
Power Reduction through Work Reuse*�
Emil Talpes

Carnegie Mellon University, ECE Department
5000 Forbes Ave, Pittsburgh, PA, 15213

412.268-3333
etalpes@andrew.cmu.edu

Diana Marculescu
Carnegie Mellon University, ECE Department

5000 Forbes Ave, Pittsburgh, PA, 15213
412.268-1167

dianam@ece.cmu.edu�
�

ABSTRACT
Power consumption has become one of the big challenges in
designing high performance processors. The rapid increase in
complexity and speed that comes with each new CPU generation
causes greater problems with power consumption and heat
dissipation. Traditionally, these concerns are addressed through
semiconductor technology improvements such as voltage reduction
and technology scaling. This work proposes an alternative solution
to this problem, by dealing with the power consumption in the very
early stage of the microarchitecture design. More precisely, we show
that by modifying the well-established out-of-order, superscalar
processor architecture, significant gains can be achieved in terms of
power requirements without performance penalty. Our proposed
approach relies on reusing as much as possible from the work done
by the front-end of a typical pipelined, superscalar out-of-order via
the use of a cache nested deeply into the processor structure.
Experimental results show up to 52% (20% on average) savings in
average energy per committed instruction for two different pipeline
structures.

1. INTRODUCTION
Today’s superscalar processor microarchitectures place an
increasing emphasis on exploiting instruction-level parallelism. This
often translates into having multiple execution units, wider
instruction issue buffers to support them and wider instruction paths
for fetch, decode and rename stages. This trend leads to increasing
power requirements to support all these resources. Until now,
performance concerns have always had priority so the power
dissipation issues were addressed mainly at the technology level,
that is lower supply voltages, smaller transistors, SOI technology,
better packaging, etc.

Nevertheless, power dissipation has become one of the design
constraints for modern processors, and thus the microarchitecture
designer must now take power requirements into consideration as
well. Gating the input transitions has been one of the research
directions proposed as a potential way to reduce the power
consumption for large designs [10]. Focusing on a specific
component of the processor, techniques like Filter Cache [8] or L-
cache [9] were proposed to increase the power efficiency of the

 *This research has been supported in part by NSF Career Award CCR-

008479.

cache subsystem. Thus some parts of the cache are shut down when
they are not needed, obtaining a better power efficiency.

More recently, an interesting architectural innovation unveiled by
Intel with the release of the Pentium 4 microprocessor is the use of a
trace-cache-like structure to shorten the critical execution path. By
placing this cache in the pipeline, after the x86 decoding stages, and
by storing the decoded instructions (uops) in the trace-cache, the
whole decode stage can be shut down for significant periods of time
while the rest of the execution engine continues working, creating a
shorter critical execution path. When a hit in the trace-cache occurs,
instructions do not need to be decoded again and can be fed into the
pipeline directly from the trace-cache.

Moving one step forward, we can envision such a structure as
being placed even deeper in the pipeline to allow for even further
improvements through shortening the critical execution path [1]. If
the trace-cache is placed after the Issue Stage, the instructions that
are fetched, decoded and have already had registers renamed
performed should be stored in issue-order (and not in program-
order) in the trace-cache. The execution engine can thus be fed
either from the Issue Stage (during the trace-build phase) or directly
from the trace-cache (if a hit in the trace-cache occurs).

This new type of microarchitecture is the objective of this paper.
We propose a novel micro-architectural organization that allows for
better power efficiency through reusing the work done by the front-
end of the pipeline. Furthermore, techniques like Guarded
Evaluation [5] or clock gating [10] will enable significant reductions
in power consumption for pipeline stages not used during different
phases of the program execution.

2. PREVIOUS WORK
When it comes to performance, superscalar processor design has
always been the last to accept a possible compromise. As intended
for applications where raw performance is the primary target, the
last bit of potential efficiency is usually squeezed from each
architectural design. In this respect, all the power-reduction work
was usually concentrated on refining the CMOS technology.
Traditional circuit-level approaches, as voltage scaling, transistor
resizing or library redesign [6], are now employed by most of the
modern superscalar processors.

Guarded evaluation was proposed as a static technique in [5] to
reduce the power required by a design when some operands are left
unmodified through successive time steps. More general, clock
gating was proposed [10] to save the power wasted by units that are
temporarily not used. Both of these techniques require some extra
piece of logic (or a static algorithm) to identify when sub-blocks of
the larger design are not used in order to prevent the input
transitions. These techniques are currently widely accepted and tools
like Wattch [12] that model the power consumption of a superscalar
processor considers them as implemented by default. However, most
of the commercial high performance processors are not able to use
them on a large scale. This fact is mostly due to the inherent
difficulties in predetermining on a cycle-by-cycle basis whether a
module is needed or not in an out-of-order design or in finding
longer intervals when a module can be completely shut down.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISLPED ’01, August 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00.

340

In this paper we propose to modify the usual pipelined, out-of-
order microarchitecture to allow for longer (and predictable)
intervals during which some of the resources are not used. In order
to achieve that, we identify modules that perform the same
computation each time an instruction is executed and try to reuse as
much as possible from the previous work. Obviously, the functions
performed by the Fetch and Decode stages are identical each time a
specific trace from the program is executed. Using a novel register
file structure, we can also reuse the work done by the Rename and
Issue stages. For reusing all this work, we propose a new
microarchitecture, with a modified type of trace-cache placed
between the Issue and Execute stages, storing traces of instructions
in issue order.

Storing instructions in the logical program order rather than
actual issue order was previously proposed by several studies [2][4].
Usually, the trace-cache employed in all these studies is used as a
mechanism for improving the fetch efficiency and allowing for
multiple branch predictions during each clock cycle. An exception is
the TurboScalar microarchitecture [1], where a long and thin
pipeline is used for creating traces that feed a very short and thick
pipeline, thus harvesting a much higher IPC. All these studies are
focused on increasing the performance of the processor but do not
address the power consumption issue. In order to increase the
performance, the complexity of creating traces and storing them in
an efficient structure is taken off of the critical execution path and
placed after the Retire stage of the pipeline. Thus, these approaches
avoid most of the drop in performance caused by the extra-work
required for filling the trace-cache and can perform a lot of
optimizations before storing the instructions (reordering, renaming
and hashing). However, these aforementioned microarchitectures do
not address the substantial power overhead incurred by all the
required logic.

3. ORGANIZATION OF THE PAPER
The paper is organized as follows: in Section 4 we present the main
aspects of our microarchitectural design, including the selected
trace-cache structure, the organization of the new register file and
the register renaming technique that will allow us to reuse the
renaming done when building the traces. In Section 5 we present
the power-performance trade-offs we have to analyze when using
this type of microarchitecture. The experimental setup is described
in Section 6 and the results of these tests are included in Section 7.
We conclude in Section 8 with some final remarks and possible
directions for future research.

4. ARCHITECTURAL DESIGN
Typically, the microarchitecture-level design starts with the selection
of a typical out-of-order, superscalar architecture. In order to reduce
the critical execution path (and thus the number of modules that are
used for executing an instruction) we propose to place a trace-cache
deep in the pipeline, after the Issue Stage. In order to avoid the
performance penalty incurred by an extra pipeline stage between the
Issue and the Execution stages, we bypass it, issuing instructions in
parallel to both the trace cache and the execution stages. The
conceptual microarchitecture is illustrated in Figure 1.

Normally, instructions are fetched from the I-Cache through the
Fetch stage and then decoded. In the next stage, physical registers
are assigned for each logical register used by the instruction,
avoiding potential false dependencies. The resulting instructions are
placed in the Issue Window for dependency checking. A number of
independent instructions are issued to the execution stage and in
parallel stored in the trace-cache for potential reuse.

In this setting, the critical execution path can be significantly
shortened by feeding the execution units directly from the trace-
cache whenever possible. Initially, when the trace cache is empty,
the instructions are launched from the Issue Window, while a trace
is build in parallel in the trace-cache – we call this step the trace
segment build phase.

Upon a mispredict (or a trace completion condition), a search is
performed to identify a possible next trace starting at that point, and
should a hit occur, the instructions continue to be executed from the
trace-cache, on the alternative execution path (dotted line in Figure
1). At the end of executing a trace (either at the end of the trace or
when a mispredict occurs), the look-up must be performed again, in
order to find a potential next-trace. If a miss is encountered, the
pipeline front-end is launched again and a new trace is built.

4.1 Trace-cache Architecture
Similar to the conventional trace-cache implementations [4], our
design divides the program into traces of instructions that are stored
on a different basis than their original address. However, the cache
we have chosen in the proposed architecture is structurally different
from the trace-cache typically used for increasing the fetch
bandwidth. From the beginning, the decision to reuse as much as
possible from the work done in the first stages of the pipeline led to
the necessity of storing the instructions in issue order, not in
program order. This fact enforces a number of decisions that
considerably limits the potential design space.

Figure 1. Superscalar microarchitecture that makes use of a
trace-cache to shorten the critical execution path

If stored in issue order, instructions lose their original, logical order

and they can be retrieved only on a sequential basis. However, in
order to allow the traces to be reused, the start address of each trace
needs to correspond to a physical address in the memory space. So,
with each change of trace, the processor must come back to an in-
order execution status, leading to some breaks in the potential
parallelism. As described later in the paper, we have not included
complex or sophisticated branch prediction mechanisms that are
typically used in trace-cache based microarchitectures. Such
complex branch prediction hardware is very likely to offset any
power savings that we achieve via dynamic work reuse.

At each trace end, a trace look-up step must be performed,
leading to some more performance penalty. Because of the overhead
associated with each trace change, the traces have to be as long as
possible. However, as they get longer, the number of traces that can
be accommodated in the cache decreases. This leads to a decrease of
the hit rate at trace look-up, so we end up with a higher utilization of
the front-end pipeline. In order to address this problem, we allowed
the maximum size of the traces to be dynamically modified. The size

341

is proportional to the number of mispredicts, in order to have longer
traces whenever the program locality is very good.

The simultaneous presence of traces with different lengths (some
of them very long) in the trace-cache prevented us from using the
standard model [4] or the very efficient block based trace-cache
structure [2]. So, we decided to go for a solution that resembles the
Intel implementation in the new Pentium 4 microarchitecture
[13][15]. This solution is presented in Figure 2.
The trace-cache structure consists of a tag array and a
corresponding data array. The tag array is a highly associative
cache, addressed using the program counter. It is used for trace
look-up and it should be as fast as possible. The SET_ID value
obtained from the tag array points to the set in the data array that
contains the beginning of the trace we are looking for. The data
array is an N-way set associative cache (in Figure 2, N=4). A
comparison with the TRACE_ID is performed for each of the N
blocks in the set to identify the starting block of the right trace.
Each block generally contains more than one instruction –
essentially the number of instructions that could be issued in
parallel in the trace segment build phase. The next chunk of
instructions is located in one of the blocks of the following set,
and so on (see Figure 2). Knowing beforehand which is the next
set, we avoid the trace look-up penalty at the subsequent reads. A
special end-of-trace marker identifies the end of the trace.

A LRU approach is used for freeing up blocks in each set from the
data array when a new trace-building phase is initiated. To terminate
the creation of a trace, the trace-building algorithm takes into
account several criteria like: trace length, occurring mispredicts,
jumps, and the ability of finding another existing trace starting at the
current point.

To avoid the latency of searching in the highly associative tag
array, a separate, small lookup table (FTLT – Fast Trace Lookup
Table) is used to cache the most recently used trace tags. The trace is
abandoned on trace-end (detected when attempting to issue more
instructions to the execution engine) or on a branch mispredict
(detected by the Retire Stage). When the trace must be replaced, a
lookup is performed in the FTLT for a new trace. If a miss in the
FTLT occurs, the full-search is performed in the tag array, and the
front-end is restarted if a miss occurs in the trace-cache. On a hit in
the trace-cache, instructions will be issued on the alternative
execution path directly from the trace-cache, but incurring the trace
look-up penalty.

We should point out that a trace is created following a number of
branch predictions. If these predictions prove to be wrong, the trace
must be declared invalid and another one created. The policy we
implemented here is to declare a trace as invalid when we encounter
two mispredicts in a row while executing the trace.

In this implementation, we use a fairly large Data Array (100k)
for implementing the trace-cache. However, the access pattern for
this structure is highly predictable (most of the cycles we just
increment the row address we used for the previous access). This
behavior allows us to use sub-banking [14] for implementing this
structure and turn off the banks that are not being used in each cycle.
All the banks have to be validated at the same time only when we
start a new trace (after accessing the Tags Array).

4.2 Register File
Placing the above-described trace-cache deep in the pipeline, after
the Issue stage, allows us to reuse the work done by all the units
belonging to the front-end stages. This implies also that we do not
perform register renaming on the instructions issued directly from
the trace-cache. However, this operating mode assumes that the
virtual-to-architected register mapping is the same at the beginning
of each trace. Some architectural changes need to be made to the
register pool and control unit to ensure that this can be implemented.
In order to handle this task, we designed a special register pool
structure. The logic structure we propose implementing each register
is presented in Figure 3.

As the one proposed in [3], our structure employs a number of
physical registers for renaming every logical register of the
microarchitecture. In our proposed microarchitecture, each of the
architected registers is organized as a circular buffer of physical
registers, as opposed to a stack organization proposed in [3].

Using this type of structure, each subsequent write to an
architected register goes to a different physical register. This
approach solves the false data dependencies and is used for
implementing register renaming. The number of in-flight
instructions that can have the same logical destination is N (the
number of physical registers in the circular buffer).

Figure 3. Architected register structure

Each read or write to this structure is associative, the physical
register used being validated by a comparison between its position
(POS) bits and the bits presented by the instruction. Having different
physical destinations, instructions can write the result as soon as it is
available, setting the V (valid) bit to signal an available value.
However, the S (speculated) bit will be reset only after the
instruction is retired. A physical register cannot be assigned as a
destination for a new instruction (in the Register Renaming stage) if
the associated S bit is set. If this happens, we don’t have enough
physical registers to perform renaming at this moment and the
rename stage will stall.

The N position values (POS 0 – POS N-1) are initialized with
consecutive values – 0,1,2 … N-1 and represent the logical order of
the registers in the circular queue. IDX is a pointer in this queue
representing the most recent register used for writing.

Figure 2. The trace-cache architecture

342

4.3 Register Renaming
When the instruction reaches the renaming stage, some physical
registers must be assigned to its source and destination registers. For
the destination register, the IDX value is incremented and assigned
to the instruction. The S (speculated) bit is checked for the
corresponding physical register and, if it is found set, the pipeline is
stalled. Otherwise, S is set and V (valid) is deleted to mark the value
as not yet available. V will be set when the result is written back to
the register and S will be deleted later, when the instruction will be
retired. For a source register, the IDX value is read and assigned to
the instruction.

Each trace generation is made with IDX starting from 0 (the
correct value for the register is stored in the location marked by POS
= 0). If this condition is respected, all the subsequent executions of a
trace can be done without further renaming the registers. The caveat
is that this requires some extra work to be done when a trace
execution ends. In fact, all the POS values need to be recomputed
for the circular buffer to start each time with the latest value for that
architected register. This can be done subtracting from POS the IDX
value, but it will require a complex circuit for each physical register.
However, the same effect can be obtained performing a XOR
between IDX and POS since the physical order of the registers is not
important and does not have to match with the logical one. The
important aspect – all registers to have different tags, between 0 and
N-1 – is preserved and the register holding the last value becomes
Register 0.

5. POWER – PERFORMANCE TRADE-OFF
ANALYSIS
In this paper, we propose dynamic work reuse as a viable solution
for power efficient microarchitecture. Using techniques like guarded
evaluation and clock gating for shutting down the front-end (while
issuing instructions from the trace-cache) should allow us to achieve
significant reduction in the power consumption of the overall
microarchitecture.

From a performance point of view, this microarchitecture has
both strong points as well as weak points. From the conceptual
structure, presented in Figure 1, it is obvious that the alternative
execution path is shorter than the normal pipeline. This aspect
considerably reduces the mispredict penalty when the next trace is
found in the trace-cache, and is a definite advantage when executing
programs with a bad branch predictability. This advantage should
increase, as the current trend is to use deeper pipelines. However,
although placing the trace-cache deep in the pipeline creates a
shorter critical execution path, there are some caveats associated to
it. First, each time instructions are issued from the trace-cache, we
cannot make use of the normal branch predictor from the Fetch
stage, and the branch is speculated based on the trace. Given this,
during execution from the trace-cache, the branch prediction
algorithm is equivalent to a 1-bit predictor1, which will predict
branches the same way as during the trace-build phase. Because we
use longer traces, with a big number of potential branch instructions,
a next-trace predictor would be very complex and would require a
lot of power. However, since we cannot afford a very big trace-
cache (because of the power concerns), creating more traces from
the same program address for multiple possible branch predictions is
not an option here. In addition, complex multiple branch prediction
hardware is likely to offset any power savings obtained by work
reuse.

1 Actually, it is more complex, almost like a 2-bit predictor due to the

interference of the trace removal algorithm, detailed in Section 3.1.

Furthermore, when traces are created (or executed from the trace-
cache), the parallelism obtained by out-of-order execution is
exploited only within the bounds of a trace. If the length of the trace
is small (e.g. not well-behaved programs), this fact can reduce the
potential parallelism that otherwise could have been exploited by the
normal microarchitecture. However, our target here is to obtain a
structure with a better power efficiency and this should be possible
even if we allow a small drop in performance. There are a number of
parameters that can be varied in order to tune the microarchitecture
for better performance or better power efficiency.

6. EXPERIMENTAL SETUP
To validate our approach, we implemented two models based on the
Wattch simulator [12]. We have modified the SimpleScalar
microarchitecture in order to support our register file and trace cache
models, a larger number of stages and a buffer based model for
inter-stage communication. We implemented both the modified
microarchitecture (with the trace-cache placed between the Issue
and Execute stages) and a corresponding normal superscalar
pipeline as a base for comparison. Both structures were based on the
same pipeline and did not use some advanced features, like fetching
from multiple cache blocks, etc. The main purpose of modeling
those microarchitectures was to compare their behavior in terms of
performance and power requirements.

We have considered 2 versions of the pipeline – one shorter, with
8 stages and another one, with 14 stages. The 8-stage pipeline was
chosen because it is a common depth used in the today’s processors.
Its conceptual structure is:

Figure 4. Short pipeline microarchitecture

However, the current trend for achieving higher clock rates dictates
an increase in the pipeline depth. For this purpose, we have also
considered a 14-stage pipeline:

Figure 5. Long pipeline microarchitecture

For all tests we have used 4-ways pipelines, with the default
configuration provided by the SimpleScalar toolset: 16k L1 I-Cache,
16k L1 D-Cache, 256k unified L2 cache, no penalty for accessing
the L1 cache, 6 cycles for accessing the L2 Cache, 32 cycles for
going to memory. The trace-cache is configured with 100k memory
for the data array and 16k for the tag array. For looking up a trace in
the tag array we have considered a penalty of 1 cycle. In both cases,
we have accounted for the difference in global clock power due to
an increased number of pipeline registers that have to be clocked.
We have used the SPECint-95 and SPECfp-95 benchmarks to
validate our results.

7. EXPERIMENTAL RESULTS
For an 8-stage pipeline, our microarchitecture performs up to 10%
faster than the basic one for benchmarks like GCC, PERL or
TURB3D and up to 5% slower for SWIM. All the values presented
below are normalized with respect to the normal microarchitecture.

Overall, the proposed structure is 1.2% faster than the normal
one. These results may not show the same trend as earlier results on
using trace-cache [1]. The microarchitecture was tuned so as to yield
approximately the same performance as the basic one, but requiring
less power.

343

0.6
0.7
0.8
0.9

1
1.1
1.2

Normalized IPC

GCC

GO

JPEG

COMPRESS

PERL

FPPPP

SWIM

APPLU

MGRID

TURB3D

Figure 6. IPC variation for the 8-stage pipelines (100k trace cache)

To report the power consumption values, we have considered the
energy required for committing one instruction (EPI). Since we
assume clock gating is used for idle modules in the pipeline, we use
the same technique implemented in Wattch for measuring the power
consumption – by adding to the power required by the active
modules a fraction of the power required by those unused. We
report the results for 10%, 5% and 0% power overhead for unused
modules. However, since most of the time instructions are executed
from the trace-cache, completely shutting off the front-end could be
a viable alternative, and thus the 0% overhead becomes realistic.

The power consumption is reduced for our microarchitecture by
as much as 28% (48% for 0% overhead) for MGRID or TURB3D.
Overall, the energy per committed instruction was reduced by 21%
(for the 5% overhead model) and 36% if 0% overhead was
considered. In Figure 7, all these values are normalized with respect
to the power requirements of the original pipeline organization.

Figure 7. Normalized EPI for an 8-stage pipeline
(100k trace-cache)

0.6

0.7

0.8

0.9

1

1.1

1.2

Normalized IPC

GCC

GO

JPEG

COMPRESS

PERL

FPPPP

SWIM

APPLU

MGRID

TURB3D

Figure 8. IPC variation for the 14-stage pipelines

(100k trace-cache)

For the longer pipeline (14 stages), the IPC for both structures is
smaller, due to the increased mispredict penalty. Here, the proposed

microarchitecture is about 0.3% slower than the normal superscalar
one. However, for the case of normalized performance, the trend is
similar to the 8-stage case.

From the power consumption point of view, we find a similar
situation. For the 0% overhead model, the gain varies between 23%
for FPPPP and as much as 52% for TURB3D. Overall, the power
consumption per committed instruction is reduced by 20% for the
5% overhead model or by as much as 40% if the more aggressive,
0% overhead assumption is considered.

Figure 9. Normalized EPI for a 14-stage pipeline
(100k trace-cache)

Increasing the trace-cache size to 200k increases its usage and thus
its efficiency. We run a test with this new configuration and the
results were significantly better. The alternative execution path was
used 76% of the total execution time and the IPC increased to 8%
over the normal microarchitecture.

Simulating again all the benchmarks for the new trace-cache (on
the 8-stage pipeline), the usage of the alternative execution path was
better for some applications, but other cannot benefit from the larger
cache.

An interesting case in all these tests is FPPP. We have performed
several tests in different configuration and discovered that this
benchmark is composed from one big basic block. If we double the
trace-cache size (up to 200k), the alternative path usage is much
better. In the case of FPPP, if the 100k size trace-cache is used as in
the rest of the test cases, the processor issues instructions from the
trace-cache only 40% of the time (compared to up to 99% of the
time for TURB3D).

Figure 10. Alternative execution path usage
(100k trace-cache)

0
0.2
0.4
0.6
0.8

1
1.2

GCC GO
JP

EG

COMPRESS
PERL

FPPPP
SWIM

APPLU

MGRID

TURB3D

10% overhead 5% overhead 0% overhead

0

20

40

60

80

100

120

GCC
GO

JP
EG

COMPRESS
PERL

FPPPP
SWIM

APPLU

MGRID

TURB3D

U
sa

ge
 [%

]

8 stages 14 stages

0

2

4

6

8

1

2

GCC GO
JP

EG

COMPRESS
PERL

FPPPP
SWIM

APPLU

MGRID

TURB3D

10% overhead 5% overhead 0% overhead

344

In such situations, the trace-cache may become inefficient since it is
not capable to accommodate the entire basic block. As seen in
Figure 10, for most of the benchmarks instructions are issued from
the trace-cache more than 60% of the time, whereas in case of FPPP
the trace-cache usage is only 40%.

For FPPP, the energy per instruction computed with respect to the
normal microarchitecture dropped to 90.9% (10% overhead), 80.5%
(5% overhead) and 61.3 (0% overhead).

Figure 11. Comparative view of the alternative execution path

Figure 12. Normalized EPI for an 8-stage pipeline

(200k trace-cache)

Overall, we obtained a slight increase in IPC (1.5% over the smaller
trace-cache version) but a slight decrease in energy efficiency (1%).

8. CONCLUSION AND FUTURE WORK
In this paper, we propose a new microarchitecture that yields
comparable performance to the usual superscalar microarchitecture
while using significantly less power. Our experiments show that,
depending on the overhead model considered for the unused
modules, by using this approach we can achieve between 20% and
40% reduction in power consumption.

Experimentally, we noticed that there are a few ways we can tune
the design for power or performance. For example, by further
decreasing the length of the traces, the number of instructions
executed per cycle (IPC) decrease by about 3-5% while the energy
required per instruction (EPI) decreases also by as much as 10%
below the values we have presented. Furthermore, if we don’t
update the branch history buffer while executing from the trace-
cache, we have a drop in IPC of about 2% and a decrease in EPI of

5%. In the experiments we presented here, we tuned our test
microarchitecture for a performance within 3% from the equivalent
superscalar architecture.

A drawback of our trace-cache organization is the relative
inefficiency in the space usage. As we want to be able to store and
retrieve the instructions as fast as possible, we are storing them in
the trace cache exactly as they come out from the issue window. In
this respect, on a 4-way processor we will try to store as much as 4
instructions in every entry of the data array. If during a clock cycle
the processor is not able to find and issue 4 independent
instructions, this will result in some empty slots in the trace. So, the
overall usage of the trace cache (in terms of memory space) could
be below 100%. In a future implementation, we will try to come up
with a way to compress the instructions for a better efficiency in the
data array usage.

9. ACKNOWLEDGEMENTS
The authors would like to thank John Shen of Carnegie Mellon
University/Intel Corp. for many stimulating discussions, as well as for
offering many insights into the TurboScalar microarchitecture.

10. REFERENCES
[1] B. Black and J. P. Shen – “TurboScalar: A High Frequency, High IPC

Microarchitecture“ - International Symposium on Computer
Architecture, June 2000

[2] B. Black, B. Rychlik, J. P. Shen – “The Block-based Trace Cache” -
International Symposium on Computer Architecture, May 1999

[3] B. Black, J. P. Shen - ”Scalable Register Renaming via the Quack
Register File” – Technical Report CMuART-2000-01

[4] E. Rotenberg, S. Bennett, J.E.Smith – “A trace Cache
Microarchitecture and Evaluation” - IEEE Trans. on Computers,
February 1999

[5] V. Tiwari, S. Malik, P. Ashar – “Guarded Evaluation: Pushing Power
Management to Logic Synthesis / Design” - International Symposium
on Low Power Design, April 1995

[6] V. Tiwari, D. Sigh, S Rajgopal – “Reducing Power in High-
performance Microprocessors” – Design Automation Conference, June
1998

[7] T. D. Burd, R. W. Brodersen – “Energy Efficient CMOS
Microprocessor Design” - 28th Hawaii International Conference on
System Sciences, Jan. 1995

[8] Kin, J.; Munish Gupta; Mangione-Smith, W.H - “The filter cache: an
energy efficient memory structure” - IEEE Micro, December 1997

[9] N. Bellas, I Hajj - Architectural and Compiler Techniques for Energy
Reduction in High Performance Processors” - International Symposium
on Low Power Electronics Design, August 1998

[10] F. Theeuwen, E. Seelen – “Power Reduction Through Clock Gating by
Symbolic Manipulation” - Workshop on Logic and Architecture
Synthesis, 1996

[11] T. Austin, “The SimpleScalar Architectural Research Tool Set,
Version 2.0” - Computer Sciences Technical Report, June 1997

[12] D. Brooks, V. Tiwari, M. Martonosi – “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations” - International
Symposium on Computer Architecture, June 2000

[13] INTEL Corp – US Patent US6170038 “Trace based instruction
caching”

[14] Ghose, K.; Kamble, M.B. - “Reducing power in superscalar
processor caches using subbanking, multiple line buffers and bit-line
segmentation” - International Symposium on Low Power Electronics
and Design, July 1999.

[15] SPEC Benchmarks - www.spec.com
[16] Pentium 4 Microarchitecture – P. De Mone –

http://www.realworldtech.com

�

0
20
40
60
80

100
120

GCC GO
JP

EG

COMPRESS
PERL

FPPPP
SWIM

APPLU

MGRID

TURB3D

U
sa

ge
 [%

]

100k trace-cache 200k trace-cache

0
0.2
0.4
0.6
0.8

1
1.2

GCC GO
JP

EG

COMPRESS
PERL

FPPPP
SWIM

APPLU

MGRID

TURB3D

10% overhead 5% overhead ideal

345

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

