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ABSTRACT     
Power consumption has become one of the big challenges in 
designing high performance processors. The rapid increase in 
complexity and speed that comes with each new CPU generation 
causes greater problems with power consumption and heat 
dissipation. Traditionally, these concerns are addressed through 
semiconductor technology improvements such as voltage reduction 
and technology scaling. This work proposes an alternative solution 
to this problem, by dealing with the power consumption in the very 
early stage of the microarchitecture design. More precisely, we show 
that by modifying the well-established out-of-order, superscalar 
processor architecture, significant gains can be achieved in terms of 
power requirements without performance penalty. Our proposed 
approach relies on reusing as much as possible from the work done 
by the front-end of a typical pipelined, superscalar out-of-order via 
the use of a cache nested deeply into the processor structure. 
Experimental results show up to 52% (20% on average) savings in 
average energy per committed instruction for two different pipeline 
structures. 

1. INTRODUCTION 
Today’s superscalar processor microarchitectures place an 
increasing emphasis on exploiting instruction-level parallelism. This 
often translates into having multiple execution units, wider 
instruction issue buffers to support them and wider instruction paths 
for fetch, decode and rename stages. This trend leads to increasing 
power requirements to support all these resources. Until now, 
performance concerns have always had priority so the power 
dissipation issues were addressed mainly at the technology level, 
that is lower supply voltages, smaller transistors, SOI technology, 
better packaging, etc. 

Nevertheless, power dissipation has become one of the design 
constraints for modern processors, and thus the microarchitecture 
designer must now take power requirements into consideration as 
well. Gating the input transitions has been one of the research 
directions proposed as a potential way to reduce the power 
consumption for large designs [10]. Focusing on a specific 
component of the processor, techniques like Filter Cache [8] or L-
cache [9] were proposed to increase the power efficiency of the 
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cache subsystem. Thus some parts of the cache are shut down when 
they are not needed, obtaining a better power efficiency.  

More recently, an interesting architectural innovation unveiled by 
Intel with the release of the Pentium 4 microprocessor is the use of a 
trace-cache-like structure to shorten the critical execution path. By 
placing this cache in the pipeline, after the x86 decoding stages, and 
by storing the decoded instructions (uops) in the trace-cache, the 
whole decode stage can be shut down for significant periods of time 
while the rest of the execution engine continues working, creating a 
shorter critical execution path. When a hit in the trace-cache occurs, 
instructions do not need to be decoded again and can be fed into the 
pipeline directly from the trace-cache. 

Moving one step forward, we can envision such a structure as 
being placed even deeper in the pipeline to allow for even further 
improvements through shortening the critical execution path [1]. If 
the trace-cache is placed after the Issue Stage, the instructions that 
are fetched, decoded and have already had registers renamed 
performed should be stored in issue-order (and not in program-
order) in the trace-cache. The execution engine can thus be fed 
either from the Issue Stage (during the trace-build phase) or directly 
from the trace-cache (if a hit in the trace-cache occurs).  

This new type of microarchitecture is the objective of this paper. 
We propose a novel micro-architectural organization that allows for 
better power efficiency through reusing the work done by the front-
end of the pipeline. Furthermore, techniques like Guarded 
Evaluation [5] or clock gating [10] will enable significant reductions 
in power consumption for pipeline stages not used during different 
phases of the program execution. 

2. PREVIOUS WORK 
When it comes to performance, superscalar processor design has 
always been the last to accept a possible compromise. As intended 
for applications where raw performance is the primary target, the 
last bit of potential efficiency is usually squeezed from each 
architectural design. In this respect, all the power-reduction work 
was usually concentrated on refining the CMOS technology. 
Traditional circuit-level approaches, as voltage scaling, transistor 
resizing or library redesign [6], are now employed by most of the 
modern superscalar processors. 

Guarded evaluation was proposed as a static technique in [5] to 
reduce the power required by a design when some operands are left 
unmodified through successive time steps. More general, clock 
gating was proposed [10] to save the power wasted by units that are 
temporarily not used. Both of these techniques require some extra 
piece of logic (or a static algorithm) to identify when sub-blocks of 
the larger design are not used in order to prevent the input 
transitions. These techniques are currently widely accepted and tools 
like Wattch [12] that model the power consumption of a superscalar 
processor considers them as implemented by default. However, most 
of the commercial high performance processors are not able to use 
them on a large scale. This fact is mostly due to the inherent 
difficulties in predetermining on a cycle-by-cycle basis whether a 
module is needed or not in an out-of-order design or in finding 
longer intervals when a module can be completely shut down. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
ISLPED ’01, August 2001, Huntington Beach, California, USA. 
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00. 

340



In this paper we propose to modify the usual pipelined, out-of-
order microarchitecture to allow for longer (and predictable) 
intervals during which some of the resources are not used. In order 
to achieve that, we identify modules that perform the same 
computation each time an instruction is executed and try to reuse as 
much as possible from the previous work. Obviously, the functions 
performed by the Fetch and Decode stages are identical each time a 
specific trace from the program is executed. Using a novel register 
file structure, we can also reuse the work done by the Rename and 
Issue stages. For reusing all this work, we propose a new 
microarchitecture, with a modified type of trace-cache placed 
between the Issue and Execute stages, storing traces of instructions 
in issue order.  

Storing instructions in the logical program order rather than 
actual issue order was previously proposed by several studies [2][4]. 
Usually, the trace-cache employed in all these studies is used as a 
mechanism for improving the fetch efficiency and allowing for 
multiple branch predictions during each clock cycle. An exception is 
the TurboScalar microarchitecture [1], where a long and thin 
pipeline is used for creating traces that feed a very short and thick 
pipeline, thus harvesting a much higher IPC. All these studies are 
focused on increasing the performance of the processor but do not 
address the power consumption issue. In order to increase the 
performance, the complexity of creating traces and storing them in 
an efficient structure is taken off of the critical execution path and 
placed after the Retire stage of the pipeline. Thus, these approaches 
avoid most of the drop in performance caused by the extra-work 
required for filling the trace-cache and can perform a lot of 
optimizations before storing the instructions (reordering, renaming 
and hashing). However, these aforementioned microarchitectures do 
not address the substantial power overhead incurred by all the 
required logic. 

3. ORGANIZATION OF THE PAPER 
The paper is organized as follows: in Section 4 we present the main 
aspects of our microarchitectural design, including the selected 
trace-cache structure, the organization of the new register file and 
the register renaming technique that will allow us to reuse the 
renaming done when building the traces.  In Section 5 we present 
the power-performance trade-offs we have to analyze when using 
this type of microarchitecture. The experimental setup is described 
in Section 6 and the results of these tests are included in Section 7. 
We conclude in Section 8 with some final remarks and possible 
directions for future research. 

4. ARCHITECTURAL DESIGN 
Typically, the microarchitecture-level design starts with the selection 
of a typical out-of-order, superscalar architecture. In order to reduce 
the critical execution path (and thus the number of modules that are 
used for executing an instruction) we propose to place a trace-cache 
deep in the pipeline, after the Issue Stage. In order to avoid the 
performance penalty incurred by an extra pipeline stage between the 
Issue and the Execution stages, we bypass it, issuing instructions in 
parallel to both the trace cache and the execution stages. The 
conceptual microarchitecture is illustrated in Figure 1. 

Normally, instructions are fetched from the I-Cache through the 
Fetch stage and then decoded. In the next stage, physical registers 
are assigned for each logical register used by the instruction, 
avoiding potential false dependencies.  The resulting instructions are 
placed in the Issue Window for dependency checking. A number of 
independent instructions are issued to the execution stage and in 
parallel stored in the trace-cache for potential reuse. 

In this setting, the critical execution path can be significantly 
shortened by feeding the execution units directly from the trace-
cache whenever possible. Initially, when the trace cache is empty, 
the instructions are launched from the Issue Window, while a trace 
is build in parallel in the trace-cache – we call this step the trace 
segment build phase.  

Upon a mispredict (or a trace completion condition), a search is 
performed to identify a possible next trace starting at that point, and 
should a hit occur, the instructions continue to be executed from the 
trace-cache, on the alternative execution   path (dotted line in Figure 
1). At the end of executing a trace (either at the end of the trace or 
when a mispredict occurs), the look-up must be performed again, in 
order to find a potential next-trace. If a miss is encountered, the 
pipeline front-end is launched again and a new trace is built. 

4.1 Trace-cache Architecture 
Similar to the conventional trace-cache implementations [4], our 
design divides the program into traces of instructions that are stored 
on a different basis than their original address. However, the cache 
we have chosen in the proposed architecture is structurally different 
from the trace-cache typically used for increasing the fetch 
bandwidth. From the beginning, the decision to reuse as much as 
possible from the work done in the first stages of the pipeline led to 
the necessity of storing the instructions in issue order, not in 
program order. This fact enforces a number of decisions that 
considerably limits the potential design space.  

Figure 1. Superscalar microarchitecture that makes use of a 
trace-cache to shorten the critical execution path  

If stored in issue order, instructions lose their original, logical order 

and they can be retrieved only on a sequential basis. However, in 
order to allow the traces to be reused, the start address of each trace 
needs to correspond to a physical address in the memory space. So, 
with each change of trace, the processor must come back to an in-
order execution status, leading to some breaks in the potential 
parallelism. As described later in the paper, we have not included 
complex or sophisticated branch prediction mechanisms that are 
typically used in trace-cache based microarchitectures. Such 
complex branch prediction hardware is very likely to offset any 
power savings that we achieve via dynamic work reuse. 

At each trace end, a trace look-up step must be performed, 
leading to some more performance penalty. Because of the overhead 
associated with each trace change, the traces have to be as long as 
possible. However, as they get longer, the number of traces that can 
be accommodated in the cache decreases. This leads to a decrease of 
the hit rate at trace look-up, so we end up with a higher utilization of 
the front-end pipeline. In order to address this problem, we allowed 
the maximum size of the traces to be dynamically modified. The size 
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is proportional to the number of mispredicts, in order to have longer 
traces whenever the program locality is very good.  

The simultaneous presence of traces with different lengths (some 
of them very long) in the trace-cache prevented us from using the 
standard model [4] or the very efficient block based trace-cache 
structure [2]. So, we decided to go for a solution that resembles the 
Intel implementation in the new Pentium 4 microarchitecture 
[13][15]. This solution is presented in Figure 2. 
The trace-cache structure consists of a tag array and a 
corresponding data array. The tag array is a highly associative 
cache, addressed using the program counter. It is used for trace 
look-up and it should be as fast as possible. The SET_ID value 
obtained from the tag array points to the set in the data array that 
contains the beginning of the trace we are looking for. The data 
array is an N-way set associative cache (in Figure 2, N=4). A 
comparison with the TRACE_ID is performed for each of the N 
blocks in the set to identify the starting block of the right trace. 
Each block generally contains more than one instruction – 
essentially the number of instructions that could be issued in 
parallel in the trace segment build phase. The next chunk of 
instructions is located in one of the blocks of the following set, 
and so on (see Figure 2). Knowing beforehand which is the next 
set, we avoid the trace look-up penalty at the subsequent reads. A 
special end-of-trace marker identifies the end of the trace. 

 

A LRU approach is used for freeing up blocks in each set from the 
data array when a new trace-building phase is initiated. To terminate 
the creation of a trace, the trace-building algorithm takes into 
account several criteria like: trace length, occurring mispredicts, 
jumps, and the ability of finding another existing trace starting at the 
current point. 

To avoid the latency of searching in the highly associative tag 
array, a separate, small lookup table (FTLT – Fast Trace Lookup 
Table) is used to cache the most recently used trace tags. The trace is 
abandoned on trace-end (detected when attempting to issue more 
instructions to the execution engine) or on a branch mispredict 
(detected by the Retire Stage). When the trace must be replaced, a 
lookup is performed in the FTLT for a new trace. If a miss in the 
FTLT occurs, the full-search is performed in the tag array, and the 
front-end is restarted if a miss occurs in the trace-cache. On a hit in 
the trace-cache, instructions will be issued on the alternative 
execution path directly from the trace-cache, but incurring the trace 
look-up penalty. 

We should point out that a trace is created following a number of 
branch predictions. If these predictions prove to be wrong, the trace 
must be declared invalid and another one created. The policy we 
implemented here is to declare a trace as invalid when we encounter 
two mispredicts in a row while executing the trace. 

In this implementation, we use a fairly large Data Array (100k) 
for implementing the trace-cache. However, the access pattern for 
this structure is highly predictable (most of the cycles we just 
increment the row address we used for the previous access). This 
behavior allows us to use sub-banking [14] for implementing this 
structure and turn off the banks that are not being used in each cycle. 
All the banks have to be validated at the same time only when we 
start a new trace (after accessing the Tags Array). 

4.2 Register File 
Placing the above-described trace-cache deep in the pipeline, after 
the Issue stage, allows us to reuse the work done by all the units 
belonging to the front-end stages. This implies also that we do not 
perform register renaming on the instructions issued directly from 
the trace-cache. However, this operating mode assumes that the 
virtual-to-architected register mapping is the same at the beginning 
of each trace. Some architectural changes need to be made to the 
register pool and control unit to ensure that this can be implemented. 
In order to handle this task, we designed a special register pool 
structure. The logic structure we propose implementing each register 
is presented in Figure 3. 

As the one proposed in [3], our structure employs a number of 
physical registers for renaming every logical register of the 
microarchitecture. In our proposed microarchitecture, each of the 
architected registers is organized as a circular buffer of physical 
registers, as opposed to a stack organization proposed in [3]. 

Using this type of structure, each subsequent write to an 
architected register goes to a different physical register. This 
approach solves the false data dependencies and is used for 
implementing register renaming. The number of in-flight 
instructions that can have the same logical destination is N (the 
number of physical registers in the circular buffer).  

 
Figure 3. Architected register structure 

Each read or write to this structure is associative, the physical 
register used being validated by a comparison between its position 
(POS) bits and the bits presented by the instruction. Having different 
physical destinations, instructions can write the result as soon as it is 
available, setting the V (valid) bit to signal an available value. 
However, the S (speculated) bit will be reset only after the 
instruction is retired. A physical register cannot be assigned as a 
destination for a new instruction (in the Register Renaming stage) if 
the associated S bit is set. If this happens, we don’t have enough 
physical registers to perform renaming at this moment and the 
rename stage will stall. 

The N position values (POS 0 – POS N-1) are initialized with 
consecutive values – 0,1,2 … N-1 and represent the logical order of 
the registers in the circular queue. IDX is a pointer in this queue 
representing the most recent register used for writing. 

Figure 2. The trace-cache architecture 
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4.3 Register Renaming 
When the instruction reaches the renaming stage, some physical 
registers must be assigned to its source and destination registers. For 
the destination register, the IDX value is incremented and assigned 
to the instruction. The S (speculated) bit is checked for the 
corresponding physical register and, if it is found set, the pipeline is 
stalled. Otherwise, S is set and V (valid) is deleted to mark the value 
as not yet available. V will be set when the result is written back to 
the register and S will be deleted later, when the instruction will be 
retired. For a source register, the IDX value is read and assigned to 
the instruction.  

Each trace generation is made with IDX starting from 0 (the 
correct value for the register is stored in the location marked by POS 
= 0). If this condition is respected, all the subsequent executions of a 
trace can be done without further renaming the registers. The caveat 
is that this requires some extra work to be done when a trace 
execution ends. In fact, all the POS values need to be recomputed 
for the circular buffer to start each time with the latest value for that 
architected register. This can be done subtracting from POS the IDX 
value, but it will require a complex circuit for each physical register. 
However, the same effect can be obtained performing a XOR 
between IDX and POS since the physical order of the registers is not 
important and does not have to match with the logical one. The 
important aspect – all registers to have different tags, between 0 and 
N-1 – is preserved and the register holding the last value becomes 
Register 0. 

5. POWER – PERFORMANCE TRADE-OFF 
ANALYSIS 
In this paper, we propose dynamic work reuse as a viable solution 
for power efficient microarchitecture. Using techniques like guarded 
evaluation and clock gating for shutting down the front-end (while 
issuing instructions from the trace-cache) should allow us to achieve 
significant reduction in the power consumption of the overall 
microarchitecture. 

From a performance point of view, this microarchitecture has 
both strong points as well as weak points. From the conceptual 
structure, presented in Figure 1, it is obvious that the alternative 
execution path is shorter than the normal pipeline. This aspect 
considerably reduces the mispredict penalty when the next trace is 
found in the trace-cache, and is a definite advantage when executing 
programs with a bad branch predictability. This advantage should 
increase, as the current trend is to use deeper pipelines. However, 
although placing the trace-cache deep in the pipeline creates a 
shorter critical execution path, there are some caveats associated to 
it. First, each time instructions are issued from the trace-cache, we 
cannot make use of the normal branch predictor from the Fetch 
stage, and the branch is speculated based on the trace. Given this, 
during execution from the trace-cache, the branch prediction 
algorithm is equivalent to a 1-bit predictor1, which will predict 
branches the same way as during the trace-build phase. Because we 
use longer traces, with a big number of potential branch instructions, 
a next-trace predictor would be very complex and would require a 
lot of power. However, since we cannot afford a very big trace-
cache (because of the power concerns), creating more traces from 
the same program address for multiple possible branch predictions is 
not an option here. In addition, complex multiple branch prediction 
hardware is likely to offset any power savings obtained by work 
reuse. 
                                                                 
1 Actually, it is more complex, almost like a 2-bit predictor due to the 

interference of the trace removal algorithm, detailed in Section 3.1.  

Furthermore, when traces are created (or executed from the trace-
cache), the parallelism obtained by out-of-order execution is 
exploited only within the bounds of a trace. If the length of the trace 
is small (e.g. not well-behaved programs), this fact can reduce the 
potential parallelism that otherwise could have been exploited by the 
normal microarchitecture. However, our target here is to obtain a 
structure with a better power efficiency and this should be possible 
even if we allow a small drop in performance. There are a number of 
parameters that can be varied in order to tune the microarchitecture 
for better performance or better power efficiency.  

6. EXPERIMENTAL SETUP 
To validate our approach, we implemented two models based on the 
Wattch simulator [12]. We have modified the SimpleScalar 
microarchitecture in order to support our register file and trace cache 
models, a larger number of stages and a buffer based model for 
inter-stage communication. We implemented both the modified 
microarchitecture (with the trace-cache placed between the Issue 
and Execute stages) and a corresponding normal superscalar 
pipeline as a base for comparison. Both structures were based on the 
same pipeline and did not use some advanced features, like fetching 
from multiple cache blocks, etc. The main purpose of modeling 
those microarchitectures was to compare their behavior in terms of 
performance and power requirements. 

We have considered 2 versions of the pipeline – one shorter, with 
8 stages and another one, with 14 stages. The 8-stage pipeline was 
chosen because it is a common depth used in the today’s processors. 
Its conceptual structure is: 

Figure 4. Short pipeline microarchitecture 

However, the current trend for achieving higher clock rates dictates 
an increase in the pipeline depth. For this purpose, we have also 
considered a 14-stage pipeline: 

Figure 5. Long pipeline microarchitecture 

For all tests we have used 4-ways pipelines, with the default 
configuration provided by the SimpleScalar toolset: 16k L1 I-Cache, 
16k L1 D-Cache, 256k unified L2 cache, no penalty for accessing 
the L1 cache, 6 cycles for accessing the L2 Cache, 32 cycles for 
going to memory. The trace-cache is configured with 100k memory 
for the data array and 16k for the tag array. For looking up a trace in 
the tag array we have considered a penalty of 1 cycle. In both cases, 
we have accounted for the difference in global clock power due to 
an increased number of pipeline registers that have to be clocked. 
We have used the SPECint-95 and SPECfp-95 benchmarks to 
validate our results. 

7. EXPERIMENTAL RESULTS 
For an 8-stage pipeline, our microarchitecture performs up to 10% 
faster than the basic one for benchmarks like GCC, PERL or 
TURB3D and up to 5% slower for SWIM. All the values presented 
below are normalized with respect to the normal microarchitecture. 

Overall, the proposed structure is 1.2% faster than the normal 
one. These results may not show the same trend as earlier results on 
using trace-cache [1]. The microarchitecture was tuned so as to yield 
approximately the same performance as the basic one, but requiring 
less power.  
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Figure 6. IPC variation for the 8-stage pipelines (100k trace cache) 

To report the power consumption values, we have considered the 
energy required for committing one instruction (EPI). Since we 
assume clock gating is used for idle modules in the pipeline, we use 
the same technique implemented in Wattch for measuring the power 
consumption – by adding to the power required by the active 
modules a fraction of the power required by those unused. We 
report the results for 10%, 5% and 0% power overhead for unused 
modules. However, since most of the time instructions are executed 
from the trace-cache, completely shutting off the front-end could be 
a viable alternative, and thus the 0% overhead becomes realistic. 

The power consumption is reduced for our microarchitecture by 
as much as 28% (48% for 0% overhead) for MGRID or TURB3D. 
Overall, the energy per committed instruction was reduced by 21% 
(for the 5% overhead model) and 36% if 0% overhead was 
considered. In Figure 7, all these values are normalized with respect 
to the power requirements of the original pipeline organization. 

Figure 7. Normalized EPI for an 8-stage pipeline 
(100k trace-cache) 
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Figure 8. IPC variation for the 14-stage pipelines 

(100k trace-cache) 

For the longer pipeline (14 stages), the IPC for both structures is 
smaller, due to the increased mispredict penalty. Here, the proposed 

microarchitecture is about 0.3% slower than the normal superscalar 
one. However, for the case of normalized performance, the trend is 
similar to the 8-stage case.  

From the power consumption point of view, we find a similar 
situation. For the 0% overhead model, the gain varies between 23% 
for FPPPP and as much as 52% for TURB3D. Overall, the power 
consumption per committed instruction is reduced by 20% for the 
5% overhead model or by as much as 40% if the more aggressive, 
0% overhead assumption is considered. 
 

Figure 9. Normalized EPI for a 14-stage pipeline 
(100k trace-cache) 

 
Increasing the trace-cache size to 200k increases its usage and thus 
its efficiency. We run a test with this new configuration and the 
results were significantly better. The alternative execution path was 
used 76% of the total execution time and the IPC increased to 8% 
over the normal microarchitecture. 

Simulating again all the benchmarks for the new trace-cache (on 
the 8-stage pipeline), the usage of the alternative execution path was 
better for some applications, but other cannot benefit from the larger 
cache. 

An interesting case in all these tests is FPPP. We have performed 
several tests in different configuration and discovered that this 
benchmark is composed from one big basic block. If we double the 
trace-cache size (up to 200k), the alternative path usage is much 
better. In the case of FPPP, if the 100k size trace-cache is used as in 
the rest of the test cases, the processor issues instructions from the 
trace-cache only 40% of the time (compared to up to 99% of the 
time for TURB3D).  

Figure 10.  Alternative execution path usage 
(100k trace-cache) 
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In such situations, the trace-cache may become inefficient since it is 
not capable to accommodate the entire basic block. As seen in 
Figure 10, for most of the benchmarks instructions are issued from 
the trace-cache more than 60% of the time, whereas in case of FPPP 
the trace-cache usage is only 40%. 

For FPPP, the energy per instruction computed with respect to the 
normal microarchitecture dropped to 90.9% (10% overhead), 80.5% 
(5% overhead) and 61.3 (0% overhead).   

 
Figure 11. Comparative view of the alternative execution path 

 
Figure 12. Normalized EPI for an 8-stage pipeline 

(200k trace-cache) 

Overall, we obtained a slight increase in IPC (1.5% over the smaller 
trace-cache version) but a slight decrease in energy efficiency (1%). 

8. CONCLUSION AND FUTURE WORK 
In this paper, we propose a new microarchitecture that yields 
comparable performance to the usual superscalar microarchitecture 
while using significantly less power. Our experiments show that, 
depending on the overhead model considered for the unused 
modules, by using this approach we can achieve between 20% and 
40% reduction in power consumption. 

Experimentally, we noticed that there are a few ways we can tune 
the design for power or performance. For example, by further 
decreasing the length of the traces, the number of instructions 
executed per cycle (IPC) decrease by about 3-5% while the energy 
required per instruction (EPI) decreases also by as much as 10% 
below the values we have presented. Furthermore, if we don’t 
update the branch history buffer while executing from the trace-
cache, we have a drop in IPC of about 2% and a decrease in EPI of 

5%. In the experiments we presented here, we tuned our test 
microarchitecture for a performance within 3% from the equivalent 
superscalar architecture. 

A drawback of our trace-cache organization is the relative 
inefficiency in the space usage. As we want to be able to store and 
retrieve the instructions as fast as possible, we are storing them in 
the trace cache exactly as they come out from the issue window. In 
this respect, on a 4-way processor we will try to store as much as 4 
instructions in every entry of the data array. If during a clock cycle 
the processor is not able to find and issue 4 independent 
instructions, this will result in some empty slots in the trace. So, the 
overall usage of the trace cache (in terms of memory space) could 
be below 100%. In a future implementation, we will try to come up 
with a way to compress the instructions for a better efficiency in the 
data array usage. 
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