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Abstract: Mixed-swing logic employs multiple power supply rails and
device threshold voltages and allows us to create richer cell libraries with
a wider range of power/speed tradeoffs. However, mapping onto such a
library with a conventional technology mapper will not exploit the full
potential of a mixed-swing methodology. To remedy this, we have
developed a new technology mapping tool that specifically targets mixed-
swing logic. Our approach combines (1) efficient clustering and cluster-
level delay budgeting for the uncommitted logic, with (2) an exhaustive
search for the optimal cover that is rendered practical by the clustering
process. Power savings up to 3X have been demonstrated with our mixed-
swing solutions versus single power supply implementations.

I. INTRODUCTION

Voltage scaling remains one of the most effective techniques for reduc-
ing power consumption because of the quadratic relation between the
power supply voltage and the dynamic power consumption, which is gen-
erally the dominant contribution to the total power. Unfortunately, voltage
scaling leads to reduced CMOS drive currents and increased gate delays.
One option is to optimize the supply voltage and threshold voltages glo-
bally so as to achieve the minimum power given a required speed of op-
eration [1], [2]. Another strategy is to “schedule” supply voltages to just
meet the speed requirements of each segment of a functional block [3],[4].
However, a problem with these techniques is that they apply uniformly to
all the logic of a particular functional block.

Mixed-swing circuit techniques focus on more fine-grain optimization
at gate level. The key idea is to employ multiple power supply rails to ex-
ploit the delay slack that exists between the critical and noncritical timing
paths. The goal is to implement only the timing critical portions of the log-
ic using fast, higher-power, high-swing logic, while implementing the re-
mainder of the design using slower, lower-power, low-swing logic. Low-
swing gates dissipate less power internally, and also drive their output in-
terconnect at a more power-efficient reduced voltage. Examples include
the clustered voltage scaling (CVS) approach [5],[6], which uses standard
CMOS gates operated at two voltages, along with level converter cells to
connect high- and low-swing logic, and QuadRail [7], which introduces a
4-rail logic family with fast high-swing logic and power-efficient low-
swing buffer/driver circuits in each individual gate.

In this paper we develop a technology mapping algorithm explicitly
targeted at these mixed-swing approaches. The mapper minimizes area
and power under an explicit timing constraint. By relaxing the timing (if
allowed in the design) one can achieve a surprisingly smooth trade-off be-
tween power and speed. The algorithm combines Boolean matching tech-
niques with an integrated timing/power budgeting algorithm. The rest of
the paper is organized as follows. Section 2 reviews our circuit-level as-
sumptions. Section 3 develops the technology mapping algorithm. Section
4 shows experimental results and Section 5 offers concluding remarks.

II. MIXED SWING LOGIC CIRCUITS

An unpleasant reality in mixed-swing logic is the fact that not all gates
may be able to drive each others’ inputs. While a beneficial overdriving
effect occurs when a high-swing gate is used to drive a low-swing gate,
unacceptable leakage currents can result when a low-swing gate is used to
drive a high-swing gate. Voltage level shifters have appeared as the stan-
dard solution to this problem, inserted on the signals between clusters, on
incompatible source/sink gate types. 

The solution we focus on makes use of two logic swings (four power
rails) and two threshold voltages to avoid the need for added level shifters.
As shown in Fig. 1, for a low-to-high swing interface, the driven gate is
implemented using transistors with higher threshold voltage (VT-high).
This gives more room for voltage scaling without incurring in the penalty
of high leakage currents. For this reason the difference between Vdd1 and
Vdd2 (or equivalently Vss1 and Vss2) must be kept less than VT-high. 

III. LOW POWER TECHNOLOGY MAPPING

A. Approach

Technology mapping consists of two major steps: pattern matching and
network covering. Pattern matching determines whether a portion of the
uncommitted logic network can be realized by a given cell in the library.
Network covering selects those cells, among the set of all the potential
matches, that minimize the cost function.

While pattern matching is independent from the cost function, gate se-
lection depends on the specific objective of technology mapping. If the
goal is area minimization, tree covering based on dynamic programming
is very effective [8]. Unfortunately, this approach is not equally effective
if delay is added into the figure of merit. The reason for this is that the cost
of a match can no longer be computed without information, such as the
load factor, determined by other matches in the tree. The problem of delay
minimization is solved in [9] using piecewise linear functions as a repre-
sentation for all the possible load values at each node. It is not always the
case, though, that the fastest circuit is the best solution. We may be inter-
ested in a circuit that meets certain timing constraints and occupies mini-
mum area. An area recovery procedure is presented in [9] as a subsequent
phase to delay minimization. An alternative approach is described in [10]
where the possible area-delay points are computed at each node of the
tree. To keep the problem manageable, the area-delay space is discretized
and an adaptive merging of the solutions is performed. At each node an
area-delay curve is generated and all the solutions below this curve are
dropped since they are slower or more area consuming than other solu-
tions. All the approaches mentioned above are based on a simplified delay
model that considers only an intrinsic component and a load dependent

Fig. 1 A mixed-swing solution: dual swing + dual VT style
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component. The algorithms in this paper offer a different approach to net-
work covering and consider the more general and accurate model for the
gate delay which takes into account the input slope of the signals.

The delay of a gate is a function of the input transition time and output
load. It can be expressed as follows:

(1)

where tintr is the intrinsic component of the delay, S is the input transition
time, CL is the capacitive load and k1 and k2 are two fitting parameters.
The power dissipated by a digital gate is modeled as the contribution of
three components:

(2)

where Pload is the net dynamic power due to charging and discharging of
the output load, Pinternal is the internal gate dynamic power due to charg-
ing and discharging of the capacitances of internal nodes and short-circuit
currents and Pleakage is the static power due to leakage currents. Pinternal
is again a function of the input transition time and output load. In [11] we
showed an efficient library characterization methodology that allows us to
drastically reduce the number of lookup tables while maintaining a good
accuracy of delay and power models. The basic idea is to avoid the char-
acterization of events with heterogeneous input levels and exploit a tech-
nique within the mapping engine that we call slope rescaling to derive
missing information in our library delay or power models.

B. Network Covering
Given a network and a list of potential matches at each of its nodes, we

want to identify the implementation of the circuit that minimizes the pow-
er consumption and satisfies the timing constraints. The extension of the
problem to take into account area minimization as well is trivial. In the
following discussion we assume that the network is represented as a tree
of nodes. The pseudocode of the algorithm for minimum cost covering ap-
pears in Fig. 2. In the following discussion, for simplicity, we will assume
that each matching gate covers exactly one node in the decomposed net-
work. Because of the recursive nature of the algorithm the nodes are tra-
versed from their output to their inputs (preorder traversal) and then from
their inputs to their output (postorder traversal). We now analyze in detail
these two phases.

Preorder traversal: In order to identify the optimal covering, the cost
associated with all the matches at each node of the decomposed network
must be computed. The cost of selecting a particular gate matching a node
is given by the cost of the gate itself and the cost of the minimum cost cov-
er of the subtrees rooted at its input pins. Two factors influence the cost of
a match: the capacitive load at the output and the transition time at the in-
put signals. During preorder traversals, the capacitive load of a gate
matching a node is known if we propagate a pointer to the gate matching
the parent node (‘parentMatch’ in Fig. 2). Conversely, the value of the in-
put slopes is not known since the subtrees rooted at the input pins of the

match have not been visited at this point of the recursion. Hence, the cost
of a gate can be computed only during the postorder traversal of the node.
Nevertheless, during the preorder traversal of a node, a good approxima-
tion of the required time at its output can be computed. The approach used
in estimating the required arrival time is shown in Fig. 2. The required ar-
rival time tc-req at the output of the current node nc is computed by sub-
tracting the propagation delay tp through the gate gp matching the parent
node np from the required arrival time tp-req at the output of the parent
node (Fig. 2b). The required time at the primary output of the tree is the
target delay. In order to derive the propagation delay tp we need an esti-
mate of the slope si of the signal at the input of the gate gp. Although its
value will be influenced by all the gates belonging to the fanin cone of the
node np, we assume that only gc, which is the gate matching nc, eventually
determines that value, decoupling the signal from the rest of the circuit.
Under this assumption, we used a dummy signal with a typical slope (styp)
at the input to gc to derive si (Fig. 2a).

Postorder traversal: during the postorder traversal of a node the best
match is selected. The cost of the gate matching the node can be computed
because the subtrees rooted at its input pins have already been mapped.
The load is also known since the pointer to the gate matching the parent
node is available. The match that gives minimum power consumption
while guaranteeing that the delay at its output is smaller than the required
time is selected. The computation of the delay at the output of the node is
shown in Fig. 4. Given the input slope si from the child node nch and the
load associated to the match of the parent node np the propagation delay
tp and the output slope so can be easily derived. The arrival time at the out-
put tc-arr is simply obtained by adding tp to the arrival time tch-arr at the in-
put pin. The actual cost of a match is given by the value of power dissipa-
tion. It can be expressed as follows:

(3)

where  is the internal power of the match,  is the leakage power

of the match,  is the dynamic power of the match,  is the inter-

nal power of the gate matching the parent node, is the leakage pow-

er of the gate matching the parent node and the last term is the power con-

tribution of the subtrees rooted at the input pins of the match.  and

 must be included because the choice of the match for the current

node influences the internal and leakage power of the gate matching the

parent node.  and  are computed using the actual voltage swing

and slope of the signal from the child node

Our algorithm for optimal network covering works very similarly to
the algorithm proposed in [12]. It can be considered as its generalization
to handle a delay constrained problem and a more complex cost function
that depends on matches different from the one the cost is being computed
for. The problem is that the procedure is now much more computationally
intensive since the recursions must always reach the leaves of the tree. In
the following, we suggest a solution to this problem based on network
DAG clustering.

TD tintr k1S k2CL+ +=

Ptotal Pload Pinternal Pleakage+ +=

minCost (node,parentMatch) { 1
powerCost = ∞; 2
forall_matches (match,node) { 3

required_delay = estimate_required_delay(match,parentMatch); 4
forall_children (child_node,node) { 5

minCost(child_node, match); 6
} 7
[delay,power] = computeCost(match); 8
if (delay < required_delay & power < powerCost) { 9

powerCost = power; 10
match.selected; 11

} 12
} 13

} 14
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Fig. 2 Pseudocode of the algorithm for optimal covering
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C. DAG Clustering

DAG clustering is the technique we used to reduce the computational
complexity of the algorithm for optimal network covering. This is done at
the cost of some optimality in the solution. Nevertheless, if clustering and
delay budgeting, described in the next section, are carefully designed, the
quality of the final solution can still be excellent. The basic idea behind
DAG clustering is to restrict the search space by computing the optimal
solution on each cluster separately. The computational cost, instead of be-
ing exponential in the number of nodes of the DAG, is exponential in the
number of nodes of the clusters and linear with the number of clusters. We
chose to cluster the DAG in trees with a fixed maximum size, where the
size of a tree is defined as the number of its nodes. The biggest problem
with DAG clustering is that potentially good solutions can be eliminated
since matches crossing the boundaries between two clusters are no longer
valid. To limit this, a pre-mapping is performed to explore the DAG. Such
a pre-mapping simply looks for the covering that utilizes the minimum
number of gates. Clustering is then performed in such a way that none of
the matches comprising this preliminary covering is made invalid. In
practice, this means that we want to avoid cases where large cells that
have the possibility to cover large portions of the DAG are eliminated. In
fact, such cells are generally very effective in reducing delay, area and
power for they allow us to get rid of many wires. The simple rules adopted
in our DAG clustering are illustrated in Fig. 5 and are summarized here:
• Clustering considers only edges external to the matches comprising the

preliminary covering

• Clusters must not exceed a maximum size

• Clustering is always performed if there is a multiple fanout

D. Delay Budgeting

To be able to use the optimal covering procedure we need to assign an ad-
equate time interval to each cluster. The only information we can rely on
is the target delay at the primary outputs and the technology independent
description of the network. A cluster in the decomposed network is com-
prised of several nodes, one output and one or more inputs. Outputs and
inputs of a cluster are generally internal edges of the DAG, not necessarily
corresponding to primary inputs or primary outputs. Arrival times and re-
quired times at the internal edges of the DAG are unknown because the
only constraint is on the target speed that the circuit must guarantee.

To use the procedure for optimal covering, we need a delay budgeting
strategy for assigning a valid time interval to each cluster. Our implemen-
tation of delay budgeting incorporates two steps: the first step entails stat-
ic timing analysis of the network; the second step entails delay rescaling.
An example of delay budgeting appears in Fig. 6. In this example a simple
DAG is considered. Static timing analysis is performed on the network,
decomposed in inverters and nors, considering real gates from the tech-
nology library. The estimation of the capacitive contribution of the inter-
connects is done using the wireload models usually provided along with
the technology library. During a postorder traversal of the DAG, the de-
lays are computed and annotated on the edges. In Fig. 6 we are also show-
ing the propagation delays associated with each timing arc. Delay rescal-
ing is needed because the target delay for the application can be larger or
smaller than the actual delay. How delay scaling is implemented is also
illustrated in Fig. 6. Starting from the output, in a preorder traversal of the
DAG, the scale factor (SF), representing the ratio between the estimated
required time and the arrival time, is computed at each node. The scale
factor is used to scale up or down the propagation delays that subsequently
are used to compute the value for the required time at each edge.

The pseudocode for delay budgeting is presented in Fig. 7. The pro-
posed implementation of delay budgeting guarantees the relaxation of the
required arrival times in the branches of the DAG with positive scaled de-
lay slack and the delay equalization of the paths in the DAG. These con-
cepts are of crucial importance if our goal is power reduction and if we
want that this is accomplished uniformly in the circuit.

IV. EXPERIMENTAL RESULTS

The algorithms presented in this paper have been implemented in a tool
called teCMUpper.Three kinds of information are fed as input to the map-
per: the technology libraries, the specifications on the target speed and the
description of decomposed network. The technology independent descrip-
tion of the network is represented in terms of inverter and nor cells. The
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Fig. 6 Delay budgeting: static timing analysis and delay rescaling.

delayScaling(edge) 1
{ 2

node = target(edge); 3
if (edge == primary output) { 4

edge.scaledRequiredTime = targetDelay; 5
} 6
scaleFactor = edge.scaledRequiredTime / edge.arrivalTime; 7
forall_in_edges (in_edge , node) { 8

scaledPropDelay = in_edge.propDelay * scaleFactor; 9
in_edge.scaledRequiredTime = edge.arrivalTime - scaledPropDelay; 10
delayScaling(in_edge); 11

} 12
} 13

14

edge

in_edge

node

arrivalTime

scaledRequiredTimepropDelay

Fig. 7 Delay rescaling: pseudocode of the algorithm.
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database of the Dual-Swing/Dual-VT libraries is loaded by the mapper
and the signature of each cell is computed. This is achieved by building
the equivalent BDD for each cell [13]. Once all the possible matches have
been identified, a preliminary covering of the network aiming at the solu-
tion with a minimum number of gates is performed. The output of this
phase is used during DAG clustering to prevent good matches from being
eliminated. The time intervals assigned to each cluster are computed using
our delay budgeting. Depending on the mapping effort set by the user, the
maximum number of nodes in a cluster can vary. Bigger clusters allow for
a more complete exploration of the search space, but at the cost of longer
execution times. A final evaluation of the critical path delay and power
consumption, based on the power and delay models introduced in
Section II, is done before the netlist of the mapped circuit is written out in
Verilog.

The tool described in the previous paragraph has been used to map cir-
cuits from the ISCAS85 set of combinatorial benchmarks. The target li-
brary included 50 combinational cells implemented in an industrial
0.18µm process. The high voltage swing is between 0V and 1.8V while
the low voltage swing is defined between 0.35V ad 1.45V. The low
threshold voltage is 0.5V and the high threshold voltage is 0.7V. The re-
sults obtained using teCMUpper on a subset of the circuits used as bench-
marks are shown in Fig. 8. For each testbench we have four different plots:
Delay slack vs. target delay, Power consumption vs. target delay, Power
savings vs. target delay, High swing cell fraction vs. target delay.The re-
sults demonstrate teCMUpper’s ability to attain power savings by operat-
ing noncritical gates at lower swing. The power reduction factor is up to
3X, depending on the specific target delay. If the timing constraints are
stringent, only few cells can be operated at low swing. The number of low-
swing gates increases as the target delay is relaxed. It is worth mentioning
that power savings are obtained against completely high-swing circuits
mapped by teCMUpper and therefore already optimized in terms of power
consumption. 

Fig. 8 also shows the number of gates comprising the decomposed de-
scription of each circuits. The execution time varies, but is not always in-
creasing with the size of the circuit. This is because of our clustering pro-
cedure. Circuits with a high number of multi-fanout cells generate a high-
er number of clusters that translates into faster execution time. The results
in Fig. 8 have been obtained using a medium mapping effort that implies
a maximum cluster size of 20 nodes. This value is probably excessive if
bigger circuits were to be considered. Nevertheless, good quality can be
achieved even reducing the maximum size of the cluster (low mapping ef-
fort). The only problem we had with teCMUpper is the unjustified nega-
tive delay slack in a few mixed-swing implementations. This was due to
the approximation of the slope of the signals used at the input of the clus-
ters. This can have great impact (proving the importance of a delay model
that accounts for input slope as well) if the critical path is made of small
clusters. A final pass for assuring timing enclosure could resolve this.

V. CONCLUSIONS

We have developed an effective mapping technique for libraries that
employ mixed-swing voltages and multiple threshold voltages to reduce
power consumption in digital circuits. Power savings is achieved by oper-
ating non critical gates at reduced swing and using higher threshold volt-
ages to limit the leakage currents in high-swing gates driven by low-swing
input signals. In our mapping strategy, we first look for the smallest cov-
ering of the network, then use clustering and delay/power budgeting to al-
low an aggressive power optimization of this cover under a delay con-
straint. Our strategy selects also the optimal voltage swing of the gates and
the threshold voltage of their active devices. The proposed ideas have
been implemented in a tool called teCMUpper and its ability to generate
low-power mixed swing solutions has been proven on several bench-
marks. Smooth trade-offs of delay for power (up to 3X, depending on the
tightness of the timing constraint) have been demonstrated.
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