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ABSTRACT
Congestion is one of the fundamental issues in VLSI phys-
ical design. In this paper, we propose two congestion es-
timation approaches for early placement stages. First, we
theoretically analyze the peak congestion value of the de-
sign and experimentally validate the estimation approach.
Second, we estimate regional congestion in the early top-
down placement. This is done by combining the wirelength
distribution model and inter-region wire estimation. Both
approaches are based on the well known Rent's rule, which
is previously used for wirelength estimation. This is the �rst
attempt to predict congestion using Rent's rule. The esti-
mation results are compared with the layout after placement
and global routing. Experiments on large industry circuits
show that the early congestion estimation based on Rent's
rule is a promising approach.

1. INTRODUCTION
Minimizing the total routed wirelength is one of the fun-

damental goals in VLSI placement stage. In order to achieve
such a challenging objective, a number of heuristics and ob-
jective functions were proposed in the past couple of decades.
Half-perimeter wirelength has emerged as the most typical
objective in placement because it adequately models the
routed wirelength, especially for two-terminal and three-
terminal nets. In general, it is believed that there is a
positive correlation between half-perimeter wirelength and
routed wirelength. Many successful placement tools are
based on half-perimeter wirelength minimization [1, 2].
As VLSI circuits are growing in both size and complex-

ity, not only the half-perimeter wirelength but also conges-
tion need to be emphsized at the placement stage. Most
global routers use congestion as one of the main objectives.
However, the optimization performance is constrained be-
cause the cells are already �xed at this stage. A highly
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congested region in the placement often leads to routing de-
tours around the region, in turn results in a larger routed
wirelength. Congested areas can also downgrade the per-
formance of global router and, in the worst case, create an
unroutable placement in the �x-die regime [3].
Congestion can be modeled as the summation of linear [4]

or quadratic [5] function of di�erence between routing de-
mand and routing resource. Existing congestion reduction
techniques include incorporating congestion into cost func-
tion of simulated annealing [5], combining a regional router
into placement tool [6] and performing a post placement
processing step [7]. While congestion reduction at late or
post placement stage is empirically e�ective, congestion es-
timate achieved in early placement stage would be equally
valuable. First, a congestion driven placement tool guided
by early congestion information might be more powerful.
Such a tool could use techniques like white space allocation
to relieve layout congestion. Second, early congestion esti-
mates could be utilized by combined logic and layout opti-
mization to improve design convergence. For example, when
logic designers are given a number of di�erent netlists, they
can estimate the congestion by running only several steps of
placement. The netlists with bad estimated congestion will
be discarded much earlier.
The main contribution of this paper is to estimate both

peak congestion and congestion distribution at the early
top-down placement stage. Speci�cally, we quantitatively
estimate the maximum congestion prior to placement stage.
Also we give a congestion distribution picture of the chip
layout at coarse levels of hierarchical placement ow. Both
estimates are made based on Rent's rule | a well known
stochastic model for \real" circuits. While Rent's rule has
been used for wirelength estimation for a long time, to the
best of our knowledge, there is no published work on conges-
tion estimation problem using the same basis. To evaluate
our estimation approaches, the estimation results are com-
pared with the real congestion which is extracted from the
design after placement and global routing. It is generally be-
lieved that the global routing output correlates well with the
�nal routing in industrial circuits [8]. Therefore we target
estimates that match the real congestion map after global
routing.
Congestion is a function of routing demand and routing re-

source. Once the technology feature and chip characteristics
(die size, number of layers, position of pre-placed macros)
are �xed, the routing resource is roughly determined1 . Con-

1Accurate available routing resources can only be obtained
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gestion and routing demand are so closely related that it is
straightforward to convert one to the other. In this work,
we will focus on the estimation for routing demand.
The rest of this paper is organized as follows: Section

2 briey introduces the terms and de�nitions used in this
paper. It also reviews Rent's rule, the fundamental theory
upon which this work is based. Section 3 analyzes the peak
congestion problem and gives a good estimate which is vali-
dated by experiments. Section 4 models the regional routing
demand in a top-down placement context. Experiments in
this section show the e�ectiveness of the proposed method.
Section 5 gives the conclusion and the future work.

2. PRELIMINARIES

2.1 Placement, Routing and Congestion
For consistency we will use the following terms throughout

the paper. A circuit is a hypergraph G(V; E), where V is a
set of cells and E is a set of hyperedges. A hyperedge e 2 E is
a subset of V which contains two or more cells. A placement
is a set of locations for all cells on a rectangular chip area.
A common top-down placement ow is based on min-cut

placement, in which the circuit is recursively bi-partitioned
into subcircuits. Meanwhile the layout area is also parti-
tioned into placement regions, each of which contains a cor-
responding subcircuit.
During global routing, the chip is divided into an array

of uniform rectangular tiles. The tile is small enough that
each placement region covers an integral number of tiles.
All the nets will be routed by connecting the cells of each
net using grid wires. For each boundary of the tiles b, the
routing demand d(b) is the number of wires that cross this
boundary; the routing supply s(b) is the number of wires
that are allowed to cross the boundary. The overow of
a boundary c(b) is max(d(b) � s(b); 0). The congestion of
a placement region is the summation of the overow over
all the boundaries within this placement region. The peak
congestion of a placement is the maximum overow over all
the tile boundaries.

2.2 Rent’s rule
Rent's rule is an empirical observation �rst described by

Landman and Russo [9]. It states the relationship between
the number of elementary blocks B in a subcircuit of a par-
titioned design, and the number of external connections P
of the subcircuit. Speci�cally,

P = TbB
r (1)

where Tb is the average number of interconnections per block,
and r is the Rent exponent (0:4 < r < 0:8 in real circuits).
The Rent exponent r can be computed by plotting the P
versus B relation in a log-log diagram for every value of B
in a top-down partitioning process, and then �tting a line
on the plotted points. The slope r of this line represents the
Rent exponent.
Rent's rule has been widely used to estimate interconnect

wirelength [10, 11, 12]. In general, a higher Rent exponent
will result in a longer average wirelength, which in turn im-
plies a larger wiring area and more congested layout.

after placement and global routing with the consideration
of the layer area occupied by placed cells and the number of
routing layers. However a main portion of routing resources
could be predicted at this point.

3. PEAK CONGESTION ANALYSIS

3.1 Cut Ratio in Recursive Bi-partitioning
In order to analyze peak congestion over all the tile bound-

aries of the layout, we assume that the circuit is an ideal
circuit which is self-similar 2 and strictly obeys the Rent's
rule. This ideal circuit is placed using a hierarchical place-
ment ow which is based on recursively bipartitioning. On
every hierarchical level of the top-down placement, each sub-
circuit is quadrisectioned into four smaller subcircuits. A
quadrisection step consists of a vertical bi-partitioning fol-
lowed by a horizontal one. The net cut result of the �rst
bi-partitioning by a vertical cut line is C1. The net cuts
of the second horizontal bi-partitioning are net cut C2;1 and
C2;2, and so on(Figure 1(a)). Since the circuit is self-similar,

Ci;1 = Ci;2 = : : : = Ci i = 1; : : : 2H

where H is the number of hierarchical levels in the top-down
recursive bi-partitioning placement.
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Figure 1: Relationship between net cut and conges-
tion. (a) recursive bi-partitioning and cut. (b) worst
case routing demand analysis. (c) average case rout-
ing demand analysis.

Theorem 1. In a recursive bi-partitioning approach on
an ideal circuit, the ratio between the net cut of the (i+1)th
bi-partitioningCi+1 and the net cut of the ith bi-partitioning
Ci is 2

�r.

Proof: Consider the subcircuits to be bi-partitioned at each
hierarchical level. If we denote the size of subcircuits in
the ith bi-partitioning Bi, then the size of subcircuit in the
(i+1)th bi-partitioning is Bi+1 = Bi=2. Since the circuit
is self-similar, all the subcircuits have the same Rent expo-
nent r and Rent coe�cient Tb. According to equation 1, the
bi-partitioning results of the ith and (i+1)th, which are the
external number of interconnects for the partitioned subcir-
cuits, can be represented as Tb(Bi=2)

r and Tb(Bi+1=2)
r . We

obtain

Ci+1

Ci

=
Tb(Bi=2)

r

Tb(Bi+1=2)r
=

Tb(Bi=2)
r

Tb(Bi=4)r
= 2�r �

3.2 Worst Case Analysis
The top-down placement terminates at the H = log4Nc

level where Nc is the number of cells of the circuit. In the
�nal placement each cell occupies one tile, which has unit
width and height. The global routing uses L-shape routing
model, in which a net is routed using either the upper or
the lower part of the bounding box of this net. This is not

2A circuit is self-similar if its subcircuits at any hierarchical
level present similar characteristics.
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a good routing method but it gives a general picture of net
distribution.
Now we want to �nd out the maximum routing demand

over the tile boundaries without placing the circuit. First we
discuss the worst case. Let us denote the maximum routing
demand of a tile boundary as Cmax.

Theorem 2. In a recursive bi-partitioning approach on
an ideal circuit, the maximum routing demand over all the

tile boundaries Cmax < C1
1��2H

1��
, where C1 is the net cut of

the �rst bi-partitioning and � = Ci+1=Ci is the ratio between
net cuts of two consecutive partitioning operations.

Proof: In �gure 1(b), the circuit is partitioned into two
parts with a net cut C1. This means that there are C1 nets
crossing from left to right, or vice versa. Let us look at a
tile boundary located at the right half. In the worst case,
all these C1 nets pass this speci�c boundary. Hence the �rst
bi-partitioning contributes C1 to the routing demand of this
boundary. Similarly, the ith bi-partitioning contributes Ci

to the routing demand. Thus, for any boundary, the upper
bound of the maximum routing demand is

2HX

i=1

Ci = C1

2H�1X

i=0

�i = C1
1� �2H

1� �
�

3.3 Uniform Distribution of Cut Nets
In the previous discussion we assume that all the nets

which are cut in a bi-partitioning cross a particular tile
boundary. That is, obviously, not the general case. How-
ever, once we construct a framework like the model in the
previous subsection, we can study the congestion behavior
using di�erent cut net distribution models.
We continue the analysis using a uniform distributionmodel,

in which the cut nets of a bi-partitioning are uniformly dis-
tributed over all the subcircuit area. In other words, the
cells in the partitioned subcircuit have equal probabilities
to be connected to a cut net.

Theorem 3. In a recursive bi-partitioning approach on
an ideal circuit, assuming cut nets are uniformly distributed,
the maximum routing demand over all the tile boundaries

Cmax <
C1p
Nc

(
1

2
+ 2�)

p
Nc�

2H � 1

2�2 � 1

where C1 is the net cut of the �rst bi-partitioning and � =
Ci+1=Ci is the ratio between net cuts of two consecutive par-
titioning operations.

Proof: The proof is similar to that of Theorem 2, and is
omitted due to space constraints.

3.4 Experimental Validation
Theorem 3 gives a much tighter upper bound of peak rout-

ing demand for a circuit. If the Rent exponent of a circuit
is known, we can estimate the peak routing demand prior
to placement stage. The following experiments evaluate the
e�ectiveness of the estimation method.
Given a circuit, we �rst compute the Rent exponent us-

ing the partition-tree method proposed in [13]. Speci�cally,
we record the number of cells and number of external nets
for each partition while recursively partitioning the circuit.
Then we do a linear regression on these data points plotted

on a log-log diagram. The slope of the linear regression re-
sult is Rent exponent r. By partitioning we also obtain the
net cuts of each partitioning C1; C2; : : : ,etc. Because of the
existence of Region II of Rent's curve, the �rst several net
cuts do not correlate well with Theorem 1. Therefore we use
Ch=�

h�1 instead of C1 in experiments (h = 8 in our work).
Now we can compute estimated maximum routing demand
using Theorem 3.
The peak routing demand of the design is obtained by

placing and global routing the circuit. The placement algo-
rithm used in the experiments is a recursive bisection ap-
proach combined a multilevel partitioner hMetis [14]. It
is a global placement since it stops at at a certain m � n
level. Then a bounding box global router is used to route
the global placement output. The peak routing demand is
the maximum number of crossings over all vertical and hor-
izontal tile boundaries.

ckt #cells #nets r D
0

p Dp time
ibm01 12,036 13,056 0.48 30.3 31 116
ibm02 19,062 19,291 0.51 62.7 67 208
ibm03 21,924 26,104 0.65 47.8 62 195
ibm04 26,346 31,328 0.62 52.1 52 218
ibm05 28,146 29,647 0.69 89.1 90 289
ibm06 32,185 34,935 0.57 82.3 60 305
ibm07 45,135 46,885 0.55 86.8 90 422
ibm08 50,977 49,228 0.55 111.9 100 511
ibm09 57,746 59,454 0.49 93.0 75 426
ibm10 67,692 72,760 0.47 135.8 112 669
ibm11 68,119 78,843 0.51 53.9 50 601
ibm12 69,026 75,157 0.52 76.1 76 771
ibm13 81,018 97,574 0.39 85.5 108 823
ibm14 147,088 147,605 0.46 117.6 111 1580

Table 1: Rent exponent r, predicted peak routing

demand D
0

p and real number Dp from global routing
output. Runtime is in CPU seconds. Good esti-
mates are listed in boldface.

Table 1 shows the comparison between the estimated peak

routing demand D
0

p and the real peak routing demand Dp.
The test circuits are large industry designs selected from the
IBM-PLACE benchmark suits 3, which are derived from
ISPD98 benchmark [15]. Runtime is measured in seconds
on a Sun workstation with a 400MHz CPU. It should be
noted that the estimated peak demand is scaled by a fac-
tor
p
Nc=(mn). This is because there are Nc=(mn) cells in

every tile, not one cell per tile as in the estimation model.
From Table 1 one can see that 8 out of 14 estimates are

very close to real numbers. However, the estimation is not
accurate for some circuits. There are a number of reasons
for bad estimates. First, the uniform distribution model
assumes that the probability of a cut net connecting to a cell
is uniform. In the placement, however, the connected cells
tend to be placed closer, causing the estimated value smaller
than the real value. Second, we estimate the routing demand
by summing up the number of nets crossing boundary b at
each level. Each number is indeed a upper bound for all
boundaries. The summation tends to be larger than the
real value. Other reasons include the variation of cut ratio
�, the chip area aspect ratio (which is not 1), : : : , etc.
3http://www.ece.nwu.edu/nucad/ibm-place.html
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4. REGIONAL CONGESTION
In Section 3 we have discussed the peak congestion esti-

mation problem. Another estimation requirement appears
at early placement stages. In this section, we propose a rout-
ing demand estimation approach in the context of top-down
placement.
For a given region r in a globally routed design, we use

D(r) to present the routing demand, which is the summa-
tion of the number of net crossings over all the tile edges
within this region. In the top-down placement, estimating
the routing demands for all the regions will give us a con-
gestion map, which is valuable for early design evaluation.
Given a placement region, the nets which cause the edge

crossings can be classi�ed into two types: the internal nets
which connect cells within this region and the external nets
which span toward other regions or cross this region while
connecting no cells. We use ID(r) to denote the internal
routing demand, which is the summation of the number of
crossings caused by internal nets over all tile edges. Simi-
larly, the external routing demand ED(r) is the summation
of the number of crossings caused by external nets for all tile
edges. The total routing demand D(r) for any region r is
the sum of its internal routing demand ID(r) and external
routing demand ED(r).

Internal nets

External nets

Placement 
 regions

Figure 2: Internal and external routing demand

Figure 2 shows the concepts of internal routing demand
and external routing demand at a top-down placement stage.
The original circuit is divided into subcircuits and each sub-
circuit is assigned to a region. The dashed lines are internal
nets. The thicker, solid lines represent external nets. The
routing demand in a region consists two parts: net crossings
caused by the internal nets and those by the external nets.
At the very coarse placement stage, the subcircuits are

loosely coupled, i.e. the number of nets between partitioned
subcircuits is much small than the number of internal nets.
The routing demand of a region is primarily determined by
the interconnect complexity of the subcircuit which belongs
to the region. As the top-down placement ow goes into
deeper levels, the routing demand of a placement region is
determined by not only the internal complexity of the sub-
circuit in this region, but also the geometrical locations of
other subcircuits and the interconnects between them.

4.1 Internal Routing Demand
In a typical top-down placement scheme, e.g., min-cut

placement, the cells of a partitioned subcircuit will even-
tually be placed within the area that is assigned for this
subcircuit. Therefore, estimating the internal routing de-
mand becomes feasible. For a certain region in a top-down
placement, the internal routing demand is proportional to
the total routed wirelength after global routing [4] 4.

4We assume that the global tile is square.

The wirelength estimation problem has been studied for
many years. There are several successful estimation tech-
niques based on Rent's rule: Donath's classical method [10],
its extension [11] and more recent model [12]. In these meth-
ods the wirelength distribution of the entire design is pre-
dicted. However, in our work, we estimate wirelength for
each subregion and take into account the locality of the
Rent's rule. Since di�erent subcircuits have di�erent com-
plexities and Rent parameters, wirelength estimation for
subcircuits models the internal routing demand.
Both Donath's model and Davis's model are adopted in

our routing demand estimation. Related results are evalu-
ated in Section 4.4. When estimating total wirelength we
are more concerned with the relative value (i.e., the com-
parable numbers for di�erent regions) rather than the real
wirelength results.

4.2 Rent Exponent Extraction
In order to estimate total wirelength of a region or the

routing uemand, the Rent exponent needs to be extracted.
A traditional way is using partitioning to get numbers of
block size and external pins. Then a linear regression is
performed when enough numbers are gathered. To make
the Rent exponent extraction e�ective, a minimum number
of partitioning is expected.
The part of Rent's rule curve in Region I implies true

Rent exponent. Thus locating the data points becomes a
key factor in this method. The following DREE algorithm
gradually increases the number of partitions when it par-
titions each subcircuit, and then performs linear regression
on the latest N (N = 4 in our approach) data points. For
each linear regression, we compute �2-probability Q which
indicates the goodness-of-�t:

Q = �q(
N � 2

2
;
�2

2
) (2)

where N is the number of �tting data points and �q(a; x) is
the incomplete gamma function.
Once the quality Q of linear regression is greater than a

threshold value (0.9 in our experiments) for each subcircuit,
we claim these regression points are in Rent's rule region
I. The algorithm terminates and outputs Rent exponent for
each subcircuit.
The total running time cost of DREE algorithm is dom-

inated by running time of recursive bi-partitioning on the
circuit, which is very fast due to the recent advances of
multi-level partitioning techniques. The method of extract-
ing Rent exponent is similar to the classical approach (e.g.
[13]). The algorithm is dynamic in the sense that unnec-
essary partitionings are not performed once a good linear
regression is obtained.

4.3 External Routing Demand
Internal routing demand can be estimated using Rent pa-

rameters, while estimating external routing demand requires
the knowledge of interconnection between regions. Due to
the locality of Rent's rule in large design, we can not assume
a uniform number of interconnects between regions. How-
ever, the interconnect distribution of the current placement
is known. For each region, we compute the external routing
demand based on the interconnects which connect or pass
through this region. The following �gure shows a simple
example of how to estimate the external routing demand
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Algorithm 1 DREE(Dynamic Rent Exponent Extraction)

Input: n subcircuits Gk=(Vk, Ek) k = 1; :::;n
Output: Rent exponent rk of each subcircuit Gk, k =
1; :::;n.
k 0; m number of data points for line �tting
repeat
k  k+ 1
for each subcircuit Gi (i = 1; :::;n) do
Do 2k way partitioning on Gi

Compute Bi;k = jV (Gi)j=2k (average number of mod-
ules per partition)
Pi;k= average number of external nets per partition
Record point (xi;k , yi;k) = (logBi;k , logPi;k)

end for
if k �m then
for each subcircuit Gi, perform a linear regression on
m-points data set: (xi;k; yi;k), (xi;k�1; yi;k�1), : : : ,
(xi;k�m+1; yi;k�m+1)
get line �tting result equation fi(x) = aix + bi and
quality of �tting Qi

end if
until Qi � 0:9 for i = 1; : : : ; n
ri = ai, i = 1; : : : ; n

C12

C13

C34

14 C23 C24

R3 R4

R2R1

C

Figure 3: External routing demand analysis

In Figure 3 a design area is divided into four regular rect-
angle regions: R1, R2, R3, R4. Let the number of inter-
connects between Ri and Rj be Cij . Assume that the dis-
tance between the center of adjacent regions is 1 unit. For
region R1, the wire which connects R1 and other regions
contributes one unit to its routing demand. A wire which
may pass through R1 (e.g. C23) statistically contributes a
half unit to R1's routing demand because this wire has a
50% chance to be routed in this region. Then the estimate
of external routing demand (ED) of region R1 is:

ED1 = C12 + C13 +C14 +
1

2
C23

Similarly we can get external routing demand for R2, R3

and R4.
In general, we assume that there are n regular rectangle

regions. To estimate the external routing demand for a re-
gion, the interconnects between every pair of regions will
be evaluated. Among them the ones which connect or pass
the evaluated region are counted. Therefore the external
routing demand estimate for region k is:

EDk =
X

1�i;j�n;i6=j

Cij�ij(k)

where Cij is the number of interconnects between region
i and region j. �ij(k) is the probability density function
which indicates the likelihood a wire from region i to region
j passes a given region k. It can be calculated by equally as-
signing probability for interconnects passing from one region
to its neighborhood regions.

4.4 Estimation Results
We conduct experiments to estimate the routing demand

for every region in the coarse placement. By summing up
the wirelength estimate and inter-region wire estimate, we
obtain the routing demand of each region. This estimate
will be compared with real routing demand map.
To get the real routing demand distribution, we continue

the placement process from the point where we make es-
timation. The placement algorithm is a typical recursive
bisection ow using a state-of-the-art multilevel partitioner
hMetis [14]. After placement, a high-quality global router
based on maze routing and rip-up and re-route is employed.
Then we extract the routing demand, which is the number of
net crossings on the edges of the global routing tiles within
every region. Such a result is the real routing demand dis-
tribution which reects the wire requirement on a design.
For better comparison, we scale both the estimated rout-

ing demand map and the real routing demand map. The
scaling process is simply dividing every routing demand value
associated with a region by the average routing demand
value of the whole chip area. After scaling, for each region,
we have a scaled estimated routing demand De and a scaled
real routing demand Dr. The estimation error for region r
is de�ned by Error(r) = jDe�Drj=Dr� 100%. The overall
estimation error for the design is the average value of the
estimation errors for all regions.
All the experiments have been done on a Sun Ultra10

workstation with a 400MHz CPU. Table 2 shows the over-
all estimation error for three di�erent approaches. The �rst
approach uses Donath's wirelength estimation model and
routing estimation method proposed in Section 4.3. The
second approach is similar to the �rst one. The only di�er-
ence is that it uses Davis's wirelength distribution model.
The third approach estimates regional congestion based on
Davis's wirelength model only, without routing estimation.
The three approaches use the same DREE algorithm to ex-
tract Rent exponent. Since the running time for external
routing demand estimation can be ignored comparing with
the Rent exponent extraction process, we only report the
runtime for DREE algorithm.
The results in Table 2 show that the proposed approach

is an e�ective way to estimate congestion. By combining ei-
ther Donath's or Davis's wirelength model with the routing
estimation method, we can predict relative congestion with
small errors. The comparison between approaches with or
without routing estimation shows that: in general, wire-
length only can not estimate congestion well. There are
some di�erent cases for which wirelength itself produces
good estimates. These cases are mostly in 2 � 2 placement
level where the routing estimation is not as important as
later levels.
It should be noted that for a given circuit, the estimation

becomes harder as the number of regions increases. Bench-
marks ibm03, ibm04 and ibm14 show the trend. A global
router uses detours to avoid routing in a congested area.
When regions are large, the detours for congested spots in a
given region are still counted as the routing demand for this
region. However, if regions are small, the detours contribute
routing demand to neighboring regions, which makes esti-
mation di�cult. In general, estimates of large regions are
more accurate than those of small regions. This suggests
that designers use actual global routing to get congestion
information at later top-down placement stages.
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ckt level Donath's Davis's Davis's time
+ RE + RE only (secs)

2 � 2 9.0% 10.5% 12.8% 100
ibm01 4 � 4 8.2% 11.8% 6.2% 155

8 � 8 10.3% 11.2% 26.5% 266
2 � 2 8.2% 11.8% 6.2% 170

ibm02 4 � 4 8.7% 9.8% 11.2% 267
8 � 8 10.3% 11.6% 18.5% 463
2 � 2 8.2% 7.0% 10.0% 153

ibm03 4 � 4 11.6% 14.2% 18.5% 256
8 � 8 13.2% 13.6% 25.3% 491
2 � 2 8.2% 6.5% 17.2% 184

ibm04 4 � 4 11.7% 12.0% 15.7% 297
8 � 8 13.4% 14.0% 20.2% 592
2 � 2 15.2% 9.0% 2.8% 527

ibm11 4 � 4 7.6% 7.9% 17.2% 745
8 � 8 8.5% 9.0% 25.0% 1682
2 � 2 11.5% 8.2% 9.5% 663

ibm12 4 � 4 5.8% 4.3% 8.4% 824
8 � 8 8.2% 6.7% 11.2% 1845
2 � 2 13.2% 7.2% 5.2% 689

ibm13 4 � 4 10.9% 11.1% 16.0% 845
8 � 8 9.0% 9.0% 30.1% 1974
2 � 2 8.5% 6.5% 6.8% 1713

ibm14 4 � 4 9.4% 7.1% 13.6% 1463
8 � 8 10.9% 11.1% 19.5% 3362

average 10.0% 9.6% 14.7%

Table 2: Estimation error and runtime compar-
ison for three approaches: Donath's wirelength
model combining routing estimation (RE), Davis's
wirelength model combining routing estimation and
Davis's wirelength estimation only. Runtime is in
CPU seconds. Circuits statistics are the same as
Table 1.

5. CONCLUSION
In this paper, we analyze peak congestion of a design

based on Rent's rule. We also propose a regional congestion
estimation method that takes both internal and external
routing demand into account. Experiments on large indus-
try benchmarks show that the peak congestion for L-shape
routing model can be estimated. For the regional conges-
tion, the estimation error is on the average less than 10%
compared with the real congestion.
Our future research will focus on faster estimation tech-

niques by including Rent exponent prediction methods. A
study on circuit Rent exponents [16] is a step toward this
objective. Furthermore, estimation models for various place-
ment schemes (e.g. quadratic placement) will be studied.
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