Energy-Efficient Instruction Dispatch Buffer Design for
Superscalar Processors*

Gurhan Kucuk, Kanad Ghose,
Dmitry V. Ponomarev

Department of Computer Science
State University of New York

Binghamton, NY 13902—-6000
ghose @ cs.binghamton.edu

ABSTRACT

The instruction dispatch buffer (DB, aso known as an issue queue)
used in modern superscalar processors is a considerable source of
energy dissipation. We consider design alternatives that result in
significant reductionsinthe power dissipation of the DB (by asmuch
as60%) through the use of: (&) fast comparatorsthat dissipate energy
mainly on atag match, (b) zero byte encoding of operandsto imply
thepresenceof byteswithall zerosand, (c) bitlinesegmentation. Our
resultsarevalidated by theexecution of SPEC 95 benchmarksontrue
hardwarelevel, cycle-by—cyclesimulator for asuperscal ar processor
and SPI CE measurementsfor actual layoutsof theDB anditsvariants
in a0.5 micron CMOS process.

Keywords: Low—power superscalar datapath, low power
comparator, low power instruction scheduling, bitline segmentation

1. INTRODUCTION AND BACKGROUND

Modern superscalar datapaths include a number of components for
supporting out-of-order execution. In a K-way superscalar
processor, instructions are fetched in program order and up to K
instructions are dispatched to a dispatch buffer (DB, also called an
issue queue) irrespective of theavailability of theinput operands. As
results of prior instructions are computed, they are forwarded to
waiting instructionsin the DB. As soon as an instruction waiting in
the DB has all of itsinput operands available, it becomes ready for
execution. As soon as an execution unit (“function unit”, FU) is
availableforaready instruction, itsoperandsareread out fromtheDB
intotheinput latchesof the sel ected FU —aprocesscalledinstruction
issuing — and execution commences.

Asaninstructionisdispatched, input registersthat contain valid data
areread out whiletheinstructionismovedintotheallocated DB entry.
Astheregister valuesrequired as an input by instructionswaitingin
the DB (and in the dispatch stage) are produced, they are forwarded
through forwarding busesthat run acrossthelength of theDB [7]. To
balancetheoverall flow inthe pipeline, at least K setsof forwarding
paths are provided to allow K different results from FUs to be
forwarded to instructionswaiting in the DB. We consider adatapath
wherethe DB entry for aninstruction hasonedatafield for eachinput
operand, aswell asan associated tag field that holdstheaddressof the
register whosevalueisrequiredtofill thedatafield. Whenafunction

Permission to make digital or hard copies of all or part of thiswork for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and thefull citation on thefirst page. To copy otherwise, or
republish, to post on serversor toredistributetolists, requiresprior specific
permission and/or afee.

ISLPED’ 01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008...$5.00.

237

Peter M. Kogge

Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556
kogge @cse.nd.edu

unit completes, it putsout theresult produced, alongwiththe address
of the destination register for this result on aforwarding bus.

Comparatorsassociatedwithinvalidoperandslotsof valid DB entries
then match the tag values stored in the fields (for waited—on register
values) against the destination register address floated on the
forwarding bus[7]. On atag match, the result floated onthe busis
latched into the associated input field. Since multiplefunction units
complete in acycle, multiple forwarding buses are used; each input
operand field within a DB entry thus uses a comparator for each
forwarding bus. Examplesof processorsusing thisdatapath styleare
the Intel Pentium Pro, Pentium 11, IBM Power PC 604, 620 and the
HAL SPARC 64.

Figure 1 depictstheblack box view of aDB asdescribed above. This
is essentially a multi—ported register file with additional logic for
associative data forwarding from the forwarding buses and
associativeaddressinglogicthat |ocatesfreeentriesand entriesready
for issue. We assume a4—-way superscalar processor for our studies.
The DB is assumed to have 4 read ports, 4 writes ports and 4
forwarding buses. The4 write portsare used to establish theentry for
up to 4 instructions simultaneously in the DB at the time of
dispatching. The four read ports are used to select up to 4 ready
instructions for issue and move them out of the DB to the FUs. The
main sources of energy dissipation in the DB are asfollows:

a) Energy dissipated in the DB in the process of establishing DB
entries for dispatched instructions: in locating a free entry
associatively and in writing into the selected entry.

b) Energy dissipatedinthe DB when FUscompleteand forward the
results and/or status information to the DB entries. A significant
fraction of thisenergy dissipation isdueto the tag comparators used
for associative matching to pick up forwarded data.

c) Dissipationsinthe DB at the time of issuing instructionsto the
FUs: in arbitrating for the FUs, enabling winning instructions for
issueandinreading the selected instructionsand their operandsfrom
the DB.

The energy dissipation within the DB is a significant power
dissipation component for modern superscalar CPUs. In this paper
we examine the use of severa techniques for reducing these
dissipations without compromising the cycle time of the CPU. For
this purpose, power measures are obtained using detailed
cycle-by—cycle, true hardware level simulations of the SPEC 95
benchmarksand theuseof SPICE measurementsof actual 0.5micron
layouts of the DB — an approach that isas good as it gets short of an
implementation. Our goal wasto maintaina3.3nScycletimefor the
processor despitetheproposedmicroarchitectural andcircuitchanges
for reducingthe DB power. Thiscycletimewasdictated by thedelays

* supported in part by DARPA through contract number FC
306020020525 under the PAC-C program, by the IEEC at SUNY-Bing-
hamton & the NSF through award nos. MIP 9504767 and EIA 9911099.

of cache layouts in the same technology, as used in some earlier
studies. Irrespectiveof thetechnol ogy used, webelieve our approach
isfairly universal in reducing dynamic dissipationsin the DB.

Inan earlier paper [5], weexamined atechniquefor splittingupaDB
into distributed DBs tailored for specific instruction types and the
suppression of leading zeros in operands to save power. As wire

From Decode/Disi>atch Stage
v ¥ v

¥ 5 F 7
I 0

]
EEEAREE;

From function units (forwarding)
Figure 1. Black box view of the Dispatch Buffer

delays become significant, such adistribution may impact the cycle
time adversely. Wefocusthis paper on techniquesthat avoid such a
distribution and maintain the centralized structure of the DB, with
minimal impact on the circuit design and layouts. We examine the
impact of threemaintechniques, used singly orinconjunction, inthis
respect. Thetechniquesused arealso applicableto other superscalar
datapath structures like the reorder buffer as well as multiported
register files; the relevant results for these other structures are not
reported here.

2. REDUCING DISPATCH BUFFER
POWER: 3 APPROACHES

We examine the use of three relatively independent techniques for
reducing the DB power dissipations. To set the right context, it is
useful to examinethemaj or power dissipation componentswithinthe
DB. Figure 2 shows these components, measured using our
technique, averaged over the SPEC 95 integer and floating point
benchmarksfor the base case DB, whichisatraditional designusing
comparatorsthat dissi pateenergy onatagmismatch. For bothinteger
and floating point benchmarks, issue power is the dominant
component. For floating point benchmarks, data forwarding
contributiontothetotal power dissipationisrelatively higher thanfor
integer benchmarks, because of the higher latency of floating point
operations which increases the average number of DB operand slots
waitingfortheresults. Simulation of SPEC 95 benchmarkswithinour
experimental framework showsthat ontheaverageabout 21 slotsare
waitingfor theresultsduringtheexecutionof integer benchmarksand
25 dlots are waiting during the execution of floating point
benchmarks. All such dlots employ the traditional pulldown
comparators (that dissipate energy on tag mismatches) in current
implementations of DBs[7].

4.2 53.8

50.1 7.3

SPECint 95 SPECip 95

28.9
25.7

A Dispatch power [Forwarding power [issue power

Figure 2. Energy dissipation components of the traditional
DB (% of total)

We thus explore the use of fast comparators for tag matching that
dissipate energy mainly on atag match asthetechniquethat directly
reducestheenergy spentindataforwarding. Wethen exploretheuse

238

of zero byte encoding [1, 4, 5, 8] to reduce the number of bit lines
activated duringdispatching, forwardingandissuing. Finally, weadd
bit-inesegmentationtoreduceenergy dissipationsinthebitlinesthat
aredriven. Theoverall energy savingrealizedfor theDB by using all
of these techniquesin combination is about 60% and thisisrealized
without any increase in the cycle time of the processor but with an
acceptable increase in the silicon real estate for the DB.

2.1 Using Ener gy—Efficient Comparatorsin
the DB

Thetypical comparator circuitry used for these associ ative matching
in a DB is a dynamic pulldown comparator or a 8-transistor
associative hitcell. Such comparators have a fast response time to
allow matching and the resulting updatesto be completed within the
cycletimeof theprocessor. All of thesecomparatorsdissipateenergy
onamismatch inany bit position. A significant amount of energy is
thuswasted in comparisonsthat do not locate matching entries, while
littleenergy (intheformof precharging) isspentinlocatingmatching
entries. Typically, comparisons are enabled only for the DB entry
slotsthat are waiting for aresult; in acycle only asmall percentage
of these dotsactually match the destination address of theforwarded
data. Asan example, the data collected for the simulated execution
of SPEC 95 benchmarkson our systemindi catethat about 23 operand
slots out of the 128 that we have in our 64—entry dispatch buffer are
actually waiting for results (i.e., the comparators for these dot are
enabled for comparison). Out of these, only 2 to 4 comparators
produce a match per cycle on the average. This is clearly an
energy—inefficient situation, as more energy is dissipated due to
mismatches (compared to the number of matches) with the use of
traditional comparatorsthat dissipate energy onamismatch. Similar
observations arevalid for re-order bufferswhich double as physical
registers (as used in the X86 implementations, for example), where
associative matching is used to locate the most recently established
entries for instruction destinations. We propose to remedy this by
designing and using fast comparatorsthat (predominantly) dissipate
energy on a match.

Vdd

o,
9T

pre

ouT

eval & comp

Figure 3. The proposed comparator

In theory, one can design CMOS comparators to dissipate energy
dynamically only on a full match but these designs require alarge

number of transistorsand/or switchslowly. Instead of choosing such
adesign, we opted for acomparator design that dissi pates minimum
energy on (infrequent) partial mismatches in the comparand values
and dissipates an acceptable amount of energy on afull match. This
comparator consciously takesinto account the characteristics of the
distribution of the physical register addressesthat are comparedina
typical dispatch buffer to minimize energy dissipations for partial
matches.

Table 1 shows how comparand values are distributed and the extent
of partial matchesintheval uesof twoadjacent bitsinthecomparands,
averaged over the smulated execution of SPEC 95 integer and
floating point benchmarks, aswell astheaverageover boththeinteger
and floating point benchmarks. The lower order 4 bits of both
comparands are equal in roughly 10.3% of the case, while the lower
order 6 bits match 5.54% of thetime. A full match occurs 4.93% of
thetimeontheaverage. Equivalently, amismatch occursinthelower
order 4 bits of the comparator 89.7% of thetime (=100—10.3). The
behavior depicted in Table 1 is a consequence of the localization of
dependencies in typical source code. Thiscausesphysical registers
fromlocalizedregionstobeall ocated asthedestinationof instructions
involvedinthedependency (Theaddressesof thesephysical registers
are compared within the DB to satisfy data dependencies.)
Consequently, thelikelihood of amatch of the higher order bitsof the
register addresses (i.e., the comparands) is higher. Our comparator
design directly exploits this fact by limiting dynamic energy
dissipation dueto partial matchestolessthan 10.3% of caseswhenthe
lower order 4 and 6 bits match; no energy dissipation occursin the
more frequent cases of the higher order bits matching. The overall
energy dissipation dueto partial mismatchesisthusgreatly reduced.
Energy dissipation occurs, of course, on a full match but this
dissipation is smaller than that of a comparable traditiona
comparators (that pull down aprecharged lineonly onamismatchin
one or more hit positions.)

Figure 3 depicts our proposed comparator for comparing two 8-bit
comparands, A7A6..A0 and B7B6..B0, where 0 is the least
significant bit. Thebasic circuitisathree stagedominologic, where
thefirst stage detects amatch of the lower 4 bits of the comparands.
Thefollowing two stagesdo not dissipateany energy whenthelower
order 4 bitsdo not match. Theprecharging signal iscut off duringthe
evaluation phase (when eval is active) and an evaluation signal is
applied to each stage of the domino logic only when the comparison
is enabled (comp is high). The series structure P composed of 8
p-transistors passes on ahigh voltage level (Vs, whereVsis<Vdd
but higher than lower threshold for alogic 1 level) to the gate of the
n—transistor Q1 only whenthetwolower order bitsof thecomparands
match. The series structure N turns on when the next pair of lower
order bits of the comparands (A3A2 and B3B2) match. When
comparison is enabled, the output of the first stage (driving an
inverter) goes low during the evaluation phase only when all lower
order 4 bits of the comparands match. Till such amatch occurs, no
dynamic energy is dissipated in the other stages of the comparator.
Transistor Q2 is needed to prevent Q1 from turning on due to the
presence of chargeleft over on its gate from aprior partial match of
the two lower order bits. The charge moved from the gate of Q1 by
Q2 isdissipated to ground only when there is a subsequent matchin
bits3and 2 (whichturnsthestructureN on.) Thiseffectively reduces
dissipationsinthecasewhenonly thetwolower order bitsmatch; this
dissipation is further minimized by keeping Vs slightly lower than
Vdd. Asin any series structure of n—transistors that pull down a
precharged line, the W/L ratios of the n—devicesgo up progressively
fromthetoptothebottom (ground). Thep-transistorsinthestructure
P, the precharging transistors and the inverters are sized to get an
acceptable response time on a match. This comparator can respond
quickly enoughto let the match proceed and allow the matching data
be latched into the appropriate field of the DB entry within the
targeted cycle time of 3.3 nsec. for our 0.5 micron layouts.

239

Number of bits % of total cases

matching —> 2 LSBs 4 LSBs 6 LSBs | All 8 bits
Avg, SPECint 95 27.2 9.8 5.7 5.6
Avg, SPECfp 95| 33.1 10.7 5.4 4.4
Avg, all SPEC 9§ 30.5 10.3 5.6 4.9

LSB = least significant bits

Table 1. Dispatch Buffer Comparator Statistics

The comparator of Figure 3 actually has a lower dissipation on a
match and faster response time compared to traditional parallel
pulldown comparatorsthat dischargeaprechargedlineonamismatch
in any bit position. Thisis because the effective output loading of
traditional (mismatch) comparators is high, amounting to the
diffusion capacitances of 2* C n—transistors (C isthe number of bits
compared = 8).

2.2 Using Zero Byte Encoding

A study of datastreamswithin superscalar datapathsasreportedin[6]
shows that significant number of bytesareall zeroswithin operands
onmost of theflow paths (dispatch stageto DB, DB tofunctionunits,
functions units to destinations and forwarding buses etc.). On the
average, in the course of simulated execution of the SPEC 95
benchmarksoncycleaccurateandtrueregisterlevel simulators, about
half of the byte fields within operands are all zeros. Thisisrealy a
consequence of using small literal values, either as operands or as
address offsets, byte-evel operations, operations that use masksto
isolatebitsetc. Considerableenergy savingsare possiblewhen bytes
containing zero are not transferred, stored or operated on explicitly.
Other work in the past for caches [9], function units[1] and scalar
pipelineshavemadethesameobservation. Weextend thesepast work
to superscaar datapaths, where additional datapath artifacts to
support out—of—order execution can benefit from the presence of
zero—valued bytes. The DB isan example of just such an artifact.

By not writing zero bytesinto the DB at the time of dispatch, energy
savings result as fewer bitlines need to be driven. Similarly, further
savings are achieved during issue by not reading out implied zero
valued bytes. Thiscan bedone by storing an additional bit with each
bytethat indicatesif theassociated bytecontainsall zerosor not. The
contentsof thiszeroindicator bit canbeusedtodisabletheword sel ect
strobe from going to the gates of the passtransistors. By controlling
the sensitivity of the sense amps, we can a so ensure that sense amp
transitionsarenot madewhenthevoltagedifferenceondifferential bit
linesis below athreshold (as would be the case for the precharged
bitline pairs associated with the bitcellswhose readouts are disabled
asdescribed above. Relevant circuit details are beyond the scope of
this paper; some circuitry isdescribed in [6]. Zero—valued bytesdo
not haveto bedriven ontheforwarding busesthat runthroughthe DB
—thisis another source of energy savings that result from zero byte
encoding.

The price paid for energy savings within the DB through the use of
zero byteencodingisintheform of anincreaseinthe areaof the DB
by about 11%. Thereisavery siight increaseinthe DB accesstimes,
butit still allowsthetarget cycletimeof 3.3 nSfor theentiredatapath
to be maintained.

2.3 Using Bitline Segmentation in the DB

As mentioned earlier, the DB is essentialy a register file with
additional associativelogicfor dataforwarding. TheDB iswrittento
using thenormal logic for aregister file at thetime of dispatch, to set
up the DB entry for dispatched instructions. For each instruction
dispatchedinacycle, awriteportisneeded. Theonly differencefrom
anormal register fileisthat theword beingwrittentofromeachwrite
portissel ected associatively (anassociativesearchisneededtol ocate
free entries, i.e., words within the DB), instead of being selected

through an explicit address. At the time of instruction issue,
instructions ready for execution are read out from the DB through
independent read ports. Other than the use of the wakeup and
arbitrationlogictosel ectready entries, thisreadoutisidentical towhat
happenswhen anormal register fileisread out. Senseamps, similar
towhat areused in RAMsare needed to sensethe databeing read out
asthebit linesarefairly long. Asinamultiported RAM or register
file, the bit lines in the DB are a significant source of energy
dissipation in the course of instruction dispatching (writes) and
instructionissuing (reads). Thebitlinesassociatedwitheachread and
write port present a high capacitive load, which consists of a
component that varies linearly with the number of rowsin the DB.
Thiscomponent is due to the wire capacitance of the bitlinesand the
diffusion capacitanceof thepasstransi storsthat connect bitcellstothe
bit lines.

The capacitive loading presented by the bitlines in the DB can be
reduced through the use of bitline segmentation. The entire DB is
viewedasalinear array of segmentsfor thi spurpose, withconsecutive
bitcell rows making up a segment. Figure 4 (@) is useful in
understanding how bitline segmentation reduces the capacitive
loading encountered during reads and writesfromthebit line. Asan
example, consider a DB with 64 rows which has been restructured
into 4 segments. Each segment will then consist of 16 consecutive
rows. Theorigina bit line, shownintheleft of Figure4 (a) isloaded
by the diffusion capacitance of 64 pass devices, the diffusion
capacitances of the precharging and equibrator devices, sense amp
input gate capacitances and the diffusion capacitances of tri—stated
devicesused to drivethebit lines (during awrite). Inaddition, there
isthewirecapacitancesof thebitlineitself. Inthesegmented version,
the hit line is split into four segments; each segment of the bit line
covers a column of the bitcells of the rows within asegment. Asa
result, the capacitive loading on each segment is lowered: each
segment is connected to only 16 pass devices and the wire length of
the bit line segment is one fourth of the original bit line.

Big Small
precharger precharger
& driver & driver one segmented
I] 0 bit line \ OR logic
I segment segmen{ 0 !
___enable
switch
"trI‘_rU”\ segment 1 !
ine
bit line
I/];%rg?]?gm segment 2 !
[
I segment 3 !
0 & —
Big sense Smaller row of segment
amp sense amp enable switches

(a) Original (left) and
segmented (right) bit line

(b) Segmented DB

Figure 4. Bitline segmented DB

To read abitcell within asegment, the bitlinefor that segment hasto
be connected to the precharger and sense amp; for awrite, thebitline
segment hasto be connected to thetri—state enable devicesfor thebit
linedriver. Thisisaccomplished by runninga“through” wireacross
all of the segments (typically in adifferent metal layer, right over the

240

segmented bitlines), whichisconnectedtotheprechargers, senseamp
andtri—statedriversasinthenon—segmented design. A switchisthen
usedto connect thesegment in questiontothis“through” line. Forthe
DB, the segment switch isturned on by OR-ing the associative read
orwriteenableflagsfor theport (associatedwiththebitline) for all the
rows in that segment. As the effective capacitive loading on the
through line and the connected hitline segment is smaller than the
capecitive loading of the unsegmented bit line, lower energy
dissipation occurs during reads or writes. The savings are further
enhanced due to the use of smaller devicesfor precharging, sensing
and driving. Onthedown side, additional energy dissipation occurs
in the logic associated with the control logic for the segment enable
switch, theenergy needed to drivestheswitchesfor all of thecolumns
and the loading imposed on the through line by the diffusion
capacitances of the complementary segment enabling switches. By
carefully choosing the size of a segment, the overal energy
dissipations can be minimized — making the size of a segment too
small can actually increase the overall energy consumption, while
making the size too large defeats the purpose of segmentation. An
optimal segment size of 8 rowswasdiscovered for the 64—entry DB
described here.

Figure 4(b) depicts a segmented DB and shows that there is some
increaseintheoverall areaof theDB duetotheuseof arow of segment
enable switches with each segment. For the 0.5 micron CMOS
layoutsused here, theoverall growth of thelayout areaof the64—entry
DB whenit wassegmented into 8 ssgments (8 rowsper segment) was
only about 5%.

3. EVALUATION METHODOLOGY AND
RESULTS

Werely ontruehardwarelevel cycleby cyclesimulationsto measure
theactual number of energy dissipating transitionsin various partsof
the datapath. The well-known Simplescalar simulator [2] was
extensively modified (only 20% of the origina source code is
retained!) for this purpose and the execution of the SPEC 95
benchmarksweresimulated (eachbenchmark wasrunfor 200million
instructions after a200 million instructions startup phase). Detailed
accounting for detecting zero bytes in operands and lower level
transition countingwasimplemented by aseparatethread. Transition
counts for reads, writes, associative addressing, FU arbitration, tag
matching, data latching and other notable events were recorded
separately. Transition counts and other data gleaned from the
simulator were then fed into a power estimation program that used
dissipation energies measured using SPICE for actual 0.5 micron
layouts of key datapath components. (The process used was a 0.5
micron4 metal layer CMOS process, HPCMOS-14TB; weareinthe
process of migrating our designsto 0.18 micron process.) Our power
estimation programgenerated power measuresinmilliwattsfor major
energy dissipating events within the DB for each benchmark in the
SPEC 95 suiteindividually aswell asfor the averages of theinteger
and floating point benchmarks and total averages.

The configuration of the system studied was as follows. The L1
|I—cache and L 1 D—cachewereboth 32 K Bytesin capacity withaline
size of 32 Bytes, with the former being direct—-mapped and the |l atter
being 4-way set—associative. A 4-way set—associative,integratedL 2
cachewith acapacity of 512 KBytes and aline size of 64 Byteswas
assumed. Thesizeof thedispatch buffer and there—order buffer were
kept at 64 entriesand 100 entriesrespectively. The physical register
file for integers and floats were 128 in number each. The function
unitsareasfollows: 4 integer units, oneinteger multiply/divideunit,
4 floating point multiply—add units, one floating point
multiply/divide unit one load unit and one store unit. The latencies
were as used in the original Simplescalar simulator. A 4—way
dispatch, aanda4—way commitment wereassumed. Weassumedthat
when afunction unit producesa32-bit result, it will driveat most 32

bitsevenif wider connectionsareavail able. Weassumethisto betrue
for the base cases as well to make our comparisons fair.

Figure 5 (a) shows the effects of the new comparator on the power
dissipated during the process of instruction forwarding and tag
matching. Energy reductionisashigh as45%in thiscase. However,
the total DB power is reduced by only about 12% because the
comparator does not have any effect on the energy dissipated during
instruction dispatchandissue(Figure5 (b)). Zero—-byteencodingand
bitline segmentation address the power reduction in exactly these
components. Figures5(c) and 5 (d) show thepower dissi pated during
the dispatch and issue respectively and the corresponding savings
achieved by zero-byte encoding, bitline segmentation and the
combination of these two techniques. During dispatch, bitline
segmentation leads to about 53% of power savings, zero-byte
encoding resultsin about 23% reduction, and combined savings are
more than 60%. At issue, segmentation savings are 41%, zero-byte
encoding savingsare 35% and the combined power reductionis60%.
In addition, zero—byte encoding achieves extra 13% reduction in
power dissipation during forwarding on top of what is realized by
deploying the new comparator. Figure 5 (€) summarizes the results
and showsthetotal power dissipation within the dispatch buffer and
energy savings realizable using some combinations of the
aforementioned mechanisms. Bitline segmentation is a powerful
technique onitsown, resulting in about 32% energy reductioninthe
DB. Savings attributed to the use of zero—-byte encoding are about
26% (this is not shown in the graph). Segmentation and zero-byte
encoding in concert reducethe energy by morethan 46%. Noticethat
thetotal savingsachieved by thetwotechniquesisnot thesumof their
individua respective savings. Thisis because bitline sesgmentation
reduces the lengths of the bitlines which somewhat reduces the
savings achieved by zero—byte encoding. The combination of all
three techniques— bitline segmentation, zero—byte encoding and the
use of fast, power—efficient comparators achieve aremarkable 60%
reduction in power dissipated by theinstruction dispatch buffer of a
superscalar CPU. Since zero—byte encoding reduces the power
dissipation during forwarding by about 15%, the effects of the new
comparator on power savingsarealittle smaller than 14% (reported
above) if the new comparator is applied to segmented DB with
zero-byte encoding.

Figure6showstheresultsfor adifferent datapath configurationwhere
register operands areread out at thetime of instructionissue. Inthis
case, the DB entry has status bits for each input register in an
instruction; register operand valuesarenot part of theDB entry. Here
forwarding simply amountsto updating the status of matching input
physical registers within established DB entries. When all input
registers of a DB entry are ready, the corresponding instruction is
ready forissueand operandsareread out fromthephysicl registers(or
bypassed to the FU inputs) as the instruction issues. As seen from
Figure6, power savingsachieved with the use of thenew comparator
arerelatively higher for thisdatapath variant. Thisisexpected, asthe
comparator dissi pationsdominatethepower expendedinforwarding
since no actual datavaluesareforwarded to the DB entries. Savings
in power dissipation during forwarding is 70% on the average with
the use of the new comparator (Figure 6 (a)). The overall power
savings within the DB with the use of the new comparator average
about 25% (Figure (b)). Overall, the average power savingsfor this
datapath variant are: (i) 22% with just the use of segmentation, (ii)
25% with only the use of zero byte encoding; (iii) 38% with the use
of segmentation and zero byte encoding and (iv) 63% with the use of
the new comparators, zero byte encoding and segmentation.

Notethat inall of the power savingscomputationsrelativetothebase
case, we assumed that forwarding comparisons are enabled only for
DB entries that are awaiting a result; comparisons are not done for
unallocated entries or allocated entries that have already been
forwarded the result or the status of the result (the latter for the
datapath variationdiscussed). Any sensibledesign—and onesthat we

241

are aware of — should do this anyway. If spurious comparisons are
alowed, the power savings reported here will go up further.

Finally, note also that segmentation is aform of selective dynamic
activation of DB entries, along thelinesof dynamic allocation of DB
partitions, as donein [3] and for the DB and ROB in [8]. The new
comparator and zero byte encoding technique can be used in
conjunction with dynamic resourceall ocation of datapath resources,
asin[3, 8]. These extensions are the subject of aforthcoming paper.

4. CONCLUSIONS

We studied three relatively independent techniques to reduce the
energy dissipation in the instruction dispatch buffers of modern
superscalar processors. First, weproposedtheuseof fast comparators
inforwarding/tag matching | ogic that dissipatethe energy mainly on
thetagmatches. Second, weconsideredtheuseof zero—byteencoding
to reduce the number of bitlines that have to be driven during
instruction dispatch and issue as well as during forwarding of the
results to the waiting instructions in the DB. Third, we evaluated
power reduction achieved by the segmentation of the bitlineswithin
the DB. Combined, these three mechanisms reduce the power
dissipated by theinstructiondispatchbufferinsuperscalar processors
by more than 60% on the average across all SPEC 95 benchmarks.

The DB power reductions are achieved without compromising the
cycle time and only through a modest growth in the area of the DB
(about 12%, including the new comparators, ZE logic and
segmentation). Our ongoing studies al so show that the use of all of
thetechniquesthat reduce the DB power can also be used to achieve
reductions of a similar scale in other datapath artifacts that use
associative addressing (such as the reorder buffer and load/store
queues). Asthepower dissipated ininstruction dispatching, issuing,
forwarding and retirement can often be as much as half of the total
chip power dissipation, the use of the new comparators, zero byte
encoding and segmentation offerssubstantial promiseinreducingthe
overall power requirementsof contemporary superscal ar processors.

5. REFERENCES

[1] Brooks, D. and Martonosi, M., “Dynamically Exploiting
Narrow Width Operands to Improve Processor Power and Per-
formance”, in Proc. HPCA, 1999.

[2] Burger, D., and Austin, T. M., “The SimpleScalar Tool Set:
Version 2.0", Tech. Report, Dept. of CS, Univ. of Wisconsin,
Madison, June 1997 and documentation for all Simplescalar
releases (through version 3.0).

[3] Buyuktosunoglu, A. et a, “An Adaptive Issue Queue for Re-
duced Power at High Performance”, Proc. PACS workshop,
held in conjunction with the 9-th ASPLOS, 2000.

[4] Candl, R., Gonzales, A., and Smith, J., “Very Low Power Pipe-
lines using Significance Compression”, in Proc. Micro33,
2000.

[5] Ghose, K., “Reducing Energy Requirements for Instruction

Issue and Dispatch in Superscalar Microprocessors,” Proc.

ISLPED, 2000, July 2000, pp.231-234.

Ghose, K., Ponomarev, D., Kucuk, G., Flinders, A., Kogge, P,

and Toomarian N.,"“Exploiting Bit—slice I nactivities for Reduc-

ing Energy Requirements of Superscalar Processors,” in Proc.

of Kool Chips Workshop, Micro-33, 2000.

Palacharla, S., Jouppi, N. P. and Smith, J. E., “ Quantifying the

complexity of superscalar processors’, Tech. Report 96-1308,

Dept. of CS, Univ. of Wisconsin, Madison, 1996.

Ponomarev, D., Kucuk, G. and Ghose, K., “Dynamic Alloca-

tion of Datapath Resources for Low Power”, to appear in the

Proc. of the Workshop on Compl exity—Effective Architectures,

held in conjunction with ISCA, June O1.

Villa, L., Zhang, M. and Asanovic, K., “Dynamic Zero Com-

pression for Cache Energy Reduction”, in Proc. of Micro-33,

2000.

(6]

(7]

(8]

(9l

400.00 1000.00

s000 | MW [traditional comparator

[new comparator | s | MW [l traditional comparator new comparator
200.00 600.00
| AL
= [IILRCLT ﬂ Il
0.00 hﬁrér'lh hh h h hh hhh 0.00 =
[%] o = [«5) — — — [<5]
£328°>%2% 3322825E8¢ 25¢% g5 é%ig% §§3%§7§,8.§%§ 228
58 = S58°3528%£8 30 S8 S & S528°85EYZES =4 0
E=E =8 cxE3 5% E&Z E~¢E 2 »°gs ERzZ
o o
(@) Power dissipation within the DB during forwarding (b) Total Power dissipation within the DB
150.00 >
mw . Base case |:| Segmentation . ZE Segmentation+ZE
100.00
50.00
’ ’ ’ |
oo LILE I I I) 4 d / /
o 9 = ® 2 @ 3 = 2 o)
4 §S 8 & 8 £ 883 ¢ 58 £ 8¢ 3z 2@
= 2 2 T 8 E @ » E B 2 o o
1S = o = = o >
S <

(c) Power dissipation within the DB during instruction dispatching

600.00
50000 | MW . Base case |:| Segmentation. ZE Segmentation+ZE
400.00
300.00
200.00

100.00 d

0.00 I I I 4 ‘ ' = ' | I
2 x E o 2 = o ® 8 3 =2 8B 5 £ =2 v o o g
£ gs8%=282 f£ 858 gge2s 3 g 232§
e = ¢ = - £ & =z
8 (d) Power dissipation within the DB during instruction issuing

1000.00

sooo0 | MW . Base case DSegmentation . Segmentation+ZE Segmentation + ZE+ new comparator

600.00

400.00
gl PP U 1 : I Al
0.00 P r
o . s o [=2) @
g ¥ £ g 92 2 = Z S @23 38 N 2 58 £ = 9 s 2 5
—_ — = o [=>] =
£ 9 5 2 a 3 23 o L & s 3 L < < o
=3 S = = s & 5 S 1= T = o]
£ > = = = [Z c QL
-] b = a S = - bz
8 g =

e) Total power dissipation within DB using bitline segmentation, power efficient comparators and zero encoding
Figure 5. Power Savings Achieved in the Dispatch Buffer

—

300.00 500.00

[l traditional compardgor [[] new comparator
200.00

mW [l traditional comparator ¢ [[] new comparator | 4000
300.00
100.00
BEE Q9T 88228852y o228 U’><Eoo = 385288 s5e2'Y =]
2255222 8238258588 225 $8gs~ERZ SERELSSs5S 3¢
£58 = 2% ©2F53z%2e£8 258 gsg = 2= S8=EZP5Z £a 8
o e = i=] = u <C o) Oé = =] — L <
o L . L . . S
(a) Power dissipation within the DB during forwarding (b) Total Power dissipation within the DB

500.00

40000 [segmentation [Segmentation+ZE Segmentation + ZE + new comparator
300.00
200.00
100.00 l I I y I L l i
0.00 . J |
[%2]
7] = £ Q o> = o = o F = B B 5 £ = w0 2 o
tt g8 g8 2% 2 58%:¢s58sEt =228
o = = © B S =]
% = 8 2 B ? § = E & £

(© Total power dissipation within DB using bitline segmentation, power efficient comparators and zero encoding

Figure 6. Power Savings Achieved in the Dispatch Buffer for Datapath Variant Where All Register Operands are Read
Out at the Time of Instruction Issue

242

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

