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ABSTRACT
The instruction dispatch buffer (DB, also known as an issue queue)
used in modern superscalar processors is a considerable source of
energy dissipation. We consider design alternatives that result in
significant reductions in the power dissipation of the DB (by as much
as 60%) through the use of: (a) fast comparators that dissipate energy
mainly on a tag match, (b) zero byte encoding of operands to imply
the presence of bytes with all zeros and, (c) bitline segmentation.  Our
results are validated by the execution of SPEC 95 benchmarks on true
hardware level, cycle–by–cycle simulator for a superscalar processor
and SPICE measurements for actual layouts of the DB and its variants
in a 0.5 micron CMOS process.

Keywords: Low–power superscalar datapath, low power
comparator, low power instruction scheduling, bitline segmentation

1. INTRODUCTION AND BACKGROUND
Modern superscalar datapaths include a number of components for
supporting out–of–order execution. In a K–way superscalar
processor, instructions are fetched in program order and up to K
instructions are dispatched to a dispatch buffer (DB, also called an
issue queue) irrespective of the availability of the input operands. As
results of prior instructions are computed, they are forwarded to
waiting instructions in the DB. As soon as an instruction waiting in
the DB has all of its input operands available, it becomes ready for
execution. As soon as an execution unit (“function unit”, FU) is
available for a ready instruction, its operands are read out from the DB
into the input latches of the selected FU – a process called instruction
issuing – and execution commences.

As an instruction is dispatched, input registers that contain valid data
are read out while the instruction is moved into the allocated DB entry.
As the register values required as an input by instructions waiting in
the DB (and in the dispatch stage) are produced, they are forwarded
through forwarding buses that run across the length of the DB [7].  To
balance the overall flow in the pipeline, at least K sets of forwarding
paths are provided to allow K different results from FUs to be
forwarded to instructions waiting in the DB. We consider a datapath
where the DB entry for an instruction has one data field for each input
operand, as well as an associated tag field that holds the address of the
register whose value is required to fill the data field.  When a function
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unit completes, it puts out the result produced, along with the address
of the destination register for this result on a forwarding bus.

Comparators associated with invalid operand slots of valid DB entries
then match the tag values stored in the fields (for waited–on register
values) against the destination register address floated on the
forwarding bus [7].  On a tag match, the result floated on the bus is
latched into the associated input field.  Since multiple function units
complete in a cycle, multiple forwarding buses are used; each input
operand field within a DB entry thus uses a comparator for each
forwarding bus.  Examples of processors using this datapath style are
the Intel Pentium Pro, Pentium II, IBM Power PC 604, 620 and the
HAL SPARC 64.

Figure 1 depicts the black box view of a DB as described above. This
is essentially a multi–ported register file with additional logic for
associative data forwarding from the forwarding buses and
associative addressing logic that locates free entries and entries ready
for issue. We assume a 4–way superscalar processor for our studies.
The DB is assumed to have 4 read ports, 4 writes ports and 4
forwarding buses. The 4 write ports are used to establish the entry for
up to 4 instructions simultaneously in the DB at the time of
dispatching.  The four read ports are used to select up to 4 ready
instructions for issue and move them out of the DB to the FUs. The
main sources of energy dissipation in the DB are as follows:

a) Energy dissipated in the DB in the process of establishing DB
entries for dispatched instructions: in locating a free entry
associatively and in writing into the selected entry.

b) Energy dissipated in the DB when FUs complete and forward the
results and/or status information to the DB entries.  A significant
fraction of this energy dissipation is due to the tag comparators used
for associative matching to pick up forwarded data.

c) Dissipations in the DB at the time of issuing instructions to the
FUs: in arbitrating for the FUs, enabling winning instructions for
issue and in reading the selected instructions and their operands from
the DB.

The energy dissipation within the DB is a significant power
dissipation component for modern superscalar CPUs.  In this paper
we examine the use of several techniques for reducing these
dissipations without compromising the cycle time of the CPU. For
this purpose, power measures are obtained using detailed
cycle–by–cycle, true hardware level simulations of the SPEC 95
benchmarks and the use of SPICE measurements of actual 0.5 micron
layouts of the DB – an approach that is as good as it gets short of an
implementation. Our goal was to maintain a 3.3 nS cycle time for the
processor despite the proposed microarchitectural and circuit changes
for reducing the DB power.  This cycle time was dictated by the delays
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of cache layouts in the same technology, as used in some earlier
studies. Irrespective of the technology used, we believe our approach
is fairly universal in reducing dynamic dissipations in the DB.

In an earlier paper [5], we examined a technique for splitting up a DB
into distributed DBs tailored for specific instruction types and the
suppression of leading zeros in operands to save power.  As wire

From Decode/Dispatch Stage

From function units (forwarding)
To function units (issue)

Figure 1.  Black box view of the Dispatch Buffer

delays become significant, such a distribution may impact the cycle
time adversely.  We focus this paper on techniques that avoid such a
distribution and maintain the centralized structure of the DB, with
minimal impact on the circuit design and layouts.  We examine the
impact of three main techniques, used singly or in conjunction, in this
respect.  The techniques used are also applicable to other superscalar
datapath structures like the reorder buffer as well as multiported
register files; the relevant results for these other structures are not
reported here.

2. REDUCING DISPATCH BUFFER
POWER:  3 APPROACHES
We examine the use of three relatively independent techniques for
reducing the DB power dissipations.  To set the right context, it is
useful to examine the major power dissipation components within the
DB.  Figure 2 shows these components, measured using our
technique, averaged over the SPEC 95 integer and floating point
benchmarks for the base case DB, which is a traditional design using
comparators that dissipate energy on a tag mismatch.  For both integer
and floating point benchmarks, issue power is the dominant
component. For floating point benchmarks, data forwarding
contribution to the total power dissipation is relatively higher than for
integer benchmarks, because of the higher  latency of floating point
operations which increases the average number of DB operand slots
waiting for the results. Simulation of SPEC 95 benchmarks within our
experimental framework shows that on the average about 21 slots are
waiting for the results during the execution of integer benchmarks and
25 slots are waiting during the execution of floating point
benchmarks.  All such slots employ the traditional pulldown
comparators (that dissipate energy on tag mismatches) in current
implementations of DBs [7]. 

Figure 2. Energy dissipation components of the traditional
                                     DB (% of total)
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We thus explore the use of fast comparators for tag matching that
dissipate energy mainly on a tag match as the technique that directly
reduces the energy spent in data forwarding.  We then explore the use

of zero byte encoding [1, 4, 5, 8] to reduce the number of bit lines
activated during dispatching, forwarding and issuing.  Finally, we add
bit–line segmentation to reduce energy dissipations in the bit lines that
are driven.  The overall energy saving realized for the DB by using all
of these techniques in combination is about 60% and this is realized
without any increase in the cycle time of the processor but with an
acceptable increase in the silicon real estate for the DB.

2.1 Using Energy–Efficient Comparators in
the DB
The typical comparator circuitry used for these associative matching
in a DB is a dynamic pulldown comparator or a 8–transistor
associative bitcell.  Such comparators have a fast response time to
allow matching and the resulting updates to be completed within the
cycle time of the processor.  All of these comparators dissipate energy
on a mismatch in any bit position.  A significant amount of energy is
thus wasted in comparisons that do not locate matching entries, while
little energy (in the form of precharging) is spent in locating matching
entries.  Typically, comparisons are enabled only for the DB entry
slots that are waiting for a result; in a cycle only a small percentage
of these slots actually match the destination address of the forwarded
data.  As an example, the data collected for the simulated execution
of SPEC 95 benchmarks on our system indicate that about 23 operand
slots out of the 128 that we have in our 64–entry dispatch buffer are
actually waiting for results (i.e., the comparators for these slot are
enabled for comparison).  Out of these, only 2 to 4 comparators
produce a match per cycle on the average.  This is clearly an
energy–inefficient situation, as more energy is dissipated due to
mismatches (compared to the number of matches) with the use of
traditional comparators that dissipate energy on a mismatch.  Similar
observations are valid for re–order buffers which double as physical
registers (as used in the X86 implementations, for example), where
associative matching is used to locate the most recently established
entries for instruction destinations.  We propose to remedy this by
designing and using fast comparators that (predominantly) dissipate
energy on a match.

Figure 3.  The proposed comparator
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In theory, one can design CMOS comparators to dissipate energy
dynamically only on a full match but these designs require a large
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number of transistors and/or switch slowly.  Instead of choosing such
a design, we opted for a comparator design that dissipates minimum
energy on (infrequent) partial mismatches in the comparand values
and dissipates an acceptable amount of energy on a full match.  This
comparator consciously takes into account the characteristics of the
distribution of the physical register addresses that are compared in a
typical dispatch buffer to minimize energy dissipations for partial
matches.

Table 1 shows how comparand values are distributed and the extent
of partial matches in the values of two adjacent bits in the comparands,
averaged over the simulated execution of SPEC 95 integer and
floating point benchmarks, as well as the average over both the integer
and floating point benchmarks.  The lower order 4 bits of both
comparands are equal in roughly 10.3% of the case, while the lower
order 6 bits match 5.54% of the time.  A full match occurs 4.93% of
the time on the average.  Equivalently, a mismatch occurs in the lower
order 4 bits of the comparator 89.7% of the time (=100 – 10.3).  The
behavior depicted in Table 1 is a consequence of the localization of
dependencies in typical source code.  This causes physical registers
from localized regions to be allocated as the destination of instructions
involved in the dependency (The addresses of these physical registers
are compared within the DB to satisfy data dependencies.)
Consequently, the likelihood of a match of the higher order bits of the
register addresses (i.e., the comparands) is higher.  Our comparator
design directly exploits this fact by limiting dynamic energy
dissipation due to partial matches to less than 10.3% of cases when the
lower order 4 and 6 bits match; no energy dissipation occurs in the
more frequent cases of the higher order bits matching.  The overall
energy dissipation due to partial mismatches is thus greatly reduced.
Energy dissipation occurs, of course, on a full match but this
dissipation is smaller than that of a comparable traditional
comparators (that pull down a precharged line only on a mismatch in
one or more bit positions.)

Figure 3 depicts our proposed comparator for comparing two 8–bit
comparands, A7A6..A0 and B7B6..B0, where 0 is the least
significant bit.  The basic circuit is a three stage domino logic, where
the first stage detects a match of the lower 4 bits of the comparands.
The following two stages do not dissipate any energy when the lower
order 4 bits do not match.  The precharging signal is cut off during the
evaluation phase (when eval is active) and an evaluation signal is
applied to each stage of the domino logic only when the comparison
is enabled (comp is high).  The series structure P composed of 8
p–transistors passes on a high voltage level (Vs, where Vs is < Vdd
but higher than lower threshold for a logic 1 level) to the gate of the
n–transistor Q1 only when the two lower order bits of the comparands
match. The series structure N turns on when the next pair of lower
order bits of the comparands (A3A2 and B3B2) match. When
comparison is enabled, the output of the first stage (driving an
inverter) goes low during the evaluation phase only when all lower
order 4 bits of the comparands match.  Till such a match occurs, no
dynamic energy is dissipated in the other stages of the comparator.
Transistor Q2 is needed to prevent Q1 from turning on due to the
presence of charge left over on its gate from a prior partial match of
the two lower order bits. The charge moved from the gate of Q1 by
Q2 is dissipated to ground only when there is a subsequent match in
bits 3 and 2 (which turns the structure N on.)  This effectively reduces
dissipations in the case when only the two lower order bits match; this
dissipation is further minimized by keeping Vs slightly lower than
Vdd.  As in any series structure of n–transistors that pull down a
precharged line, the W/L ratios of the n–devices go up progressively
from the top to the bottom (ground). The p–transistors in the structure
P, the precharging transistors and the inverters are sized to get an
acceptable response time on a match. This comparator can respond
quickly enough to let the match proceed and allow the matching data
be latched into the appropriate field of the DB entry within the
targeted cycle time of 3.3 nsec. for our 0.5 micron layouts.   

Table 1.  Dispatch Buffer Comparator Statistics

Number of bits
matching ––> 2 LSBs 4 LSBs 6 LSBs All 8 bits
Avg, SPECint 95

Avg, SPECfp 95

Avg, all SPEC 95

% of total cases

27.2

33.1

30.5

9.8

10.7

10.3

5.7

5.4

5.6

5.6

4.4

4.9

LSB = least significant bits

The comparator of Figure 3 actually has a lower dissipation on a
match and faster response time compared to traditional parallel
pulldown comparators that discharge a precharged line on a mismatch
in any bit position.  This is because the effective output loading of
traditional (mismatch) comparators is high, amounting to the
diffusion capacitances of 2*C n–transistors (C is the number of bits
compared = 8).

2.2 Using Zero Byte Encoding
A study of data streams within superscalar datapaths as reported in [6]
shows that significant number of bytes are all zeros within operands
on most of the flow paths (dispatch stage to DB, DB to function units,
functions units to destinations and forwarding buses etc.).  On the
average, in the course of simulated execution of the SPEC 95
benchmarks on cycle accurate and true register level simulators, about
half of the byte fields within operands are all zeros.  This is really a
consequence of using small literal values, either as operands or as
address offsets, byte–level operations, operations that use masks to
isolate bits etc.  Considerable energy savings are possible when bytes
containing zero are not transferred, stored or operated on explicitly.
Other work in the past for caches [9], function units [1] and scalar
pipelines have made the same observation.  We extend these past work
to superscalar datapaths, where additional datapath artifacts to
support out–of–order execution can benefit from the presence of
zero–valued bytes.  The DB is an example of just such an artifact.

By not writing zero bytes into the DB at the time of dispatch, energy
savings result as fewer bitlines need to be driven.  Similarly, further
savings are achieved during issue by not reading out implied zero
valued bytes. This can be done by storing an additional bit with each
byte that indicates if the associated byte contains all zeros or not.  The
contents of this zero indicator bit can be used to disable the word select
strobe from going to the gates of the pass transistors.  By controlling
the sensitivity of the sense amps, we can also ensure that sense amp
transitions are not made when the voltage difference on differential bit
lines is below a threshold (as would be the case for the precharged
bitline pairs associated with the bitcells whose readouts are disabled
as described above.  Relevant circuit details are beyond the scope of
this paper; some circuitry is described in [6].  Zero–valued bytes do
not have to be driven on the forwarding buses that run through the DB
– this is another source of energy savings that result from zero byte
encoding.

The price paid for energy savings within the DB through the use of
zero byte encoding is in the form of an increase in the area of the DB
by about 11%.  There is a very slight increase in the DB access times,
but it still allows the target cycle time of 3.3 nS for the entire datapath
to be maintained.

2.3 Using Bitline Segmentation in the DB
As mentioned earlier, the DB is essentially a register file with
additional associative logic for data forwarding.  The DB is written to
using the normal logic for a register file at the time of dispatch, to set
up the DB entry for dispatched instructions.  For each instruction
dispatched in a cycle, a write port is needed.  The only difference from
a normal register file is that the word being written to from each write
port is selected associatively (an associative search is needed to locate
free entries, i.e., words within the DB), instead of being selected

229239



through an explicit address.  At the time of instruction issue,
instructions ready for execution are read out from the DB through
independent read ports.  Other than the use of the wakeup and
arbitration logic to select ready entries, this readout is identical to what
happens when a normal register file is read out.  Sense amps, similar
to what are used in RAMs are needed to sense the data being read out
as the bit lines are fairly long.  As in a multiported RAM or register
file, the bit lines in the DB are a significant source of energy
dissipation in the course of instruction dispatching (writes) and
instruction issuing (reads).  The bitlines associated with each read and
write port present a high capacitive load, which consists of a
component that varies linearly with the number of rows in the DB.
This component is due to the wire capacitance of the bitlines and the
diffusion capacitance of the pass transistors that connect bitcells to the
bit lines.

The capacitive loading presented by the bitlines in the DB can be
reduced through the use of bitline segmentation.  The entire DB is
viewed as a linear array of segments for this purpose, with consecutive
bitcell rows making up a segment.  Figure 4 (a) is useful in
understanding how bitline segmentation reduces the capacitive
loading encountered during reads and writes from the bit line.  As an
example, consider a DB with 64 rows which has been restructured
into 4 segments.  Each segment will then consist of 16 consecutive
rows.  The original bit line, shown in the left of Figure 4 (a) is loaded
by the diffusion capacitance of 64 pass devices, the diffusion
capacitances of the precharging and equibrator devices, sense amp
input gate capacitances and the diffusion capacitances of tri–stated
devices used to drive the bit lines (during a write).  In addition, there
is the wire capacitances of the bit line itself.  In the segmented version,
the bit line is split into four segments; each segment of the bit line
covers a column of the bitcells of the rows within a segment.  As a
result, the capacitive loading on each segment is lowered: each
segment is connected to only 16 pass devices and the wire length of
the bit line segment is one fourth of the original bit line.

(b) Segmented DB

Figure 4.  Bitline segmented DB

segment 0

segment 1

segment 2

segment 3

OR logic

row of segment
enable switches

one segmented 
bit line

Big
precharger
& driver

Big sense
amp

Smaller 
sense amp

segment
enable
switch

bit line
for one 
segment

(a) Original (left) and
segmented (right) bit line

Small
precharger
& driver

“thru”
line

To read a bitcell within a segment, the bitline for that segment has to
be connected to the precharger and sense amp; for a write, the bitline
segment has to be connected to the tri–state enable devices for the bit
line driver.  This is accomplished by running a “through” wire across
all of the segments (typically in a different metal layer, right over the

segmented bit lines), which is connected to the prechargers, sense amp
and tri–state drivers as in the non–segmented design.  A switch is then
used to connect the segment in question to this “through” line.  For the
DB, the segment switch is turned on by OR–ing the associative read
or write enable flags for the port (associated with the bitline) for all the
rows in that segment.  As the effective capacitive loading on the
through line and the connected bitline segment is smaller than the
capacitive loading of the unsegmented bit line, lower energy
dissipation occurs during reads or writes.  The savings are further
enhanced due to the use of smaller devices for precharging, sensing
and driving.  On the down side, additional energy dissipation occurs
in the logic associated with the control logic for the segment enable
switch, the energy needed to drives the switches for all of the columns
and the loading imposed on the through line by the diffusion
capacitances of the complementary segment enabling switches.  By
carefully choosing the size of a segment, the overall energy
dissipations can be minimized – making the size of a segment too
small can actually increase the overall energy consumption, while
making the size too large defeats the purpose of segmentation.  An
optimal segment size of 8 rows was discovered for the 64–entry DB
described here.

Figure 4(b) depicts a segmented DB and shows that there is some
increase in the overall area of the DB due to the use of a row of segment
enable switches with each segment.  For the 0.5 micron CMOS
layouts used here, the overall growth of the layout area of the 64–entry
DB when it was segmented into 8 segments (8 rows per segment) was
only about 5%.

3. EVALUATION METHODOLOGY AND
RESULTS
We rely on true hardware level cycle by cycle simulations to measure
the actual number of energy dissipating transitions in various parts of
the datapath.  The well–known Simplescalar simulator [2] was
extensively modified (only 20% of the original source code is
retained!) for this purpose and the execution of the SPEC 95
benchmarks were simulated (each benchmark was run for 200 million
instructions after a 200 million instructions startup phase).  Detailed
accounting for detecting zero bytes in operands and lower level
transition counting was implemented by a separate thread.  Transition
counts for reads, writes, associative addressing, FU arbitration, tag
matching, data latching and other notable events were recorded
separately.  Transition counts and other data gleaned from the
simulator were then fed into a power estimation program that used
dissipation energies measured using SPICE for actual 0.5 micron
layouts of key datapath components.  (The process used was a 0.5
micron 4 metal layer CMOS process, HPCMOS–14TB; we are in the
process of migrating our designs to 0.18 micron process.) Our power
estimation program generated power measures in milliwatts for major
energy dissipating events within the DB for each benchmark in the
SPEC 95 suite individually as well as for the averages of the integer
and floating point benchmarks and total averages.

The configuration of the system studied was as follows. The L1
I–cache and L1 D–cache were both 32 KBytes in capacity with a line
size of 32 Bytes, with the former being direct–mapped and the latter
being 4–way set–associative.  A 4–way set–associative, integrated L2
cache with a capacity of 512 KBytes and a line size of 64 Bytes was
assumed. The size of the dispatch buffer and the re–order buffer were
kept at 64 entries and 100 entries respectively.  The physical register
file for integers and floats were 128 in number each.  The function
units are as follows: 4 integer units, one integer multiply/divide unit,
4 floating point multiply–add units, one floating point
multiply/divide unit one load unit and one store unit. The latencies
were as used in the original Simplescalar simulator.  A 4–way
dispatch, a and a 4–way commitment were assumed.  We assumed that
when a function unit produces a 32–bit result, it will drive at most 32
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bits even if wider connections are available. We assume this to be true
for the base cases as well to make our comparisons fair.

Figure 5 (a) shows the effects of the new comparator on the power
dissipated during the process of instruction forwarding and tag
matching. Energy reduction is as high as 45% in this case. However,
the total DB power is reduced by only about 12% because the
comparator does not have any effect on the energy dissipated during
instruction dispatch and issue (Figure 5 (b)). Zero–byte encoding and
bitline segmentation address the power reduction in exactly these
components. Figures 5 (c) and 5 (d) show the power dissipated during
the dispatch and issue respectively and the corresponding savings
achieved by zero–byte encoding, bitline segmentation and the
combination of these two techniques. During dispatch, bitline
segmentation leads to about 53% of power savings, zero–byte
encoding results in about 23% reduction, and combined savings are
more than 60%. At issue, segmentation savings are 41%, zero–byte
encoding savings are 35% and the combined power reduction is 60%.
In addition, zero–byte encoding achieves extra 13% reduction in
power dissipation during forwarding on top of what is realized by
deploying the new comparator. Figure 5 (e) summarizes the results
and shows the total power dissipation within the dispatch buffer and
energy savings realizable using some combinations of the
aforementioned mechanisms. Bitline segmentation is a powerful
technique on its own, resulting in about 32% energy reduction in the
DB. Savings attributed to the use of zero–byte encoding are about
26% (this is not shown in the graph). Segmentation and zero–byte
encoding in concert reduce the energy by more than 46%. Notice that
the total savings achieved by the two techniques is not the sum of their
individual respective savings. This is because bitline segmentation
reduces the lengths of the bitlines which somewhat reduces the
savings achieved by zero–byte encoding. The combination of all
three techniques – bitline segmentation, zero–byte encoding and the
use of fast, power–efficient comparators achieve a remarkable 60%
reduction  in power dissipated by the instruction dispatch buffer of a
superscalar CPU. Since zero–byte encoding reduces the power
dissipation during forwarding by about 15%, the effects of the new
comparator on power savings are a little smaller than 14% (reported
above) if the new comparator is applied to segmented DB with
zero–byte encoding.

Figure 6 shows the results for a different datapath configuration where
register operands are read out at the time of instruction issue.  In this
case, the DB entry has status bits for each input register in an
instruction; register operand values are not part of the DB entry.  Here
forwarding simply amounts to updating the status of matching input
physical registers  within established DB entries.  When all input
registers of a DB entry are ready, the corresponding instruction is
ready for issue and operands are read out from the physicl registers (or
bypassed to the FU inputs) as the instruction issues.  As seen from
Figure 6, power savings achieved with the use of the new comparator
are relatively higher for this datapath variant.  This is expected, as the
comparator dissipations dominate the power expended in forwarding
since no actual data values are forwarded to the DB entries.  Savings
in power dissipation during forwarding is 70% on the average with
the use of the new comparator (Figure 6 (a)). The overall power
savings within the DB with the use of the new comparator average
about 25% (Figure (b)).  Overall, the average power savings for this
datapath variant are: (i) 22% with just the use of segmentation, (ii)
25% with only the use of zero byte encoding; (iii) 38% with the use
of segmentation and zero byte encoding and (iv) 63% with the use of
the new comparators, zero byte encoding and segmentation.

Note that in all of the power savings computations relative to the base
case, we assumed that forwarding comparisons are enabled only for
DB entries that are awaiting a result; comparisons are not done for
unallocated entries or allocated entries that have already been
forwarded the result or the status of the result (the latter for the
datapath variation discussed).  Any sensible design – and ones that we

are aware of – should do this anyway.  If spurious comparisons are
allowed, the power savings reported here will go up further.

Finally, note also that segmentation is a form of selective dynamic
activation of DB entries, along the lines of dynamic allocation of DB
partitions, as done in [3] and for the DB and ROB in [8]. The new
comparator and zero byte encoding technique can be used in
conjunction with dynamic resource allocation of datapath resources,
as in [3, 8]. These extensions are the subject of a forthcoming paper.

4. CONCLUSIONS
We studied three relatively independent techniques to reduce the
energy dissipation in the instruction dispatch buffers of modern
superscalar processors. First, we proposed the use of fast comparators
in forwarding/tag matching logic that dissipate the energy mainly on
the tag matches. Second, we considered the use of zero–byte encoding
to reduce the number of bitlines that have to be driven during
instruction dispatch and issue as well as during forwarding of the
results to the waiting instructions in the DB. Third, we evaluated
power reduction achieved by the segmentation of the bitlines within
the DB. Combined, these three mechanisms reduce the power
dissipated  by the instruction dispatch buffer in superscalar processors
by more than 60% on the average across all SPEC 95 benchmarks.

The DB power reductions are achieved without compromising the
cycle time and only through a modest growth in the area of the DB
(about 12%, including the new comparators, ZE logic and
segmentation).  Our ongoing studies also show that the use of all of
the techniques that reduce the DB power can also be used to achieve
reductions of a similar scale in other datapath artifacts that use
associative addressing (such as the reorder buffer and load/store
queues).  As the power dissipated in instruction dispatching, issuing,
forwarding and retirement can often be as much as half of the total
chip power dissipation, the use of the new comparators, zero byte
encoding and segmentation offers substantial promise in reducing the
overall power requirements of contemporary superscalar processors.
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Figure 5. Power Savings Achieved in the Dispatch Buffer

Base case Segmentation
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 (e) Total power dissipation within DB using bitline segmentation, power efficient comparators and zero encoding
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 (d) Power dissipation within the DB during instruction issuing
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(a) Power dissipation within the DB during forwarding
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 (c) Power dissipation within the DB during instruction dispatching
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(b) Total Power dissipation within the DB
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Figure 6. Power Savings Achieved in the Dispatch Buffer for Datapath Variant Where All Register Operands are Read
Out at the Time of Instruction Issue

 (c) Total power dissipation within DB using bitline segmentation, power efficient comparators and zero encoding
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