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ABSTRACT
As semiconductor technology scales down, the leakage power
will soon become comparable to the dynamic power. To
reduce both dynamic and leakage power, power gating in
addition to clock gating should be used because clock gat-
ing saves only dynamic power. The knowledge of maximum
current is needed to design high-performance and reliable
circuits using power gating. However, all existing tech-
niques for maximum current estimation are not applicable
to power gating. In this paper, we study the maximum
current estimation problem considering power gating. We
develop two algorithms based on automatic test pattern gen-
eration (ATPG), and apply them to ISCAS'85 benchmarks.
Experiments show that our new estimation algorithms can
�nish the largest benchmark circuit within ten seconds, and
achieve up to 87% larger current when compared to an exist-
ing ATPG-based estimation algorithm that is able to obtain
maximum current estimation 6% less than the theoretical
maximum current without considering power gating. This
implies that power gating may lead to a larger maximum
current when compared to the normal maximum switching
current, and open a new avenue for maximum current esti-
mation as well as circuit reliability research.
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1. INTRODUCTION AND MOTIVATION
The maximum current of an integrated circuit plays an

important role in physical design. Excessive instantaneous
currents may lead to electromigrations, IR voltage drops, or
ground bounces on Vdd/Ground wires (in short, P/G wires).
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With ever-growing integration scales and clock frequencies,
excessive currents may also lead to di/dt inductive noise
especially for P/G wires. All these may cause permanent
circuit failures, timing errors, or logic malfunctions.
The information of maximum current is needed to guide

the physical design. Since the maximum current depends on
the input-pattern, the maximum current estimation prob-
lem can be transformed into the weighted max-satis�ability
problem, which is NP-hard [1]. Concepts of signal uncer-
tainty and maximum current envelope were used to �nd
the maximum current [2]. This approach was further im-
proved by a branch and bound approach to consider the
signal correlation [3]. Moreover, the genetic algorithm was
adopted to search for a pair of input vectors that lead to
the maximum current [4]. These methods in [2] [3] [4] are
simulation-based. In addition, the Automatic Test Pattern
Generation(ATPG) technique was used in [5] [6], and the
timed-ATPG approach with consideration of delay impacts
was used in [7]. In essence, all the aforementioned work �nds
a pair of input vectors which lead to the maximum switch-
ing current for combinational circuits. In general, a pair of
vectors containing both primary inputs and circuit states
can be found to obtain the maximum switching current for
sequential circuits [8] [9] [10]. We can classify [1]-[10] as
two-vector based approaches.
Power dissipation has become one of the primary con-

straints for high-performance microprocessor designs and
mobile/embedded system designs [13]. Clock gating is e�ec-
tive to reduce the dynamic power that is the major compo-
nent of the power dissipation for current CMOS designs [11]
[12] [13]. The aforementioned work [1]-[10] is still applicable
to estimate the maximum current considering clock gating.
As semiconductor technology continues to scale down, the
leakage power gains more signi�cance in the total power dis-
sipation. It is predicted that the leakage power will become
comparable to the dynamic power in only a few generations
[14]. Therefore, power gating in addition to clock gating
should be used to reduce both leakage power and dynamic
power [15], as clock gating is only able to reduce the dynamic
power.
In Figure 1 (a), we show a circuit structure employing the

power-gating technique. The PMOS sleep transistor with
a high threshold voltage is used to turn on or turn o� the
Vdd supply to the conventional functional unit, which is a
cascade chain of 5 inverters here.1 The SPICE simulation
results for a 0:13� process technology are shown in Figure 1

1For power gating, an NMOS sleep transistor may also be
used to disconnect the ground from the functional unit.
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Figure 1: (a)A circuit employing power-gating; (b)Simulation results for the voltage of nodes 2 and 3, and
the current in the power rail; (c)Zoom-in of power-o� region and (d)Zoom-in of power-on region.

(b)-(d). The input to the inverter chain is a periodic signal
as shown in Figure 1 (a). Control signal Vgating is used to
turn on or turn o� the sleep transistor, and therefore power
on or power o� the circuit. Figure 1 (b) shows the voltage
V (2) and V (3) of two nodes 2 and 3, and the current in the
power rail. In Figure 1 (c) and (d), the power-o� and the
power-on regions are zoomed in respectively. The �rst three
pulses with signi�cant amplitudes in Figure 1 (c) are the
normal switching currents. After the circuit is powered o�,
V(2) and V(3) go down in only a few clock cycles.2 Other
nodes whose waveform are not shown in Figure 1 are also
discharged quickly. When the circuit is powered on, there is
a signi�cant charging current, which is the �rst pulse with a
signi�cant amplitude in Figure 1 (d). The power-on charging
current may a�ect the circuit reliability, as its amplitude is
comparable to that of a normal switching current.
In general, the amount of charging current during power-

on depends only on one input vector and is di�erent from the
switching current, depending on two vectors in the previous
maximum current estimation work. Therefore, it cannot be
solved by existing approaches such as [1]-[10]. In this paper,
we study the maximum current estimation problem consid-
ering power gating, i.e. the problem to estimate the maxi-
mum turn-on charging current that depends only on one vec-
tor. Section 2 gives our one-vector problem formulation and
describes the two ATPG-based algorithms in detail. Section
3 presents the experimental results and compares our result
to the conventional maximum switching current. Section 4
concludes this paper. We consider combinational circuits in

2If the primary input signal is connected to a constant volt-
age source, the discharging time for nodes 2 and 3 is around
1�s according to our SPICE simulation for the temperature
of 120oC. Even in this case, the circuit can be discharged
during a long enough sleep mode.

this paper. In this case, the one-vector is equivalent to one
primary input vector.

2. PROBLEM FORMULATION AND ALGO-
RITHMS

2.1 Problem Formulation
When the circuit is powered on, the charge stored at the

load capacitance needs to be charged quickly. In general,
we may assume that the charging current is proportional to
this total charge for all the load capacitance. Therefore, we
use the total charge as the �gure of merit to measure the
maximum current in this paper. The total charge is given
by

Pi =
X

for all the gates

V AL(g) �C(g) � Vdd (1)

where C(g) is the load capacitance of gate g, V AL(g) is
the logic value of gate output and Vdd is the supply voltage.
If the gate output is logic \1", there is a charge of C(g) �
Vdd stored in the load capacitance. For the simplicity of
presentation, we assume that all gates have the same input
capacitance and ignore the wire capacitance. Then the load
capacitance is proportional to the fanout number of the gate.
So we may simplify (1) as

Pi =
X

for all the gates

V AL(g) � Fout(g) (2)

where Fout(g) is the number of fanouts for gate g. Similar
analysis also applies to the charging current. In summary,
we �nd one input vector which maximizes Pi, the �gure of
merit for the charging current.
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2.2 ATPG Techniques in Estimation
For a circuit with n primary inputs (PI), the number of

all possible two input vectors is O(4n) and the number of all
possible one input vector is O(2n). Hence, it is not feasible
to enumerate the input vector. In [5], a greedy-based scheme
and the 9-Value D algorithm were used to generate two input
vectors which maximize the switching current. In this paper,
we use the similar greedy scheme to iteratively assign logic
value \1" to the gate output which contributes most to the
charging current. We use the PODEM algorithm [16] [17]
to generate our one input vector because PODEM is much
more e�cient and �ts our problem formulation very well.
Before we describe the detailed algorithm, we �rst introduce
several concepts and mechanisms in PODEM.

1. Backtracing: In a stuck-at fault Test Generation algo-
rithm, a fault need to be excited and then its e�ects
need to be propagated to the primary outputs. These
two fundamental steps can be converted into a series
of line-justi�cation problems[17]. To justify the assign-
ment to a line, instead of assigning the line directly,
PODEM treats a value vk to be justi�ed for line k as
an objective(k;vk) to be achieved via PI assignments.
The backtracing process maps a desired objective into
an assignment to one PI that is likely to contribute
to achieving the objective. Hence PODEM assigns no
values during backtracing process, which avoids logic
conicts and a consistency check. That's why PODEM
is more e�cient than other ATPG algorithms and why
we choose it for our one-vector problem.

2. Implication: After the mapped primary input in back-
tracing is assigned with a value, the logic values of
certain gates can be uniquely determined considering
all the current assignments for the circuit. The process
of computing logic values for these gates is referred to
as implication. In implication, PODEM uses 3-valued
logic, \0", \1", and \x"(unknown value). All lines in-
cluding the output of primary inputs have initial value
\x".

3. Backtracking: Whenever there are several alternatives
to justify a line or to propagate a fault e�ect, it in-
volves a decision process. If the decision made leads to
the situation that the expected assignment can never
be justi�ed or the fault e�ect can never be propagated,
a backtracking strategy is used to allow a systematic ex-
ploration of the completed space of possible solutions
and recovery from previous incorrect decisions. PO-
DEM uses the reversing incorrect decision technique to
try an alternative decision and uses implication with
value \x" to restore to the state existing before the
incorrect decision[16]. This is much simpler than the
backtracking mechanism used in the 9-Value D algo-
rithm.

2.3 Fanout-based Algorithm Imax/Fanout

2.3.1 Algorithm Overview
In order to maximize Pi in (2), we iteratively assign logic

value \1" to an unassigned gate with the largest fanout num-
ber in a greedy fashion. We �rst sort all the gates in non-
increasing order according to the fanout number. Then each
time, we pick up an unassigned gate g with the largest fanout

number and assign value \1" to its output. To justify the as-
signment, we use the backtracing and implication procedures
similar to those in the original PODEM algorithm (we will
discuss the modi�cation in Section 2.3.2). If justi�cation
fails for the current decision, we use reversing incorrect de-
cision to backtrack until either the justi�cation succeeds or
the assignment is reported as impossible under the current
circuit state after exploring the whole decision tree.
We summarize the Imax/Fanout algorithm in Figure 2.

Some notations used there are explained as follows:

1. obj(g; vg) : an objective to assign value vk to the out-
put of gate g;

2. Justify(obj) : a procedure which justi�es the assign-
ment;

3. Imply(obj) : a procedure which completes both the as-
signment speci�ed by the objective and the assignment
of other values that can be uniquely determined.

Imax/Fanout Algorithm:
Order the gates by the fanout number;
While( 9 unassigned gates )
begin

Select an unassigned gate g with largest fanout;
Generate an objective obj(g; 1);
if(Justify(obj(g; 1)) == SUCCESS)

Mark gate g as an assigned gate;
else

Imply(obj(g; 0));
Mark gate g as an assigned gate;

end

Figure 2: Fanout-based Algorithm Imax/Fanout

2.3.2 Justification of Assignment
The justi�cation of assignment is performed by the pro-

cedure Justify(obj). It is a recursive procedure and its
overview is shown in Figure 3. The objective assignment to
be justi�ed is mapped to the assignment of one PI by the
subroutine Backtrace(obj). Backtrace(obj) is also a recur-
sive subroutine, and it is di�erent from that in the original
PODEM algorithm [16] [17] in terms of how to select the
path to backtrace. If the justi�cation fails, we will reverse
the incorrect decision and try to justify it by backtracing
through another path. If all the possible paths have been
tried and justi�cation still fails, the objective assignment
cannot be achieved under the current state of the circuit.
We illustrate our process of Backtracing by the example

in Figure 4. If we have an objective (g7; 1), there are several
alternative ways to justify the assignment. In Figure 4, we
give two possible paths along which we may backtrace and
map the objective to certain PI assignments. We have to
decide which path should be tried �rst. Because our goal
is to maximize the total charge when the circuit is powered
up, we will try the path which may help us achieve this
goal. We do this by computing the weight of objectives
generated during the recursive subroutine Backtrace(obj).
If the input objective is (g; gv) and gate g has N unassigned
fanin gates(fi; i = 1; 2; � � � ;N), Backtrace() will generate
all the objectives (fi; gv � i), where i is the inversion parity
of gate g. The weight of objective (fi; gv � i) is the fanout
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Justify(obj)
begin

if(the objective obj has been achieved already)
return SUCCESS;

if(the objective obj cannot be achieved)
return FAILURE;

(j; vj) = Backtrace(obj); /* j is a PI */
Imply(j; vj);
if(Justify(obj) == SUCCESS)

return SUCCESS;
/* reversing incorrect decision */
Imply(j; �vj);
if(Justify(obj) == SUCCESS)

return SUCCESS;
Imply(j; x);
return FAILURE;

end

Figure 3: The procedure for justi�cation :
Justify(obj)

g2
g3 g4

g5
g6I2

1

1

path 2
0

0

path 1 g7g1I1

Figure 4: Backtracing for assignment justi�cation.

number of gate fi. If gv � i = 1, Backtrace() tries the
objective with the largest weight and then continues back-
tracing. If gv � i = 0, Backtrace() tries the objective with
the smallest weight and then continues backtracing. For ex-
ample, when backtracing the objective (g7; 1), Backtrace()
will generate two objectives: (g1; 0) and (g6; 0). Because
weight((g1; 0)) = 2, weight((g6; 0)) = 1 and both have as-
signments of \0", Backtrace() will try (g6; 0) �rst.
The justi�cation used in our algorithm is an implicitly ex-

haustive process. It explores the whole decision tree to jus-
tify assignment of value \1" so that the gate can contribute
to the total charges. If the justi�cation fails, it means the
gate of interest now cannot have value \1" under the current
circuit state. Therefore, the gate will be assigned with value
\0". For example, in Figure 4, if we are going to assign value
\1" to gate g7, no matter which path is tried and which PI
assignment is mapped, the result is that g7 will be assigned
with \0" instead. Thus g7 can only have value \0" under
the current state of the circuit.

2.4 Gain-based Algorithm Imax/Gain
In the algorithm Imax/Fanout, we use the gate fanout

number as the metric to determine the order of processing
gates. But this heuristic rule is somewhat \local". We show
a sub-circuit with fanout numbers in Figure 5. If we use
the fanout-based algorithm, we assign \1" to the output of
gate g �rst. But this assignment will imply that both I1
and I2 should be assigned with \0". So for the sub-circuit
in the �gure, we get Pi = 5. But if we assign \1" to both I1

3

3

5
I1

I2

g

Figure 5: A simple example to illustrate the limita-
tion of the fanout-based algorithm.

and I2, we get Pi = 6 even though the gate with the largest
fanout number is assigned with \0". This occurs because
we only use fanout number to determine the priority of the
gate to be processed and this is a truly \local" observation.
To observe more \globally", we de�ne a new metric gain for
every gate g which is to be assigned with value v as follows,

gain(g; v) = (�1)(v+1)
� Fout(g)

+
X

h2IMP

((�1)V (h)+1
� Fout(h)) (3)

IMP is the set of all the gates whose output values can
be uniquely determined by the implication process of the
assignment of gate g. V (h) is the output value of gate h
and Fout is the fanout number of gate h. (3) can be used to
compute the gain to the total charge for a gate by assigning
\0" or \1" to the output of the gate, respectively. In other
words, each gate has two gains. For example, in Figure 5
we have gain(g; 1) = �1, gain(g; 0) = �5. Also we have
gain(I1; 1) = 3 and gain(I1; 0) = �3. The gain for I2
is same as that for I1. So in our gain-based estimation
algorithm, we will try to assign \1" to I1 or I2 �rst and
avoid being trapped at the local optimum for the example
in Figure 5.

Imax/Gain Algorithm:
Compute the initial gain for all the gates;
Order gates by gain;
While( 9 unassigned gates )
begin

Select the gate g and its assignment v
with the largest gain;
Generate an objective obj(g; v);
if(Justify(obj(g; v)) == SUCCESS)

Mark gate g as an assigned gate;
else

Imply(obj(g; �v));
Mark gate g as an assigned gate;

Update the gain for all the unassigned gates;
end

Figure 6: Gain-based Algorithm Imax/Gain

We summarize the gain-based algorithm Imax/Gain in
Figure 6. The Imax/Gain algorithm and the Imax/Fanout
algorithm share a similar greedy-based scheme. The di�er-
ences between these two algorithms include: First, in the
Imax/Gain algorithm each gate g is put into the ordered
list according to the larger value of its two gains, gain(g; 1)
and gain(g; 0). Second, because gain depends on the result
of implication that in turn depends on the current state of
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the circuit, we need to update the gain for all the unas-
signed gates each time we �nish the assignment of one gate.
Note that we need to compute both gain(g; 1) and gain(g; 0)
during the updating. This di�erence is highlighted in Fig-
ure 6. To make this dynamic updating e�cient, we use a
data structure similar to the BUCKET data structure in the
FM partition algorithm [18].

3. EXPERIMENTAL RESULTS
Both the Imax/Fanout algorithm and Imax/Gain algo-

rithm have been implemented in the C language. We use IS-
CAS'85 benchmarks and a Linux workstation with a 450MHz
Pentium III CPU to test the two algorithms.
We compare the results of our two algorithms for the one-

vector problem formulation in Table 1. For each circuit, the
larger estimation result is in bold-face. Compared to the
Imax/Fanout algorithm, the Imax/Gain algorithm achieves
up to 5.8% improvement (circuit C1355) for seven out of the
ten ISCAS'85 benchmark circuits. This is mainly because
the gain metric enables us to observe more \globally" while
assigning logic values. For three circuits the Imax/Fanout
algorithm gets the better result. Because both algorithms
are heuristic, it is possible for either algorithm to achieve
the better result.
According to the runtime comparison in Table 2, both al-

gorithms can be �nished within only a few seconds. There-
fore, in practice we can run both algorithms and use the
better estimation result. In general, the Imax/Gain algo-
rithm takes a longer time than Imax/Fanout because the
Imax/Gain algorithm needs to dynamically update gain af-
ter each assignment. But we also have two benchmarks,
C2670 and C5315, where the Imax/Gain algorithm runs
faster, because the Imax/Gain algorithm may reduce the
occurrences of backtracking.

Circuit runtime
Imax=Fanout Imax=Gain

C432 0.08 0.12
C499 0.15 0.24
C880 0.22 0.3
C1355 0.37 0.93
C1908 0.53 1.48
C2670 2.02 1.87
C3540 1.63 6.23
C5315 4.72 4.48
C6288 3.48 6.13
C7552 9.25 9.63

Table 2: Comparison of runtime of the two ATPG-
based Algorithm.

In Table 1, we also compare the result of our one-vector
problem formulation and the result3 for the two-vector prob-
lem formulation in [6], where the same estimation measure-
ment Pi is de�ned. The result of the one-vector problem
formulation is given by the larger estimation result from
our two algorithms. The percentage of di�erence between
the results of the two problem formulations is also shown in
Table 1. For eight out of the ten benchmark circuits, our al-
gorithms achieve up to 87% larger current compared to the
3Our quick implementation of the MAXP algorithm in [6]
leads to estimated current values slightly smaller than those
in [6], thus we use results form [6] for comparison.

algorithm for the two-vector problem. The estimated cur-
rent in [6] is 6% less than the theoretical two-vector max-
imum current. This implies that power gating may lead
to a larger maximum current and may cause more severe
problems such as electromigration, IR voltage drops, ground
bounces, and di/dt inductive noise for the P/G structure.
Therefore, power gating brings more challenges in low-power
and reliable circuit design, and our new one-vector problem
formulation is needed to tackle the reliability constraint in
modern power-e�cient VLSI design using power gating.

4. CONCLUSION AND FUTURE WORK
In this paper, we have studied the maximum current es-

timation problem considering power gating. We have pro-
posed two algorithms based on automatic test pattern gen-
eration (ATPG) to estimate the maximum charging current
when we turn on the power supply. Experimental results
using the ISCAS'85 benchmarks show that our algorithms
are able to complete the largest example within ten sec-
onds, and the maximum turn-on charging current consider-
ing power gating is up to 87% larger than the conventional
maximum switching current without considering power gat-
ing. This convincingly shows that power gating may lead to
even worse reliability problems for the P/G structure, such
as electromigrations, IR voltage drops, ground bounces, and
di/dt inductive noise. Our new problem formulation and al-
gorithms for maximum current estimation can be used to
guide both circuit design considering power gating [15] [19]
and P/G structure planning and optimization.
Our current algorithms consider combinational circuits

using power gating. We are extending this work to sequen-
tial circuits. We also intend to apply our estimation ap-
proach to architecture level simulation and optimization for
di/dt inductive noise reduction [20].
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