
Physical Design For FPGAs
 Rajeev Jayaraman

Xilinx Inc.
2100 Logic Drive

San Jose, CA 95131, USA
rajeev.jayaraman@xilinx.com

ABSTRACT
FPGAs have been growing at a rapid rate in the past few years.
Their ever-increasing gate densities and performance capabilities
are making them very popular in the design of digital systems. In
this paper we discuss the state-of-the-art in FPGA physical design.
Compared to physical design in traditional ASICs, FPGAs pose a
different set of requirements and challenges. Consequently the
algorithms in FPGA physical design have evolved differently
from their ASIC counterparts. Apart from allowing FPGA users to
implement their designs on FPGAs, FPGA physical design is also
used extensively in developing and evaluating new FPGA
architectures. Finally, the future of FPGA physical design is
discussed along with how it is interacting with the latest FPGA
technologies.

Keywords
FPGA, Physical design, Placement, Routing.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGA) have revolutionized
digital system design in the past 15 years. Their programmability
and fast time-to-market have made them very popular with digital
system designers. About 5 years ago, FPGAs were being used
primarily as glue logic in a system. Now, with the arrival of multi-
million gate FPGAs and the availability of a variety of system-
level features on them, FPGAs are being used to design complete
systems.

FPGAs are used in systems for a variety of different reasons.
Their use can be classified into four broad categories [10]. They
are:

Production use: In this category, FPGAs are an integral part of
the system in production. Further, due to low volume
requirements or rapidly changing market conditions, there is no
migration plan to ASICs. Since they are part of production
systems, the performance requirements for FPGAs may be very
high.

Pre-production use: This category of FPGA use is very similar to
production use in all respects except one: the use of FPGAs is

temporary and only until an equivalent ASIC is deployed.
Typically, FPGAs in pre-production use indicate a very tight time-
to-market requirement that cannot be met by ASICs. Similar to
FPGAs in production use, the performance requirements could be
very high.

Prototyping: FPGAs in this category are used primarily to
prototype a system. The volume requirements are fairly small and
the performance requirements may not be stringent.

Emulation: Emulation is an effective way of functionally
debugging the system and FPGAs are sometimes used to emulate
complete systems. The volume requirements are very small and
the performance requirements are not critical.

Figure 1. shows the relative usage of FPGAs in these 4 categories.

Figure 1. FPGA Use

As can be seen in the figure, production and pre-production
systems comprise the overwhelming majority of FPGA use: a far
cry from the days when FPGAs were primarily used for
prototyping and emulation. This directly implies that the time-to-
market and high FPGA performance requirements are crucial
determinants of FPGA software.
The rapid growth and adoption of FPGAs in digital systems can
be traced to three main factors: Business climate, FPGA device
features and density, and FPGA software.
Business Climate: The business factors that have contributed to
the success of FPGAs are reduced time-to-market and lower
lifecycle costs. With respect to time-to-market, FPGAs have
proved to be very valuable in reducing the system design cycle.
Additionally, their re-programmability implies that late feature
requirements or bugs caught late in the design cycle are easier and
less expensive to fix than ASICs. The re-programmability for
FPGAs is also important in lowering the overall lifecycle costs of
the system since new features and modifications can be
implemented in systems that have already been deployed in the
field.
FPGA device features and density: Another reason for the
popularity of FPGAs among system designers is the addition of
several system-level features on FPGAs. Not long ago, FPGAs
consisted primarily of configurable logic elements and routing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’01, April 1-4, 2001, Sonoma, California, USA.
Copyright 2001 ACM 1-58113-347-2/01/0004…$5.00.

214

However, in the last 5 years, vendors have started implementing a
wide variety of system-level features on their FPGAs such as
embedded block RAMs; multiple system clocks with associated
clock management circuitry; I/Os that can be configured
according to several I/O standards, and embedded processors.
Along with the addition of system-level features, the gate
densities of FPGAs have also grown by orders of magnitude in the
past 5 years. For example, in 1996, the largest FPGA offered by
Xilinx®, the XC4025 consisted of 25000 equivalent user-
programmable gates. Today, Xilinx offers the X2V6000 that can
implement an equivalent of 6 million user-programmable gates.
The combination of system-level features and the large number of
user-programmable gates allow FPGAs to implement complete
systems on a chip.
FPGA Software: Another important reason for the popularity of
FPGAs is the FPGA design software. By FPGA software we mean
the software that is provided by FPGA and FPGA-CAD vendors
to FPGA users to implement their design on an FPGA. Current
FPGA software tools give the user the sophistication and
capability to start with behavioral and RTL-level descriptions and
compile multi-million gate systems in a matter of a few hours.
Such fast compile times along with the software’s ease-of-use
have shortened the FPGA design cycle and have fueled the rapid
adoption of FPGAs in systems.
In this paper we will restrict our attention to FPGA physical
design software that is used in implementing the user’s design on
the FPGA. It is important to clarify that we will not be discussing
the physical design software used for the actual layout of the
FPGA silicon by the FPGA vendors. Instead, we will be
discussing the software used in the implementation of the user’s
design on the configurable logic and routing elements on the
FPGA.
Most FPGA vendors rely on third-party EDA vendors to provide
synthesis and schematic-based design entry mechanisms. On the
other hand, FPGA vendors are typically the primary source for the
physical implementation tools such as placement, routing, and
configuration programming. The primary reason for this is that the
physical implementation software is very closely tied to the FPGA
architecture. In fact it is developed simultaneously with new
FPGA architectures. The algorithms for these FPGA physical
implementation tools started out as algorithmic modifications to
classical ASIC physical design algorithms. However, over time,
they have evolved in subtle but different ways from classical
ASIC physical design algorithms.
This paper will discuss the state-of-the-art in physical design
algorithms for FPGAs and contrast them with those algorithms for
ASICs. To understand physical design for FPGAs, it is instructive
to understand the requirements that drive FPGAs. In the next
section, we will discuss the requirements of FPGA physical
design software and contrast it with ASIC physical design
software. In Section 3 the typical FPGA design flow is described.
We define the placement and routing problems for FPGAs along
with a discussion of some basic algorithms for them. We conclude
with some thoughts on the future of FPGA physical design
software.

2. ASICs and FPGAs
In this section, we discuss features of FPGAs and FPGA design
cycles that have important ramifications for FPGA software.

2.1 Design Cycle
The FPGA design cycle can be divided into 3 phases: the
evaluation phase, the design and debugging phase, and the
production phase. In the evaluation phase, the designer is
typically evaluating the FPGA for possible implementation of
their design. In this phase, the designers evaluate the estimated
ASIC performance of their design and compare it with an
estimated FPGA performance of their design. Additionally, users
may also evaluate different FPGA architectures and vendors. In
this phase, the FPGA physical design tools are required to be very
fast and must provide a result that provides a reasonably close
estimation of the final system performance.
At the other end of the FPGA design cycle is the production
phase, where a design is very close to being complete. Typically,
late features or last minute bugs are fixed in this stage. In this
phase, FPGA physical design software must focus on getting the
best possible performance (or at least a result no worse than
before) at the cost of some additional runtime.
The majority of the time in the FPGA design cycle is spent in the
debug phase. This is the phase where the designer implements
their design, configures the FPGA, and debugs specific functional
units of their design. This requires the FPGA software to produce
a result with reasonably good performance in a very short time. In
this phase, it is more important that the software run fast than it is
to produce the highest possible circuit frequency. This is because
the time to compile a design to an FPGA is considered “dead
time” when the designer cannot look at the results on the bench
and hence is not very productive. The “turns-per-day” metric is,
therefore, of paramount importance. In other words, it is very
important to allow the user to iterate several times a day during
this phase. Furthermore, since 90% of the total number of design
compilations are done in the debug phase, faster compile times are
of paramount importance for FPGA physical design software in
this phase.
Depending on the design phase, the primary requirement for the
FPGA physical design software changes from extremely fast
compile times to extremely good circuit performance by trading
off one for the other. In the evaluation and debug phase, runtime
is of primary importance and circuit performance, while still being
important, is of secondary importance. In the production phase,
circuit performance is of primary importance, while runtime of the
software is not as important.
While we see that the primary requirements for the FPGA design
software can change from very fast compile times to very high
frequency implementations it is important to note that the
underlying FPGA value proposition of faster time-to-market
makes compile times that are greater than 10-12 hours
unacceptable. This is a very important requirement for FPGA
software since this perceived upper limit on the amount of time a
single compilation run can take has not scaled with the increase in
the FPGA device and design sizes. For example, in the same time
it took to completely place and route the largest FPGA device of
25000 gates five years ago, it is now not only possible but
expected that a multi-million gate design be placed and routed.

2.2 Deep Sub-micron Effects
A few years ago, FPGAs used process technology that lagged the
state-of-the-art. However, in recent years, due partly to their
regular structure and high volumes (i.e. volumes in which FPGAs

215

are manufactured by the vendors), FPGAs have not only become
the technology leaders but have actually become the drivers for
the latest process advances in the semiconductor fabrication
facilities.
Inherent in the state-of-the-art processes come the set of
challenges referred to as deep sub-micron effects. With ASICs,
the designer has to account for all the deep sub-micron effects in
their design. Consequently, ASIC software must provide users
with tools to address these deep sub-micron challenges. However,
in the case of FPGAs, the FPGA vendors design their FPGAs
such that the end user of FPGAs does not have to directly account
for many of the deep sub-micron effects. Of course, a result of this
design is that some FPGA performance may be sacrificed.
However, not having to account for some of these deep sub-
micron effects simplifies not only the design cycle for FPGA users
but also the development of FPGA software.
Currently, FPGA software does not concern itself with some deep
sub-micron effects such as cross-talk and signal integrity to as
great an extent as ASIC software. For example, even at 0.13u
FPGA software does not have to contend seriously with these
deep sub-micron effects. Of course, as geometries get smaller,
FPGA software may have to start accounting for these DSM
effects since the FPGA architecture itself may not be able to
completely shield the user from having to account for them.
While FPGA users do not have to concern themselves with most
DSM effects, some DSM effects such as the dominance of routing
delays over logic delays are effects that the first FPGAs have had
to deal with. In fact, the dominance of routing delays over logic
delays in FPGAs is not a result of the sub-micron geometries but
more a result of the FPGA architecture. The reason for this is that
a typical FPGA connection consists of a combination of metal and
one or more programmable interconnect points (PIP) that are
usually implemented as pass gates. These pass gates make the
routing delay dominate the logic delay in FPGAs.
This dominance of routing delay has influenced architecture
decisions of FPGAs. While it is not possible to reduce the routing
delay beyond a certain amount, most FPGA architectures attempt
to at least make the routing delays highly predictable leading to
physical design algorithms that thoroughly exploit this
characteristic.

2.3 Software Complexity
One of the interesting requirements on FPGA physical design
software stems from the fact that most system designers designing
ASICs are primarily logic designers. Consequently, separate
teams of dedicated engineers handle the physical design aspect of
the ASIC design. These separate teams have gathered significant
expertise in physical design over time and are expert users of the
ASIC physical design software. On the other hand, designers
using FPGAs do not have separate teams of engineers dedicated to
handling the physical design. Instead, the system designers have
to focus on both the logic and physical design aspects of their
design. This in no way implies that ASIC designers are not
concerned with physical design; they expect physical design
concerns and try to mitigate them with their design. FPGA
designers, on the other hand, do not expect physical design issues
to crop up in their design and expect it to be a fairly “hands-off”
process. This situation demands that FPGA physical design
software be made as easy to use as possible.

Another factor that forces FPGA physical design software to be
simple and require less support is the economics of FPGA
software. Given the relatively low cost of FPGA software
compared to ASIC design software, the support costs account for
a large fraction of the overall cost. This imposes the requirement
that FPGA software need as little support as possible. This
requirement for FPGA physical design software manifests itself as
a tendency to hide a lot of the tool and algorithm complexities
from the user.

2.4 FPGA Device Densities
One of the important reasons that FPGA physical design software
differs from ASIC software is that like mask programmed gate
arrays, FPGAs are available only in certain vendor determined
gate densities. There isn’t a continuum of devices that can be used
depending on the size of a given design. This implies that the
amount of logic and routing available in an FPGA device is fixed
and pre-determined. Even the least bit of over-utilization of
device resources forces the user to migrate to the next larger
FPGA device, and consequently, increases the dollar cost for the
design significantly.
Another way to view this phenomenon is that the marginal cost of
using additional resources in an FPGA is zero unless the total
demand of resources exceeds capacity of the FPGA, in which case
the marginal cost jumps sharply reflecting the difference in the
cost of the next FPGA device. This implies that it is not necessary
for FPGA physical design software to minimize the resource
usage if the capacity limit for the FPGA device is not reached. On
the other hand, if the design must be developed with future
additions and modifications in mind, it becomes important to
minimize resource usage to allow for future expandability.
Consequently, FPGA software must not simply minimize the
number of resources (area). Instead, it must focus on the optimal
use of the existing resources.

2.5 New Architecture Development
To improve the runtimes of FPGA CAD tools and to improve the
performance of the implemented designs on new FPGA
architectures, FPGA vendors develop CAD tools in parallel with
new architectures. Vendors will typically model architecture
features in the software and evaluate them even before committing
them to silicon. In fact, FPGA software is usually available much
earlier than the FPGA silicon. This is in complete contrast to
ASIC vendors where the process and the new generations of
ASICs are developed with minimal, if any, involvement from the
EDA tool vendors.
New FPGA architectures are evaluated for cost, routability, and
performance with the help of the FPGA CAD tools. In fact, on
several occasions specific features are added or removed from the
architecture to facilitate faster runtimes or better performance
from the FPGA CAD tools.
This requirement for concurrent development of the architecture
and the FPGA CAD tools has important implications for FPGA
CAD tools. For example, for new architecture evaluation, FPGA
software should include general algorithms that can be easily
modified. This is preferred to specialized heuristics that are
heavily tuned to specific architectures. While the architecture
development CAD tools may be internal tools and not visible to
the FPGA user, they are, nonetheless, important in our discussion

216

since they have greatly influenced FPGA software and
architecture.

3. FPGA Physical design Software
A typical FPGA design flow is shown in Figure 2. The FPGA
implementation flow can divided into 3 main phases, design entry
which includes HDL or schematic entry mechanisms; the design
implementation phase which typically consists of synthesis and
technology mapping, followed by placement, routing, and bit-
stream generation; and the design verification phase which
consists of various simulation and verification tools.

Figure 2. FPGA Design Flow.

The design entry phase is identical to the ASIC design flow.
Considering the high gate densities of contemporary designs,
hardware description languages such as Verilog and VHDL are
the current method of choice for design entry. The design
verification phase is also similar to the ASIC design flow. Design
verification in the form of formal verification or functional
simulation can be done directly on the design entry. On the other
hand, verification such as back annotation and timing simulation
can also be performed on the implemented design.
The part of the FPGA flow that we will concern ourselves in this
paper is the design implementation phase. The design
implementation phase can be mainly divided into synthesis,
placement, and routing. FPGA synthesis tools have been
traditionally developed by synthesis vendors rather than the
FPGA vendors. On the other hand, as discussed earlier, the FPGA
vendors themselves have been the primary developers of the
physical design tools such placement, routing and bit-stream
generation.
In the design implementation phase, the first task is of synthesis
and technology mapping. An input HDL description is
synthesized and mapped into logic elements such as Lookup-
tables (LUTs), Flip-flops, I/O blocks etc. that are the basic
building blocks of the target FPGA architecture. The resulting
netlist consists of these logic elements connected together to
implement the user design.
This netlist is used as the input to the placement tool that places
these elements on the FPGA sites that implement these logic
elements. After all the logic elements are placed appropriately on
sites on the FPGAs, they are connected together by the routing
tool. Once the placement and routing is completed, the FPGA is
configured to implement the design. The placement of the logic
elements in the design net-list on the logic element sites on the
FPGA dictates the configuration of those logic element sites.

Similarly, the routing of the logic elements implies that specific
routing resources are configured in order to achieve the required
connections.

3.1 FPGA Model
Before we discuss more details of the physical design flow, let us
first describe a traditional FPGA. The traditional model of the
FPGA is shown in Figure 3.

Figure 3. Traditional FPGA Architecture

As shown in the figure, an FPGA consists of a 2-dimensional
array of logic blocks. These logic blocks can be further
decomposed into a hierarchical collection of different logic
elements such as LUTs, Flip-flops and Muxes etc. The figure
shows each logic element consisting of 4 sub-blocks where each
sub-block consists of a 4-input LUT and a Flip-flop. There is a
local routing network within the logic block that provides very
fast and almost complete connectivity with all other logic
elements within the logic block. On the periphery of the FPGA are
the programmable I/O blocks through which the FPGA connects
to the external world.
Connecting these logic and I/O blocks is a mesh of uncommitted
routing resources that can be programmed to achieve different
connections. The routing fabric is represented as a set of routing
resources and a set of switch and connection blocks. Connection
blocks connect the routing resources to the pins of the logic block
while the switch blocks connect different routing resources that
are incident to the switch block. Typically, there is a hierarchy of
routing resources i.e., some resources can connect to switching
and connection blocks in adjacent tiles, others can connect to
blocks that are a specific distance apart, and some can connect all
the blocks in the same row or column on the FPGA.
While FPGA architectures differ in the kinds of logic elements,
the number of logic elements, the amount of routing resources,
and the routing fabric, they can be abstracted down to the model
shown in Fig. 3.

3.2 Placement
As discussed earlier, synthesis creates a netlist consisting of a set
of logic elements and a set of connections between them. Since,
the synthesis step involves technology mapping, these logic
elements can be directly mapped to the logic element resources on
the FPGA device. Given a list of logic elements, connected to
each other by nets, the placement problem can then be defined as
placing these logic elements on the available logic element sites
on the FPGA such that the connections between them, as specified

217

by the nets, can be routed completely using the available routing
fabric of the FPGA. As one can see, it is almost identical to the
classical ASIC placement problem.
Let us now take a detailed look at the objective functions,
constraints, and the algorithms for FPGA placement.

3.2.1 Placement Metrics
FPGA placement must place all the instances such that they can
be completely routed while achieving the required timing
constraints. Typically, this can be achieved with the use of
classical ASIC placement objective functions such as minimizing
the total wire-length and reducing the maximum congestion.
While complex placement objective functions can be used to
closely model the routing fabric, it is generally found that the
most efficient metrics for FPGAs are those that are simple yet
quite accurate. Therefore, bounding box wire-lengths, cut
numbers, and simple congestion metrics are popular FPGA
placement metrics. Complex and computationally expensive cost
functions are almost always avoided due to the overarching goal
of faster run-times. This preference for simple yet reasonably
accurate objective functions is even reflected during new FPGA
architecture development where one of the primary goals is to
allow placement to use simple and fast metrics to accurately
reflect the placement on the FPGA architecture.
One of the interesting ways FPGA placement differs from ASIC
placement is in their use of routing delay estimation. Unlike
ASICs where estimating routing delays may involve detailed RC-
tree analysis and computations, FPGA placement algorithms
usually use much simpler methods that are unique to FPGAs. In
FPGAs, the routing fabric dictates that for optimal routing of a
connection, a certain number and type of routing resources must
be used. Critical signals must be routed using these optimal
routing patterns for best performance. Other non-critical signals
may be routed using different routing resources. During
placement, it is possible to pre-compute the routing delay for the
critical signals based on these optimal routing patterns. For the
remaining non-critical signals, a similar approach of pre-
computing typical delays can be used. This method leads to very
fast yet very accurate routing delay estimation.
An important distinction of FPGA routing delays is that, unlike
ASICs, they are non-continuous in nature. This means that they
are not necessarily proportional to the length of the connection.
This is due to the presence of fixed length routing resources in the
architecture.
Since computing fast and accurate routing delays during
placement is very essential to achieve good placement results,
FPGA vendors pay special attention to this aspect and design
architectures where the routing delay estimation can be made
more predictable and fast.

3.2.2 Placement Algorithms
FPGA placement uses a variety of different algorithms similar to
the ones available for use in ASIC placement. Iterative algorithms
such as simulated annealing algorithms are very popular primarily
due to the ease with which complex FPGA constraints can be
modeled. Another reason iterative algorithms are widely used in
FPGA placement is that these algorithms can be easily modified
to trade-off execution time and quality. As we discussed earlier,
depending on the design phase, the placement algorithm might be

either required to run quickly and produce a reasonable result or
to produce superior results with longer runtimes.
Typically, the logic elements of FPGAs are arranged in a
hierarchical fashion. For example, in the Xilinx Virtex™ family
of FPGAs, a combination of 2 look up tables (LUTs) and 2 flip-
flops is referred to as a slice. Two such slices make up a
configurable logic block (CLB), and the entire FPGA consists of a
2-dimensional array of CLBs. Logic elements at different levels in
the hierarchy have different connectivity and configuration
specifications. For example, the reason that LUTs and flip-flops
are grouped together in a slice is to allow for efficient registering
of combinational logic functions. Additionally, the control signals
to the LUTs and flip-flops in the same slice may be shared and
their configuration may be constrained. This means that not all
combinations of LUTs and flip-flops can be placed in a single
slice.
An important decision that must be made for FPGA placement is
its unit of placement. If the unit of placement is too fine e.g. LUTs
and flip-flops, placement will have to deal with a very large
number of movable objects which in turn will have a deleterious
effect on runtime. Additionally, a coarser unit of placement such
as a CLB may not give enough flexibility to attain good results.
Table 17 shows the number of LUTs/Flip-flops, slices, and CLBs
in the largest family members of the Virtex-E™ and Virtex-II™.
There are a couple of things that can be noted from this table: the
largest FPGA (Virtex-II, XC2V10000) has close to quarter
million LUTs and Flip-flops, and the largest FPGA is at least an
order of magnitude larger than the smallest FPGA in the family.

Table 1. Placement Entities in FPGAs
Device Array LUTs,FFs Slices CLBs

XCV50E (Virtex-E) 16x24 3072 768 384

XCV3200E (Virtex-E) 104x156 129792 32448 16224

XC2V40 (Virtex-II) 8x8 1024 256 64

XC2V10000 (Virtex-II) 128x120 245760 61440 15360

The logic element hierarchy is used extensively in the choice of
the placement algorithm. For example, min-cut algorithms can be
used very effectively for placement of hierarchical FPGAs [7]. By
using clustering and changing the unit of placement, min-cut
algorithms can yield very good placement. Additionally, even
simulated annealing algorithms can employ hierarchical clustering
techniques to make use of the inherent hierarchy of logic
resources.
While basic FPGA placement can be tackled with the standard set
of ASIC placement algorithms, there are some FPGA specific
constraints that require variations of these standard algorithms.
For example, the presence of architectural constraints that restrict
how I/Os can be configured along banks on a side of the Virtex-E
FPGA presents a placement problem that is solved using
modifications to a basic simulated annealing algorithm [6].

3.3 Routing
The FPGA routing problem can be defined as the problem of
choosing specific FPGA routing resources to achieve the
connections specified in the net-list while meeting the user’s
timing constraints. The typical model for FPGA routing is
illustrated in the following figure.

218

Figure 4. FPGA Routing Model

The FPGA is represented as a connectivity graph where the nodes
of the graph are the routing segments while the edges are the
programmable interconnect points (PIPs). In the example shown,
there are 5 PIPs corresponding to 5 possible edges, and 5 nodes
corresponding to the routing segments. This is the underlying
connectivity graph. A net that connects L1, L2, and L3 can be
routed by programming the PIPs C, D, and E. The associated
routing graph for this route is shown in the figure as the dark
edges on the underlying connectivity graph.
Some of the programmable interconnect points in the FPGA are
pass transistors while others are buffered switches. Since the
positions of these buffered PIPs are pre-determined by the
architecture, FPGA physical design algorithms cannot insert
buffers where required, instead they have to judiciously use
buffers where they are available in the FPGA routing fabric. This
means that normal ASIC buffer insertion methods don’t apply to
FPGAs.
The size of the routing connectivity graph can be extremely large.
Figure 5. shows the total number of nodes and arcs vs. the number
of LUTs in the Virtex-II series of FPGAs. Note that the largest
Virtex-II FPGA, the XC2V10000 contains close to 60 million
arcs and 6 million nodes in the routing connectivity graph. A
design that utilizes a high percentage of an FPGA may use as
many as 25% of these arcs and nodes. Such large graphs impose
serious restrictions on how the connectivity graph can be
manipulated by the routing algorithm.

Figure 5. Size of the Routing Connectivity Graph in Virtex-II
This representation of the routing graph in FPGAs gives rise to an
important distinction between ASIC and FPGA routing
algorithms. In ASIC routing, a route is expressed in terms of the
underlying rectilinear grid that is sometimes referred to as the
Hanan grid. As we have seen, an FPGA does not have a rectilinear
grid and the FPGA routing problem, therefore, becomes a
problem of embedding the net-list onto this connectivity graph
without using the same node twice. This implies that the standard
rectilinear grid based routing algorithms must be modified to

handle generalized graphs. For example, finding a Steiner point in
ASICs implies a rectilinear Steiner point while on an FPGA it
implies finding a Steiner point on a general graph.
Routing for ASICs is performed using a two-phased approach. A
global routing phase precedes the detailed routing phase. The
global routing phase abstracts the details of the routing problem
into regions and performs coarse routing on these regions. This is
followed by the detailed routing phase that uses the results of the
coarse routing and performs detailed routing within the regions.
The key assumption that allows for this two-phased approach is
that the regions (typically rectangular channels) are a good
abstraction of the underlying routing problem. With FPGAs, this
assumption that the coarse routing regions are a good abstraction
of the underlying routing structure is not always valid. This leads
to the possibility that the coarse routing determined by global
routing may not be accurately refined into the underlying detailed
routing. Consequently, the two-phased approach of global
followed by detailed routing does not apply to all FPGA
architectures.
In FPGA routing, instead of a global routing phase, there is often
a phase that is referred to as global resource assignment. Some
routing resources in the FPGA fabric are designed for special
kinds of nets. For example, FPGAs may have special routing
structures that allow for low skew and delay when high fanout
nets are routed on them. The global resource assignment phase
attempts to recognize nets that ought to use global routing
resources on the FPGA and assigns them optimally to these global
resources.
Typically, this phase is followed by a single detailed routing
phase. However, some of the common approaches to detailed
routing in ASICs are either not applicable at all (channel routing)
or are not very suitable (maze routing). Since the concept of a
channel is not explicit in the FPGA, channel routing algorithms
are not employed in FPGA routing. While maze routing
algorithms are applicable to FPGA routing, they can be inherently
slow. Another issue with maze routing is that it does not consider
the side effects on other connections i.e., it is net ordering
dependent.
Detailed routing algorithms in FPGAs are based on some
modification to basic maze routing algorithms. Maze routing and
wavefront expansion techniques are employed on the connectivity
graph. Different heuristics such as future costs computations, and
partial wavefront expansion etc., are employed to speed up the
basic maze routing algorithm. However, one of the main
drawbacks of using the maze routing algorithm is the fact that it is
dependent on the order of routing of nets. For example, a net
being routed first does not consider the effect of its routing on the
routing of subsequent nets. This problem is exacerbated in FPGAs
due to the relatively scarce amount of routing resources.
One very popular FPGA routing algorithm that minimizes the
negative effects of the net ordering problem is the Pathfinder [2]
algorithm. It is very well suited to FPGAs since it adapts very well
to the FPGA connectivity graph. In this algorithm, individual
connections are routed to minimum cost on the FPGA
connectivity graph; once a connection is routed, the routes are
recorded and the connection is then ripped out. This procedure is
repeated for the next connection and so on. In a single iteration of
this algorithm, each connection is routed in this fashion as if it
were the only connection to be routed. In effect, this is equivalent

Number of nodes and arcs in the routing
connectivity graph for Virtex-II

0

20

40

60

0 50000 100000 150000

M
ill

io
n

s

Number of LUTs

Nodes

Arcs

219

to routing every connection in the absence of any existing routes
or obstacles.
After all the nets are routed once i.e. after a single iteration, the
demand for every resource on the FPGA is computed. The
demand for a resource is computed as the number of nets that
used that resource to complete a route. A demand of 1 on a
routing resource implies that only one net required the use of that
resource to complete its route. In effect, there is no conflict for the
use of the resource. However, a demand greater than 1 implies a
routing conflict i.e., more than 1 net requires the use of the
resource for a minimum cost route.
In subsequent iterations, the cost of a resource that has high
demand is raised and the entire process of routing connections
individually is repeated. Raising the cost of resources that have
heavy demand ensures that some of the nets that used the resource
in previous iterations will complete their routes by using less
expensive nodes. The iterations continue, with the costs of the
resources having heavy demand getting progressively higher.
Routing is complete when the demand for all resources is no
greater than one.
This algorithm addresses the slow speed of maze routing since it
requires every connection to be routed in an obstacle free
environment. Additionally, since every net is routed several times
to account for heavily used resources, it avoids the net ordering
problem inherent in maze routing.
The presence of the connectivity graph with a finite number of
nodes and edges has given rise to some new formulations of the
FPGA routing problem. Recent approaches ([4],[5]) attempt to
formulate the FPGA routing problem using Boolean Satisfiability.
In this approach, variables in the SAT problem instance
correspond to the allocation of specific resources to nets. Routing
is completed when a set of values can be assigned to the variables
causing the SAT problem to evaluate to TRUE. While this
approach is not used in practice yet due to runtime and memory
concerns, it does, however, present a unique perspective to the
FPGA routing problem.

3.4 Physical Synthesis
No discussion of physical design can be complete without a
discussion of physical synthesis. Physical synthesis for FPGAs
must primarily deal with the dominance of routing delay over the
logic delay. Other deep sub-micron effects such as signal integrity
need not be considered due to reasons discussed earlier. Physical
synthesis for FPGAs is a relatively new area of research though
the concept of dominant routing delays has been as old as FPGAs
itself.
In earlier days, to compute post routing delays, the delays were
primarily based on the fan-out of the nets and were statistically
estimated. Typically, several designs were placed and routed and
the routing delays measured. These measurements were then used
to formulate a statistical estimate of the routing delays of nets
based on their fanout. This method was notoriously inaccurate and
would result in underestimation of routing delays sometimes by
300 to 400%.
While the basic approach of statistically estimating post-routing
delays remains the most often used method, one approach [8]
below being investigated in physical synthesis by the synthesis
vendors is a “two pass” method. In this method, the first pass of
synthesis is done independently and followed by the regular place

and route. The placed and routed design is then evaluated for
feedback to another pass of synthesis. This feedback is used to
modify the re-synthesis process to account for the routing delays.

3.5 Results
Table 2 illustrates a sampling of results of the Xilinx physical
design software (PAR) for a range of Virtex-E devices run on
SUN UltraSparc-II. The runtimes are measured when the software
is able to achieve the user defined frequency requirement. For the
smallest device, the place and route runtimes are less than a
minute. On the other hand for the XCV2000E which has 38400
LUTs, the total runtime is under an hour.

Table 2. Results of Xilinx PAR

Runtime Frequency
(Mhz) Design Slices Nets

Placement Routing Req. Act.

XCV50E 766
(99%)

1615 00:00:45 00:00:50 6.67 8

XCV1000E 8635
(70%)

17468 00:09:59 00:08:02 68 72

XCV2000E 14037
(90%)

27639 00:22:05 00:22:27 47 48

It must be pointed out that while the XCV50E design (which is a
glue logic design) has a small frequency requirement, it has a
large number of logic levels (69). The runtimes, of course,
increase as the frequency requirement becomes more stringent or
as the design gets more congested.

4. Conclusions
FPGAs have evolved into very popular vehicles for designing
systems. The increasing numbers of system-level features and user
programmable gates have contributed to their popularity. There
are some fundamental differences between the ASIC and FPGA
design flow. Consequently, FPGA physical design software has
evolved differently from ASIC physical design software though
their roots are common.
The FPGA design methodology and requirements have resulted in
a different set of goals and objectives for FPGA physical design
software. Runtime is of supreme importance due to the fast time-
to-market value proposition of FPGAs. At the same time, in some
situations fast FPGA circuit speeds may become the primary goal
of FPGA physical design software at the expense of runtime. This
has resulted in the use of algorithms that can be tuned for speed
and performance. Due to the design of the FPGAs, deep sub-
micron issues such as signal integrity and cross talk do not have to
be considered by FPGA physical design software. However,
another deep sub-micron issue relating to the dominance and
unpredictability of routing delays has been an FPGA characteristic
since the invention of FPGAs. FPGA vendors have been
addressing this issue through innovative FPGA architectures that
improve routing predictability.
FPGA placement algorithms are very similar to classical ASIC
placement algorithms. However, they use routing delay estimation
strategies that are unique to FPGAs. On the other hand, the FPGA
routing problem is very different from that of ASICs due to the
underlying representation of the FPGA routing graph. Traditional
maze routing algorithms are not very well suited to FPGA routing,
but variations on the basic maze routing algorithm such as
PathFinder have proven very popular.

220

5. REFERENCES
[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing

Tool for FPGA Research,” Proc. 7th Intl. Workshop on Field-
Programmable Logic and Applications, 1997.

[2] L. E. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Path Driven Router for FPGAs”, Proc. ACM/IEEE Intl. Symp. on
FPGAs, 1995.

[3] S. K. Nag and R. A. Rutenbar, “Performance-Driven Simultaneous
Placement and Routing for FPGAs”, IEEE Trans. on CAD, pp 499 –
518, June 1998.

[4] G. Nam, K. A. Sakallah, and R. A. Rutenbar, “Satisfiability-Based
Layout Revisited: Detailed Routing of Complex FPGAs Via Search-
Based Boolean SAT”, Intl. Symp. on FPGAs, 1999.

[5] G. Nam, F. Aloul, K. A. Sakallah, and R. A. Rutenbar, “A
Comparative Study of Two Boolean Formulations of FPGA Detailed
Routing Constraints”, Proc. Intl. Symp. on Physical Design, 2001.

[6] J. Anderson, J. Saunders, S. Nag, C. Madabhushi, R. Jayaraman, "A
Placement Algorithm for FPGA Designs with Multiple I/O
Standards", Proc. 10th Int. Conf. on Field-Programmable Logic and
Applications, August 2000.

[7] M. Hutton, K. Adibasmii, and A. Leaver, “Timing-driven Placement
for Hierarchical Programmable Logic Devices”, Proc. Intl. Symp. on
FPGAs, 2001.

[8] http://www.synplicity.com/products/amplify.html

[9] http://www.xilinx.com/partinfo/databook.htm

[10] “Designers roadmap to system-level integration”, Gartner Group Inc.

221

	Main Page
	ISPD'01
	Front Matter
	Table of Contents
	Author Index

