
as a CLB may not give enough flexibility to attain good results. 
Table 17 shows the number of LUTs/Flip-flops, slices, and CLBs 
in the largest family members of the Virtex-E™ and Virtex-II™. 
There are a couple of things that can be noted from this table: the 
largest FPGA (Virtex-II, XC2V10000) has close to quarter 
million LUTs and Flip-flops, and the largest FPGA is at least an 
order of magnitude larger than the smallest FPGA in the family. 

Table 1. Placement Entities in FPGAs  
Device Array LUTs,FFs Slices CLBs 

XCV50E (Virtex-E) 16x24 3072 768 384 

XCV3200E (Virtex-E) 104x156 129792 32448 16224 

XC2V40 (Virtex-II) 8x8 1024 256 64 

XC2V10000 (Virtex-II) 128x120 245760 61440 15360 

 
The logic element hierarchy is used extensively in the choice of 
the placement algorithm. For example, min-cut algorithms can be 
used very effectively for placement of hierarchical FPGAs [7]. By 
using clustering and changing the unit of placement, min-cut 
algorithms can yield very good placement. Additionally, even 
simulated annealing algorithms can employ hierarchical clustering 
techniques to make use of the inherent hierarchy of logic 
resources. 
While basic FPGA placement can be tackled with the standard set 
of ASIC placement algorithms, there are some FPGA specific 
constraints that require variations of these standard algorithms. 
For example, the presence of architectural constraints that restrict 
how I/Os can be configured along banks on a side of the Virtex-E 
FPGA presents a placement problem that is solved using 
modifications to a basic simulated annealing algorithm [6].  

3.3 Routing 
The FPGA routing problem can be defined as the problem of 
choosing specific FPGA routing resources to achieve the 
connections specified in the net-list while meeting the user’s 
timing constraints. The typical model for FPGA routing is 
illustrated in the following figure. 
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Figure 4. FPGA Routing Model 

The FPGA is represented as a connectivity graph where the nodes 
of the graph are the routing segments while the edges are the 
programmable interconnect points (PIPs). In the example shown, 
there are 5 PIPs corresponding to 5 possible edges, and 5 nodes 
corresponding to the routing segments. This is the underlying 
connectivity graph. A net that connects L1, L2, and L3 can be 
routed by programming the PIPs C, D, and E. The associated 
routing graph for this route is shown in the figure as the dark 
edges on the underlying connectivity graph. 
Some of the programmable interconnect points in the FPGA are 
pass transistors while others are buffered switches. Since the 
positions of these buffered PIPs are pre-determined by the 
architecture, FPGA physical design algorithms cannot insert 
buffers where required, instead they have to judiciously use 
buffers where they are available in the FPGA routing fabric. This 
means that normal ASIC buffer insertion methods don’t apply to 
FPGAs.  
The size of the routing connectivity graph can be extremely large. 
Figure 5. shows the total number of nodes and arcs vs. the number 
of LUTs in the Virtex-II series of FPGAs. Note that the largest 
Virtex-II FPGA, the XC2V10000 contains close to 60 million 
arcs and 6 million nodes in the routing connectivity graph. A 
design that utilizes a high percentage of an FPGA may use as 
many as 25% of these arcs and nodes. Such large graphs impose  
serious restrictions on how the connectivity graph can be 
manipulated by the routing algorithm.  

Figure 5. Size of the Routing Connectivity Graph in Virtex-II 
This representation of the routing graph in FPGAs gives rise to an 
important distinction between ASIC and FPGA routing 
algorithms. In ASIC routing, a route is expressed in terms of the 
underlying rectilinear grid that is sometimes referred to as the 
Hanan grid. As we have seen, an FPGA does not have a rectilinear 
grid and the FPGA routing problem, therefore, becomes a 
problem of embedding the net-list onto this connectivity graph 
without using the same node twice. This implies that the standard 
rectilinear grid based routing algorithms must be modified to 

handle generalized graphs. For example, finding a Steiner point in 
ASICs implies a rectilinear Steiner point while on an FPGA it 
implies finding a Steiner point on a general graph. 
Routing for ASICs is performed using a two-phased approach. A 
global routing phase precedes the detailed routing phase. The 
global routing phase abstracts the details of the routing problem 
into regions and performs coarse routing on these regions. This is 
followed by the detailed routing phase that uses the results of the 
coarse routing and performs detailed routing within the regions. 
The key assumption that allows for this two-phased approach is 
that the regions (typically rectangular channels) are a good 
abstraction of the underlying routing problem. With FPGAs, this 
assumption that the coarse routing regions are a good abstraction 
of the underlying routing structure is not always valid. This leads 
to the possibility that the coarse routing determined by global 
routing may not be accurately refined into the underlying detailed 
routing. Consequently, the two-phased approach of global 
followed by detailed routing does not apply to all FPGA 
architectures. 
In FPGA routing, instead of a global routing phase, there is often 
a phase that is referred to as global resource assignment. Some 
routing resources in the FPGA fabric are designed for special 
kinds of nets. For example, FPGAs may have special routing 
structures that allow for low skew and delay when high fanout 
nets are routed on them. The global resource assignment phase 
attempts to recognize nets that ought to use global routing 
resources on the FPGA and assigns them optimally to these global 
resources. 
Typically, this phase is followed by a single detailed routing 
phase. However, some of the common approaches to detailed 
routing in ASICs are either not applicable at all (channel routing) 
or are not very suitable (maze routing). Since the concept of a 
channel is not explicit in the FPGA, channel routing algorithms 
are not employed in FPGA routing.  While maze routing 
algorithms are applicable to FPGA routing, they can be inherently 
slow. Another issue with maze routing is that it does not consider 
the side effects on other connections i.e., it is net ordering 
dependent.  
Detailed routing algorithms in FPGAs are based on some 
modification to basic maze routing algorithms. Maze routing and 
wavefront expansion techniques are employed on the connectivity 
graph. Different heuristics such as future costs computations, and 
partial wavefront expansion etc., are employed to speed up the 
basic maze routing algorithm. However, one of the main 
drawbacks of using the maze routing algorithm is the fact that it is 
dependent on the order of routing of nets. For example, a net 
being routed first does not consider the effect of its routing on the 
routing of subsequent nets. This problem is exacerbated in FPGAs 
due to the relatively scarce amount of routing resources. 
One very popular FPGA routing algorithm that minimizes the 
negative effects of the net ordering problem is the Pathfinder [2] 
algorithm. It is very well suited to FPGAs since it adapts very well 
to the FPGA connectivity graph. In this algorithm, individual 
connections are routed to minimum cost on the FPGA 
connectivity graph; once a connection is routed, the routes are 
recorded and the connection is then ripped out. This procedure is 
repeated for the next connection and so on. In a single iteration of 
this algorithm, each connection is routed in this fashion as if it 
were the only connection to be routed. In effect, this is equivalent 
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to routing every connection in the absence of any existing routes 
or obstacles. 
After all the nets are routed once i.e. after a single iteration, the 
demand for every resource on the FPGA is computed. The 
demand for a resource is computed as the number of nets that 
used that resource to complete a route. A demand of 1 on a 
routing resource implies that only one net required the use of that 
resource to complete its route. In effect, there is no conflict for the 
use of the resource. However, a demand greater than 1 implies a 
routing conflict i.e., more than 1 net requires the use of the 
resource for a minimum cost route. 
In subsequent iterations, the cost of a resource that has high 
demand is raised and the entire process of routing connections 
individually is repeated. Raising the cost of resources that have 
heavy demand ensures that some of the nets that used the resource 
in previous iterations will complete their routes by using less 
expensive nodes. The iterations continue, with the costs of the 
resources having heavy demand getting progressively higher. 
Routing is complete when the demand for all resources is no 
greater than one. 
This algorithm addresses the slow speed of maze routing since it 
requires every connection to be routed in an obstacle free 
environment. Additionally, since every net is routed several times 
to account for heavily used resources, it avoids the net ordering 
problem inherent in maze routing. 
The presence of the connectivity graph with a finite number of 
nodes and edges has given rise to some new formulations of the 
FPGA routing problem. Recent approaches ([4],[5]) attempt to 
formulate the FPGA routing problem using Boolean Satisfiability. 
In this approach, variables in the SAT problem instance 
correspond to the allocation of specific resources to nets. Routing 
is completed when a set of values can be assigned to the variables 
causing the SAT problem to evaluate to TRUE. While this 
approach is not used in practice yet due to runtime and memory 
concerns, it does, however, present a unique perspective to the 
FPGA routing problem. 

3.4 Physical Synthesis 
No discussion of physical design can be complete without a 
discussion of physical synthesis. Physical synthesis for FPGAs 
must primarily deal with the dominance of routing delay over the 
logic delay. Other deep sub-micron effects such as signal integrity 
need not be considered due to reasons discussed earlier.  Physical 
synthesis for FPGAs is a relatively new area of research though 
the concept of dominant routing delays has been as old as FPGAs 
itself. 
In earlier days, to compute post routing delays, the delays were 
primarily based on the fan-out of the nets and were statistically 
estimated. Typically, several designs were placed and routed and 
the routing delays measured. These measurements were then used 
to formulate a statistical estimate of the routing delays of nets 
based on their fanout. This method was notoriously inaccurate and 
would result in underestimation of routing delays sometimes by 
300 to 400%. 
While the basic approach of statistically estimating post-routing 
delays remains the most often used method, one approach [8] 
below being investigated in physical synthesis by the synthesis 
vendors is a “two pass” method. In this method, the first pass of 
synthesis is done independently and followed by the regular place 

and route. The placed and routed design is then evaluated for 
feedback to another pass of synthesis. This feedback is used to 
modify the re-synthesis process to account for the routing delays. 

3.5 Results 
Table 2 illustrates a sampling of results of the Xilinx physical 
design software (PAR) for a range of Virtex-E devices run on 
SUN UltraSparc-II. The runtimes are measured when the software 
is able to achieve the user defined frequency requirement. For the 
smallest device, the place and route runtimes are less than a 
minute. On the other hand for the XCV2000E which has 38400 
LUTs, the total runtime is under an hour. 

Table 2. Results of Xilinx PAR 

Runtime Frequency 
(Mhz) Design Slices Nets 

Placement Routing Req. Act. 

XCV50E 766 
(99%) 

1615 00:00:45 00:00:50 6.67  8 

XCV1000E 8635 
(70%) 

17468 00:09:59 00:08:02 68 72 

XCV2000E 14037 
(90%) 

27639 00:22:05 00:22:27 47 48 

It must be pointed out that while the XCV50E design (which is a 
glue logic design) has a small frequency requirement, it has a 
large number of logic levels (69). The runtimes, of course, 
increase as the frequency requirement becomes more stringent or 
as the design gets more congested. 

4. Conclusions 
FPGAs have evolved into very popular vehicles for designing 
systems. The increasing numbers of system-level features and user 
programmable gates have contributed to their popularity. There 
are some fundamental differences between the ASIC and FPGA  
design flow. Consequently, FPGA physical design software has 
evolved differently from ASIC physical design software though 
their roots are common.  
The FPGA design methodology and requirements have resulted in 
a different set of goals and objectives for FPGA physical design 
software. Runtime is of supreme importance due to the fast time-
to-market value proposition of FPGAs. At the same time, in some 
situations fast FPGA circuit speeds may become the primary goal 
of FPGA physical design software at the expense of runtime. This 
has resulted in the use of algorithms that can be tuned for speed 
and performance. Due to the design of the FPGAs, deep sub-
micron issues such as signal integrity and cross talk do not have to 
be considered by FPGA physical design software. However, 
another deep sub-micron issue relating to the dominance and 
unpredictability of routing delays has been an FPGA characteristic 
since the invention of FPGAs. FPGA vendors have been 
addressing this issue through innovative FPGA architectures that 
improve routing predictability. 
FPGA placement algorithms are very similar to classical ASIC 
placement algorithms. However, they use routing delay estimation 
strategies that are unique to FPGAs. On the other hand, the FPGA 
routing problem is very different from that of ASICs due to the 
underlying representation of the FPGA routing graph. Traditional 
maze routing algorithms are not very well suited to FPGA routing, 
but variations on the basic maze routing algorithm such as 
PathFinder have proven very popular. 
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