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ABSTRACT
The analysis and simulation of effects induced by VLSI intercon-
nects become increasingly important as the scale of process tech-
nologies steadily shrinks. While most analyses focus on the tim-
ing aspects of interconnects, power consumption is also important.
In this paper, the power distribution estimation of interconnects is
studied using a reduced-order model. The relation between power
consumption and the poles and residues of a transfer function is
derived, and an appropriate driver model is developed, allowing
power consumption to be computed efficiently. Application of the
proposed method to RC networks is demonstrated using a proto-
type tool.

1. INTRODUCTION
As the scale of process technologies steadily shrinks and the size

of designs increases, interconnects have increasing impact on the
area, delay, and power consumption of circuits. Reduction in scale
causes several effects: gate delays decrease due to the thinning
gate oxide; interconnect resistances increase due to shrinking wire
widths; the aspect ratios of interconnects have to be increased to
compensate for increasing interconnect resistance; the lateral and
fringing components of capacitance dominate the total capacitance
of interconnects; and interconnect capacitance dominates total gate
loading. These factors cause a continual increase in interconnect
delays, although of course overall circuit performance continues to
increase. In fact, interconnect delay is already a significant portion
of the clock cycle time for large high-frequency chips [1].

As regards power, the situation is similar in that the portion of
power associated with interconnects is increasing. This is an im-
portant fact because the conventional design, analysis, and syn-
thesis of VLSI circuits are based on the assumption that gates are
the main sources of on-chip power consumption. Furthermore, the
power consumed by interconnects results in a phenomenon, called
self heating, which reduces electromigration-induced mean time to
failure (MTF) [2].

To verify the effects induced by interconnects, a combination
of extraction and analysis is necessary. Extraction determines the
capacitance and the resistance of interconnects, which can then be
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used to build a circuit model for the analysis of interconnect effects.
For analysis (or estimation), extensive studies have been made of
the use of model order reduction over the last few years, following
the introduction of Asymptotic Waveform Evaluation [3]. Model
order reduction is based on approximating the Laplace-domain trans-
fer function of a linear (or linearized) network by a relatively small
number of dominant poles and zeros. Such reduced-order models
can be used to predict the time-domain or frequency-domain re-
sponse of the linear network.

Although there has been significant progress in the analysis and
simulation of performance-related aspects of VLSI interconnects,
less work has been devoted to the analysis of power consump-
tion (or distribution) of interconnects. Furthermore, the analysis
of power-related aspects of interconnects is limited to power distri-
bution networks, and deals with quantities such as IR drop, ground
bounce, and electromigration.

In this paper, we introduce, for the first time, a method based on
a reduced-order model that allows the power distribution of inter-
connects to be estimated. We show that the power, which inher-
ently involves improper integration, can be derived from the poles
and residues of the transfer function, which requires only algebraic
computation. When the interconnect is driven by MOSFETs and
connected to the gates of MOSFETs, the load transistor can be
satisfactorily approximated by a capacitor. And we show that the
driver transistor can be modeled by a linear-region resistance with
sufficient accuracy for power estimation.

In the next section, we briefly review model order reduction tech-
niques, especially the one based on moment matching. In Section 3,
a method of power distribution estimation based on a reduced-order
model is introduced. In Section 4, a driver model suitable for use in
the estimation of interconnect power distribution is developed. In
Section 5, we present results of experiments for several examples,
and in Section 6 we draw conclusions.

2. MODEL ORDER REDUCTION
Practical circuits contain an extremely large number of poles, es-

pecially when circuit components are extracted from the geometry
of the layout. Model order reduction is a technique that takes a
circuit and reduces it to a smaller representation consisting of the
dominant poles from the original circuit. There are two approaches
to model order reduction: moment matching and matrix approxi-
mation [4]. In this section, we outline the method based on moment
matching [3]. However, we stress the fact that any kind of model or-
der reduction method can be used as part of the power distribution
estimation which we present in the next section.

A lumped, linear, time-invariant circuit can be described by first-
order differential equations

ẋ = Ax+bu;
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y = cT x+du; (1)

where x is an n-dimensional state vector, A is an n� n matrix, u
is the system’s input, y is the output of interest, and d denotes the
direct-coupling term. We wish to obtain the zero-state impulse re-
sponse of a linear circuit described by (1), which in turn can be used
to determine its response to any excitation. We apply the Laplace
transform to (1) assuming zero initial conditions and ignoring the
term du, which can be treated separately. Then, we obtain

sX = AX+bU;

Y = cT X; (2)

where X, U , and Y denote the Laplace transform of x, u, and y,
respectively. It follows from (2) that the transfer function, or the

Laplace transform of the impulse response, defined as H(s) = Y (s)
U(s) ,

is given by

H(s) = cT (sI�A)�1b; (3)

where I is an identity matrix. If H(s) has a Taylor series expansion
about s = 0 (i.e. Maclaurin series), then it can be described by

H(s) =
∞

∑
i=0

mi si: (4)

Substituting (4) into (3) and equating like powers of s, it can be
shown that

mi =�cT A�i�1b; i = 0;1; : : : : (5)

The terms mi are related to the moments of the impulse response,
denoted by h(t), because

H(s) =
Z ∞

0
h(t)e�st dt

=
Z ∞

0
h(t)

�
1� st +

1
2!

s2t2��� �
�

dt

=
Z ∞

0
h(t)dt� s

Z ∞

0
t h(t)dt +

1
2

s2
Z ∞

0
t2h(t)dt + � � �

= m0 +m1 s+m2 s2 + � � � ; (6)

where

mi =
(�1)i

i!

Z ∞

0
ti h(t)dt (7)

is equal to the i-th time moment of h(t), multiplied by a constant
factor. Note that the terms mi can be computed recursively in (5)
because mi+1 = A�1mi; i = 0;1; : : :, meaning that only a single LU-
factorization is required.

In a reduced-order model, especially one obtained by moment
matching, the transfer function is approximated by the reduced-
order system of proper rational function of s having q-poles:

Ĥ(s) =
nq�1sq�1 +nq�2sq�2 + � � �+n1s+n0

sq +dq�1sq�1 + � � �+d1s+d0
: (8)

Because there are 2q unknowns in the reduced-order system, it is
forced to correspond to the first 2q terms of (4) by using Padé ap-
proximation. In other words, 2q low-order moments are required
to obtain the reduced-order system having q poles, yielding the fol-
lowing equality:

nq�1sq�1 +nq�2sq�2 + � � �+n1s+n0

sq +dq�1sq�1 + � � �+d1s+d0
=

m0 +m1s+ � � �+m2q�1s2q�1: (9)

Multiplying both sides of (9) by the denominator of the left-hand
side yields a set of equations that can be solved for 2q coefficients.
After finding roots of the denominator of the reduced-order model,
(8) can be expressed as a partial fraction expansion form given by

Ĥ(s) =
q

∑
i=1

ri

s� pi
; (10)

where ri is a residue of Ĥ(s) at the pole pi. It is then straightforward
to obtain the approximated impulse response ĥ(t) from (10).

Computing moments and obtaining the reduced-order model as
described above has limitations: a reduced-order model of a stable
circuits may be unstable. Furthermore, successively higher orders
of approximation are not guaranteed to converge uniformly to the
actual system function. To overcome these problems, many tech-
niques have been proposed such as moment scaling and frequency
shifting [5] as well as matrix approximation [6], [7], [8].

3. ESTIMATION METHOD OF POWER DIS-
TRIBUTION IN INTERCONNECTS

In order to find the power consumption (or energy dissipation)1

of a particular resistor element in a linear(ized) circuit, we first ob-
tain the reduced-order model of current flowing through the resis-
tor, denoted by Ĵ(s) (with the corresponding time-domain function
ĵ(t)), using a model order reduction techniques such as the one de-
scribed in the previous section. The approximate energy dissipated
by Ri, denoted by Êi, during time period [τ1;τ2] is then given by

Êi = Ri

Z τ2

τ1

ĵ2(t)dt: (11)

If we are interested in the total energy dissipated by a specific
resistor element during signal transition, we can choose to consider
a semi-infinite interval of τ, without loss of generality. We make τ1
the time origin and τ2 infinite time. Then ĵ(t) will reach a steady
state, provided that ĵ(t) corresponds to the reduced-order model of
an individual transition. This leads us to the improper integral

Êi = Ri

Z ∞

0
ĵ2(t)dt: (12)

If Ĵ(s) is obtained in the form of a partial fraction expansion such as
the one in (10) and the poles are distinct, then we can readily derive
an algebraic equation involving poles and residues by substituting
the combination of exponentials into ĵ(t) in (12). However, this
sort of direct computation from the improper integral cannot be
applied if there are poles whose orders are larger than 1, or if ĵ(t) is
expressed as combination of functions other than exponentials [9].
Thus, in this paper, we resort to algebraic computation in the s-
plane instead of improper integration in the time-domain.

First, we derive a general relation between improper integration
in the time-domain and algebraic computation in the s-plane, which
is expressed by the following theorem.

THEOREM 1. If the Laplace transform of a time-domain signal
h(t), denoted by H(s), has q singularities in the left half of the s-
plane, then

Z ∞

0
h2(t)dt =

q

∑
i=1

r̃i; (13)

where r̃i is a residue of H(�s)H(s) at the singularity of H(s).

1Power consumption and energy dissipation are used interchange-
ably. More precisely, power consumption in this paper means av-
erage power consumption, which is equal to energy dissipation di-
vided by the time period of interest.
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Figure 1: The singularities of H(s) and the contour of integra-
tion.

Proof Let

I =
Z ∞

0
h2(t)dt: (14)

From the definition of the Laplace transform, we have

I =

�Z ∞

0
h2(t)e�st dt

�
s=0

= [Lfh(t)h(t)g]s=0 : (15)

Since the Laplace transform of a product of two functions is equal
to the convolution of the Laplace transforms of two functions, we
find that

I =

�
1

2πi
lim

T!∞

Z γ+iT

γ�iT
H(s�ω)H(w)dω

�
s=0

=
1

2πi
lim

T!∞

Z γ+iT

γ�iT
H(�ω)H(ω)dω; (16)

where γ is chosen solely by the condition that it is to the right of
the singularities of H(s), meaning that γ can be chosen as any real
number larger than or equal to 0. So we set γ = 0 and take the
contour of integration as a semicircle of radius T with the line
ℜ(s) = γ as diameter and to the left of it and the line segment
ℜ(s) = γ;�T � ℑ(s)� T , as shown in Figure 1. By taking T suf-
ficiently large, we can guarantee that only the singularities of H(s)
fall inside the contour, because H(�s) has singularities to the right
of the s-plane. Then, by the Cauchy residue theorem, I reduces to
the sum of residues of H(�s)H(s) at the singularities of H(s). This
concludes the proof. 2

As an example, we consider

H(s) =
s+3

(s+1)2 =
2

(s+1)2 +
1

s+1
:

We form the product of H(�s) and H(s):

H(�s)H(s) =
(�s+3)(s+3)
(s�1)2 (s+1)2 =

2
(s�1)2 �

5
2(s�1)

+
2

(s+1)2 +
5

2(s+1)
: (17)

It can be easily shown that
Z ∞

0
h2(t)dt =

Z ∞

0
(2te�t + e�t)2 dt =

5
2
;

which is a residue of H(�s)H(s) at the pole s =�1 (the coefficient
of 1

s+1 in (17)). Note that the only constraint required by Theo-
rem 1 is that the transfer function has singularities to the left of

the s-plane, which is a typical situation because we are concerned
mostly with stable systems. Also, note that (14) corresponds to 0-
th time moment of h2(t) if its Laplace transform has a Maclaurin
series expansion. If we have a reduced-order model of H(s), then
r̃i can be obtained by a matrix computation involving the moments
of Ĥ(�s)Ĥ(s) and the singularities of Ĥ(s) [3].

In the case when all the singularities are simple poles, we obtain
the less complicated relation expressed by the following theorem.

THEOREM 2. If the Laplace transform of a time-domain signal
h(t), denoted by H(s), has q simple poles in the left half of s-plane,
then

Z ∞

0
h2(t)dt =

q

∑
i=1

riH(�pi); (18)

where ri is a residue of H(s) at the pole pi of H(s).

Proof From Theorem 1, the residue of H(�s)H(s) at the simple
pole pi (r̃i) can be computed by

r̃i = lim
s!pi

(s� pi)H(�s)H(s): (19)

Because

lim
s!pi

(s� pi)H(s) = ri; (20)

we obtain the desired result from (13), (19), (20):
Z ∞

0
h2(t)dt =

q

∑
i=1

r̃i =
q

∑
i=1

riH(�pi): (21)

2

Notice that the relations derived in Theorems 1 and 2 are ex-
act, rather than approximate. Thus, when the reduced-order model
Ĥ(s) is used in (13) or (18), the accuracy of energy dissipation
is determined by the accuracies of the poles and residues of the
reduced-order model. The relations can also be used to derive the
exact energy dissipation if we have the Laplace transform of the
exact time-domain function of current.

4. A MOSFET MODEL FOR POWER DIS-
TRIBUTION ESTIMATION

In order to estimate power distribution based on the method out-
lined in Sections 2 and 3, we need a simple linear model for non-
linear devices such as MOSFETs to reduce the complexity of the
estimation. In this section, we discuss the modeling of MOSFETs
(when connected to the interconnect) for the purpose of power dis-
tribution estimation.

When the interconnect is driven by MOSFETs and connected to
the gates of MOSFETs, as shown in Figure 2(a), the drive transistor
can be modeled by an equivalent resistance Rt and the load transis-
tor by a capacitance Ct as shown in Figure 2(b). It is well-known
that the receiver MOSFET can be closely approximated by a ca-
pacitor. Approximating the drive transistor by a linear-region resis-
tance Rt is sufficiently accurate for delay estimation [10]. However,
the validity of such an approximation is not obvious in the case of
power distribution estimation.

Figure 3 is for an analysis of the circuit in Figure 2(a), with the
interconnect approximated by 10 sections of π-ladder circuits2 [10].
When the input of the driver MOSFETs goes from high to low,
PMOS drives the interconnect. It is operated in a linear region

2When Rt = Ct = 0, the exact energy distribution along a dis-
tributed RC interconnect can be derived, as shown in Appendix
A.

372



20/0.25

10/0.25

20/0.25

10/0.25

R

C
2.5V

0V

(a)

R

C
2.5V

0V

(b)

Rt

Ct

Figure 2: A model for an interconnect driven by a MOSFET
driver and loaded with a MOSFET receiver. The interconnect
is 0.5 µm wide and 10 mm long in 0.25-µm technology, which
results in R=1.5 kΩ and C=2.0 pF: (a) the circuit and (b) the
model of an RC interconnect.
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Figure 3: The step response at the middle of an interconnect
together with the driving-point response.

most of the time, which is evident from the voltage response at the
driving point, V(1), shown in Figure 3. Thus, the current flowing
through each resistor, which depends on the voltages of nodes at the
both sides of the resistor, is determined by PMOS in the linear re-
gion. This indicates that the approximation of Rt by a linear-region
resistance is still valid for the estimation of power distribution.

To verify the validity of the resistance approximation when the
input is a ramp rather than step, we compare two circuits: one
shown in Figure 3 and another with MOSFET driver replaced by
a linear-region resistance of PMOS (210Ω). We change the rising
time (falling time in case of the first circuit) from 0 ps to 100 ps
(10% of cycle time at a one GHz operating frequency), and com-
pare the power consumption at each resistor obtained by SPICE.
The average error over all resistor branches is up to 2.1%, while
the maximum error is up to 7.9%. This indicates that the simple
resistance model is a fairly good approximation for reasonably de-
signed circuits.

Table 1: Comparison of the energy dissipation computed using
SPICE and our method.

Resistor SPICE 1-pole 2-poles 3-poles

R1 5.118 3.117 4.813 4.956
R2 8.418 7.183 8.394 8.380
R3 0.880 0.886 0.879 0.880
R4 2.424 2.428 2.420 2.424
R5 1.760 1.756 1.756 1.759
R6 0.242 0.242 0.242 0.242
R7 0.429 0.411 0.435 0.429
R8 0.008 0.007 0.008 0.008
R9 5.540 4.694 5.527 5.497
R10 0.051 0.044 0.050 0.051

Avg. error 9.4% 1.2% 0.5%
Max. error 39.1% 5.9% 3.2%

5. EXPERIMENTAL RESULTS
We implemented a prototype tool written in C++ and based on

the results presented in Sections 2 and 3. The program reads in
a circuit in a SPICE-like format and outputs the power distribu-
tion of the interconnect. Because the accuracy of power estimation
depends on the accuracies of the poles and residues in the reduced-
order model, the result presented in this section could be improved
using more advanced techniques such as PVL [6].

5.1 Numerical Example
For the first example, we consider the RC tree shown in Fig-

ure 4, which has widely varying time constants (i.e. it is stiff). We
compare the energy dissipation of each resistor branch obtained by
SPICE with that obtained by our method (approximation by up to
3 poles), when a step voltage is applied. The results are shown in
Table 1, where energy dissipation is of the order of pJ. For resis-
tors from R3 to R8, approximation with a single pole is enough to
yield an accurate result. To understand this, first note that the area
under the current waveform when it is approximated by a single
pole is equal to that under the exact waveform3. Because the ex-
act waveform is bell-shaped (except for the driving end) while the
approximated one decays monotonically, the accuracy of energy
approximation with a single pole depends on the peakness exhib-
ited by the curve, because we are interested in the area under the
square of the waveform.

As an example, in the case of waveforms for R3 (shown in Fig-
ure 5), we would expect the squares of both waveforms to be a
good match with the area under the curve. In the case of R9, on
the other hand, the current waveform peaks near time 0 and has
a long tail along the time axis, meaning that it is highly skewed
leftwards. Because a single-pole approximation based on moments
gives a waveform that follows the gross shape of the original wave-
form (s = 0, thus t = ∞), the approximated current waveform of R9
has a large error around its peak (although the area underneath is
correct) and this error becomes more significant when we compute
the square of the current waveform, as we must. However, approx-

3If the reduced-order model of current consists of a single pole, it
can be described by Ĵ(s)= r

s�p . From (9), if we let Ĵ(s)=m0+m1s
and solving for like powers of s, it can be shown that p = m0=m1
and r =�m2

0=m1. Thus,
R ∞

0 ĵ(t)dt =
R ∞

0 rept dt =� r
p = m0. From

the definition of moment, this is equal to
R ∞

0 j(t)dt.
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imations with more than one pole give satisfactory results for this
example.

5.2 Random RC Networks
The second example consists of randomly generated RC tree net-

works. We vary the number of nodes from 100 to 500, randomly
generate resistance and capacitance values in such a way that the
resulting circuit has widely varying time constants (like the first
example), and compare the energy distribution obtained by SPICE
with that obtained by our method. As an example, Figure 6 shows
the result for circuits with 300 and 500 nodes. Although the approx-
imation with a single pole depends on the stiffness of the circuit, the
approximation with two poles gives accurate result for most cases,
as can be seen in Figure 6.

6. CONCLUSION
We describe a method for the power distribution estimation of an

interconnect, based on a reduced-order model. We show that power
consumption can be computed efficiently in the s-domain using an
algebraic formulation, instead of improper integration in the time-
domain. The proposed method of computing power consumption
relies on the poles and residues of a transfer function (whether ex-
act or approximate), and can thus be used in any kind of model
order reduction technique. We also show that MOSFETs driving
an interconnect can be approximated by a linear-region resistance
for power distribution estimation.

Compared to conventional delay estimation where only the re-
ceiver nodes are of interest, the computational complexity of power
distribution estimation is high because we want to obtain reduced-
order models of all resistor elements. Thus, a single-pole approx-

Distributed RC line

0 x L

1

v(x,t)
i(x,t)

Figure 7: A distributed RC interconnect.

imation, which already guarantees enough accuracies for most of
elements as shown in Table 1 and Figure 6, needs to be devised to
lead to a significant improvement in computational performance.

Appendix A
Although the focus of this paper is on the power distribution esti-
mation of circuits consisting of lumped elements, we include the
exact energy distribution of a distributed RC interconnect for com-
pleteness. We consider a distributed RC line as shown in Figure 7.
Suppose that point 1 is excited by a step input. Then, the Laplace
transform of v(x;t) is given by [10]

V (x;s) =
cosh

�
(1� x0)

p
sCR

	
s cosh

p
sCR

; (22)

where x0 = x=L and R and C are the total resistance and capacitance
of the line, respectively. Because

i(x;t) =�1
r

∂v(x;t)
∂x

; (23)

where r is the resistance of the line per unit length, from (22) and
(23) we obtain:

I(x;s) =

r
C
R

sinh
�
(1� x0)

p
sCR

	
p

scosh
p

sCR
: (24)

The poles of I(x;s) are given by

pk = �
�

k� 1
2

�2 π2

CR
; k = 1;2; : : :

= � σ2

CR
; σ =

π
2
;

3π
2

; : : : : (25)

Because all singularities are simple poles in the left half of the s-
plane, we can use the relation in Theorem 2. Now, from (24) and
(25), we have

I(x;�pk) =C
sinhf(1� x0)σg

σ coshσ
; (26)
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and for the residue

rk = lim
s!pk

(s� pk) I(x;s) =
2
R

cosx0σ: (27)

Thus, the energy dissipation at an arbitrary position x is given by

E(x) = r
∞

∑
k=1

rk I(x;�pk)

= r
k=∞

∑
σ=(k�1=2)π;

k=1

2C
R

sinhf(1� x0)σg cosσx0

σ coshσ
; (28)

and it is graphically shown in Figure 8.
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