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ABSTRACT 
In this paper, we propose a systematic pipelining method for a linear 
system to minimize power and maximize throughput, given a 
constraint on the number of pipeline stages and a set of resource 
constraints. The method first retimes operations such that as many 
operations as possible take common operands as their inputs, and 
then performs the operand sharing based on the list scheduling. 
Experimental results show that the proposed approach reduces the 
power consumption of the functional units by up to more than 20%, 
compared to the state-of-the-art pipelining and operand sharing 
techniques. 
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1. INTRODUCTION 
Researches on pipelining of a linear system have been done in 
various areas. Two representative areas are code generation in 
compilers for embedded VLIW processors and high-level synthesis 
for ASIC design. Previous researches on pipelining of a linear 
system are primarily for throughput maximization under resource 
constraint [4], latency minimization under resource and throughput 
constraint [3], and joint throughput and latency optimization under 
resource constraint [5]. However, for the design of an embedded real 
time linear system that is gaining more and more attention nowadays, 
we often need to minimize the power consumption while 
considering the throughput and latency constraints, which has never 
been considered by the previous researches. 
In this paper, we propose a systematic pipelining method to 
minimize power first and then to maximize throughput, given a 
constraint on the number of pipeline stages (PSs) and a set of 
resource constraints, for a linear system. Unlike most of existing 
pipelining approaches, our method takes the number of PSs as one 
of constraints and views the pipelining with respect to power 
minimization. The number of PSs is related to code size when 
considering code generation whereas it is related to controller and 
register overhead in the context of high-level synthesis. Therefore 
the ability to handle the number of PSs as a constraint is important 
in both areas. Given the number of PSs as a constraint, maximizing 
the throughput in the proposed approach corresponds to minimizing 
the latency. Note that the system latency can be computed as the 
number of PSs divided by the system throughput. In this paper, we 

focus on applying the proposed pipelining technique to high-level 
synthesis. The technique, however, can also be applied to code 
generation for an embedded VLIW processor, mutatis mutandis. 
Given a DFG (Data Flow Graph) as an input, the operand sharing 
technique tries to bind operations with a CO (Common Operand) to 
the same FU (Functional Unit) such that the input activity of the 
shared FU decreases. There have been a few research results about 
power reduction using the operand sharing technique [1][2]. Their 
limitation is that the DFG given as an input has only a small number 
of operation nodes whose inputs are common, resulting in a shallow 
chance of operand sharing and insignificant power reduction. There 
has been a technique proposed to overcome such limitation by 
generating as many operation nodes with COs as possible through 
loop pipelining [6]. But the technique does not consider constraints 
on the number of PSs and throughput. In addition, the approach 
does not deal with applications with feedback edges, that is, loop-
carried dependencies. 
This paper proposes systematic pipelining to solve different 
problems mentioned above. Our approach is an extension of [6] in 
terms of the basic concept that it generates operation nodes with 
COs, which is invisible in the original DFG, via the pipelining 
technique. However, it is completely new in that it proposes a novel 
pipelining algorithm to deal with feedback edges in a DFG 
efficiently as well as to consider the number of PSs and throughput 
when generating nodes with COs. 

2. PRELIMINARIES 
2.1 Data Flow Graph 
We use a DFG as a model that represent a simple loop body of a 
linear system. Figure 2(c) shows the DFG of a simple second order 
IIR filter. The number beside each edge is the weight that denotes 
the iteration difference between the source node (data producer) and 
the target node (data consumer) of the edge and is represented by 

Eeew kk ∈∀),( . 

2.2 Operand Sharing 
Figure 1 illustrates the binding alternatives after scheduling. Assume 
that we allocate two multipliers, mult0 and mult1, for synthesis. 
Binding in Figure 1(b) maximizes the temporal correlation of input 
signal sequence since the input operands, fed to input of mult0, are 
fixed within the same iteration and even preserve the original 
correlation well across consecutive iterations. It decreases the 
switched capacitance of the mult0 and therefore its power 
consumption. It is reported that the typical value of P1/P2 that is 
computed through switch level simulation is about 0.65 for a 12-bit 
multiplier [1], where P1 and P2 are respectively the average power 
consumptions of the multiplier when only one operand changes and 
when both operands change simultaneously. 
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2.3 Retiming 
Retiming is a transformation which increases the throughput of a 
loop or improves the utilization of resources by introducing partial 
overlap between the execution times of successive loop iterations in 
the original description, that is, pipelining several loop body 
iterations. Retiming function Nnnr ∈∀),(  is the number of delays 
drawn from each of the incoming edges of node n and pushed to 
each of the outgoing edges. By changing the position of delays 
through retiming, weight, Eeew kk ∈∀),(  of each edge on the 
original DFG are transformed to a new weight, 

Eenrnrewew kjikkr ∈∀−+= ),()()()( , where ek is an edge from node ni 
to nj. A retiming is legal if Eeew kkr ∈∀),(  is nonnegative [12]. 
Figure 2 shows the loop pipelining example using retiming 
technique, which is a simple second-order IIR filter. Assume that 
one multiplier is shared by the multiplication operations in the loop 
body. As shown in Figure 2(d) and 2(f), moving one delay on the 
incoming edge of the upper left multiplication node to its outgoing 
edge corresponds to pipelining nodes from two iterations, that is, the 
upper left multiplication node from (i+1)th iteration, and the 
remaining nodes from (i)th iteration, respectively. As a result of loop 
pipelining, the critical path length is reduced by the elimination of 
the intra-iteration dependency from the upper left multiplication 
node to an addition node. Therefore, the initiation interval of the 
loop is reduced from 3 to 2 time steps. Note, however, that such an 
improvement in throughput is achieved at the cost of controller and 
register overhead by the increased number of PSs. 
We also observe that only one multiplier is allocated to perform the 
two multiplications with one common operand within one iteration 
after pipelining, as shown in Figure 2(d) and 2(f) and, through the 
switching activity reduction of input signals to the multiplier, the 
pipelining reduces power consumption. This is an important 
motivation of our approach, which will be described in detail in the 
following section. 

3. MOTIVATION 
To alleviate the limitation on the number of nodes with COs in the 
original DFGs, we present a novel loop pipelining method. While 
existing loop pipelining transformations try to maximize the 
throughput or minimize the latency of a loop, our pipelining 
algorithm retimes operation nodes such that as many nodes as 
possible take COs as their inputs and performs scheduling and 
binding based on operand sharing concept, and therefore reduces 
the switching activity of FUs, especially of multipliers, while still 
trying to maximize the throughput of the loop. This transformation 
has a significant power-reducing effect on linear applications such 
as filters. 
We illustrate in detail the motivation briefly mentioned at the end of 
the previous section, using the simple second-order IIR filter in 
Figure 2. The switching activity of the multiplier is determined by 
the change of values of the two input operands occurring between 
consecutive executions. As shown in Figure 2(a), 2(c), and 2(e), 
without any transformation, both input operands change their values 
twice per iteration. Now, let's consider pipelining two consecutive 
iterations like Figure 2(b), 2(d) and 2(f). Then one input (s[n-1]) of 
the multiplier changes its value only once at every iteration and we 
can save some power consumed by the multiplier through the 
switching activity reduction. Obviously, after pipelining, the two 
operands of the two multiplication operations (one for each) become 
common. 
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Figure 1. Resource binding without and with operand sharing. 
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Figure 2. Loop pipelining of simple second order IIR filter using 

retiming. 

As shown in Figure 2(f), we can directly apply operand sharing to 
fanout edges of a node whenever the edges have the same weight 
and the target nodes of those edges are bound to the same FU. 

Definition 1. Nodes that have the same operation type are called compatible 
nodes. Edges having the same source node and compatible target nodes are 
called compatible edges. A set of compatible edges is called a compatible 
edge set. Target nodes of every edges in a compatible edge set have the 
possibility of taking a CO as one of their inputs through retiming. 

Figure 3 shows the DFG for a typical second order IIR filter. The 
second order IIR filter contains only one compatible edge set which 
is shown in Figure 4(a). It consists of four edges whose target 
multiplication nodes, *a, *b, *c, and *d take the value from an 
addition node, +g as their inputs after one or two iterations. Assume 
that the DFG in Figure 3 is originally non-pipelined and so initially 
all nodes in a DFG are put in one PS. We also assume that one 
multiplier is allocated for the multiplication operations. If 
appropriate scheduling is performed and therefore four 
multiplications are executed in the order of *a, *c, *d, and *b by the 
multiplier, one input value of the multiplier changes three times 
within each iteration and across successive iterations. If two PSs are 
used so that *b, *c, +g, +f, and +h nodes are executed at the second 
stage, we have the same weight for the edges in the compatible edge 
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set, as shown in Figure 4(b). Now one input value of the multiplier 
does not change within each iteration and changes once across 
successive iterations, irrespective of the scheduling, which 
contributes to the power reduction of the allocated multiplier. The 
pipelining in Figure 3 is regarded to be a retiming which moves one 
delay (weight) on the incoming edges of *a and *d to their fanout 
edges. Relation between loop pipelining and retiming to generate 
COs is explained in detail in the next section through a novel force-
directed retiming which is the first phase of our pipelining 
algorithm. 
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Figure 3. DFG of a typical second order IIR filter. 
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Figure 4. Change in iteration differences of edges in the 

compatible edge set (a) before pipelining and (b) after pipelining. 

When performing loop pipelining for CO generation, we must 
consider constraints such as throughput, latency, and available 
resource. In this paper we consider throughput under the constraints 
on resource and the number of PSs, although the primary concern is 
power. 

4. SYSTEMATIC PIPELINING FOR LOW 
POWER 
4.1 Problem Definition 
Problem: Find a retiming that generates as many nodes with common 
input operands as possible and then a scheduling and a binding that 
minimize the power consumption of FUs, subject to a constraint on the 
number of pipeline stages and a resource constraint, while still maximizing 
the throughput. 

Figure 5 shows an overall process of our systematic pipelining to 
solve the problem. Our approach is composed of three phases in a 
main loop, following the preprocessing step. In the first phase of our 
pipelining method, we propose a novel technique called a force-
directed retiming which retimes operation nodes to allow more 
nodes to take COs. We perform the operand sharing on the retimed 
DFG, based on the list scheduling, in the second phase, and then 
check to see if the scheduled result satisfies the given constraints, in 
the last phase. If the result satisfies all the constraints, it is called 
feasible and is regarded as one of the solutions. In case when the 
result is not feasible, we try to make it feasible by performing 

additional incremental folding and rescheduling on nodes except for 
the nodes made to take COs by the force-directed retiming. To 
explain the details of each phase of the algorithm including 
preprocessing, we take the example of second order IIR filter shown 
in Figure 3 and assume that three adders and two multipliers are 
allocated with three PSs. We also assume, for the time being, that 
the execution times of the adders and multipliers are one time unit, 
but our algorithm can handle multi-cycle and pipelined FUs. 

1 :  Calculate the lower bound on II( );
2 :  Find compatible edge sets( );
3 :  while (1) {
4 :          Calculate PS&TS frames( );
5 :          Generate a PPS set for every source nodes in compatible edge sets( );
6 :          for (all the elements in a PPS set) {
7 :                  Update PS&TS frames( );
8 :                  Force-directed retiming/clustering( );
9 :                  Operand sharing( );
10 :               Feasibility test( );
11:       if (needed) {
12:                          Incremental folding/rescheduling( );
13:         }
14:          } 
15:          if (no solution) {
16:                  Increment II by one( );
17:          } else {         
18:                  Select the best solution( );
19:                  Exit( );
20:          }
21:  }  

Figure 5. Overall process of our systematic pipelining. 

4.2 Preprocessing 
Lower bound on initiation interval (line 1): Lower bound on II, as 
already presented in lots of papers [3][4][5], is determined by the 
resource constraint and the lengths of cycles in the DFG. In the case 
of IIR filter, the lower bound is 2. The pipelining algorithm initially 
takes the lower bound as one of constraints as well as the number of 
PSs and the resource constraint and tries to get solutions. If there is 
no solution, II is increased by one (line 15, 16).  
Compatible edge sets and a PPS set (line 2, 4, 5 and 6): The 
algorithm finds compatible edge sets (line 2). As mentioned in 
Section 3, target nodes of all edges in a compatible edge set can take 
a CO as one of their inputs through retiming. 
However, to determine whether a target node can take a CO or not, 
we need to fix the source node to a specific PS. First, we determine 
the range of PSs and time steps, ([(PS, TS)S, (PS, TS)L]), called 
PS&TS frame, for each operation node (line 4). The PS&TS frames 
are computed by performing pipelined ASAP and ALAP scheduling 
under the II and PS constraints. We use the algorithm proposed in 
[5] for the pipelined ASAP and slightly modified it for the pipelined 
ALAP. In the IIR filter example, the PS&TS frames for *a, *b, *c, 
*d, +e nodes are [(0, _), (1, _)] and those for +f, +g, +h nodes are 
[(1, _), (2, _)], where _ denotes the number from one to II.  Then, 
based on the PS&TS frames, we generate a set of vectors called PPS 
set (line 5). Each vector in the set represents a combination of PSs 
where the source nodes in compatible edge sets are positioned. 
Assuming n compatible edge sets, the vector is in the form of 
[PS(1), PS(2), …., PS(n)], where PS(i) denotes a PS where the 
source node of i-th compatible edge set is positioned. 
Our algorithm shown in Figure 5 obtains solutions for all the vectors 
in the PPT set, in other words, all possible combinations of placing 
source nodes of compatible edge sets in their PS ranges (from line 6 
to 13) and determines the best among the solutions according to the 
criteria such as power, II, and turn-around time (latency) (line 18).  
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The IIR filter example contains only one compatible edge set 
(shown in Figure 4(a)) as mentioned briefly in the previous section. 
Its source node +g has PS&TS frame [(1, _), (2, _)] and one PPS set 
with two elements, 1 and 2. 

4.3 Force-Directed Retiming 
To determine the optimum locations of the target nodes within the 
PS frames in such a way that more nodes take COs as their input 
values, we use force-directed algorithm (line 8 in Figure 5).1  The 
procedure Force-directed retiming/clustering is shown in Figure 6. 

do until (PSs of all target nodes in compatible edge sets  are determined) {
for (each compatible edge set) {

Calculate CO probabilities for target nodes( );
Calculate CO type distribution( );
for (largest CO type distribution) {

Compute forces for target nodes( );
Determine PSs for critical target nodes( );
Retime/cluster the nodes with large force( );

}
}
Update PS&TS frames( );

}
Determine PSs of the remaining nodes( );  

Figure 6. Force-directed retiming/clustering. 
Definition 2. CO probability Pij(k) denotes the probability that the target 
node of edge i in compatible edge set j is placed in a PS such that the edge i 
gets weight k. 
Definition 3. CO type distribution Qj(k) denotes the sum of CO probability 
Pij(k) over the edges in compatible edge set j. 
Definition 4. Force Fij(k) is defined as Fij(k)=Qj(k) - ((ΣkQj (k))/ (PSL - PSS 
+ 1), where PSL and PSS are respectively upper bound and lower bound of 
the PS frame of the target node of edge i. This definition is the same as that 
in force-directed scheduling [7]. 
In the IIR filter example, assume that source node +g is put in PS 1. 
Then Pij(k) and Qj(k) are computed as shown in Figure 7. 
Since we want to let as many compatible edges as possible have the 
same weight, we select the largest type distribution, which is Qj(1) 
in our example. Then we compute the forces Fij(1) only for the 
selected CO type distribution. The algorithm selects the target node 
with the largest force and retimes it at the corresponding PS. The 
reason why we select and retime the node with largest force first for 
the CO type distribution is that it contributes most to the 
corresponding CO type distribution. The same process is continued 
for the target node with the next largest force. During this process, 
we partially bind the selected nodes to the same FU. The number of 
the selected target operation nodes is limited by the ceiling of the 
total number of target nodes divided by the total number of FUs of 
the corresponding type. The limit in the number of the selected 
target nodes is the maximum number of operation nodes with a CO 
that can be executed by an FU. Setting such a limit evenly 
distributes the load over the FUs, resulting in improvement of 
resource utilization. In our IIR filter example, because two 
multipliers are available for execution of the total four target 
operation nodes, two nodes are selected for one multiplier. Although 
F*aj(1) is the lowest, we place *a first since it is on the critical path. 
Then we place *d since F*dj(1) is the highest. Therefore, in our 
example, F*aj(1) and F*dj(1) are selected for one multiplier. In case 

                                                                 
1 Before applying the force-directed algorithm, we need to update the 

PS&TS frames of the target nodes (line 7 in Figure 5) for a given 
placement of source nodes. 

of tie, the algorithm first considers a node belonging to a cycle in the 
DFG. It is because such a node is less flexible in determining the 
PS. After selecting the target nodes up to the limit, the algorithm 
repeats the same process for the remaining target nodes for another 
FU. It continues until the PSs of all target nodes are determined.  

Calculation of CO Probabilities
for target nodes

P*aj(1) = 1 (Critical)
P*bj(0) = 1/2, P*bj(1) = 1/2
P*cj(0) = 1/2, P*cj(1) = 1/2
P*dj(1) = 1/2, P*dj(2) = 1/2

Pij(k) = 0 otherwise

Calculation of CO Type Distribution

Qj(0) = 1/2 + 1/2 = 1
Qj(1) = 1 + 1/2 + 1/2 + 1/2 = 2.5

Qj(2) = 1/2 = 0.5
Qj(k) = 0 otherwise 

Computation of Forces
for target nodes

Selection of Largest CO Type Distribution

Qj(1) > Qj(0) > Qj(2)

F*aj(1) = 5/2 - 5/2 = 0 (Critical)
F*bj(1) = 5/2 - 1/2*(1+5/2) = 0.75
F*cj(1) = 5/2 - 1/2*(1+5/2) = 0.75
F*dj(1) = 5/2 - 1/2*(5/2+1/2) = 1

Calculation of CO Probabilities
for target nodes

P*aj(1) = 1 (Critical)
P*bj(0) = 1/2, P*bj(1) = 1/2
P*cj(0) = 1/2, P*cj(1) = 1/2
P*dj(1) = 1/2, P*dj(2) = 1/2

Pij(k) = 0 otherwise

Calculation of CO Type Distribution

Qj(0) = 1/2 + 1/2 = 1
Qj(1) = 1 + 1/2 + 1/2 + 1/2 = 2.5

Qj(2) = 1/2 = 0.5
Qj(k) = 0 otherwise 

Computation of Forces
for target nodes

Selection of Largest CO Type Distribution

Qj(1) > Qj(0) > Qj(2)

F*aj(1) = 5/2 - 5/2 = 0 (Critical)
F*bj(1) = 5/2 - 1/2*(1+5/2) = 0.75
F*cj(1) = 5/2 - 1/2*(1+5/2) = 0.75
F*dj(1) = 5/2 - 1/2*(5/2+1/2) = 1

 
Figure 7. Calculation of CO probability, CO type distribution, 

and force. 
As a result of force-directed retiming for the compatible edge set of 
the IIR filter, PSs for *a, *b, *c, *d nodes are determined: PS0 for 
*a, *d and PS1 for *b, *c. Finally, the remaining nodes that are not 
related to the set are put into their earliest PSs (PSSs) not to have 
negative effect on system latency. 

4.4 Operand Sharing and Feasibility Test 
After PSs of all nodes are determined, operand sharing based on list 
scheduling is performed for the retimed DFG. Priorities of nodes are 
given as follows. 

1. Operation nodes whose sibling operation nodes (operation nodes bound to 
the same FU a priori) have ALREADY been scheduled get higher priority. 
2. In the case of tie, consider urgency [9] in the retimed DAG. This is 
consideration of II. 
3. If tie is not broken, consider urgency in the original DAG. This is 
consideration of latency. 

After scheduling, we check the scheduled result to see if it meets II 
and PS constraints. The test result is classified as one of the 
following four cases. 

If (The last time step in the last PS is greater than II): Case I 
Not feasible; 

Else if (II obtained is less than or equal to the constraint): Case II 
Done; 

Else if (There are nodes with COs among excess nodes): Case III 
Not feasible; 

Else Incremental folding/rescheduling: Case IV 

where we use the term excess nodes to represent nodes scheduled in 
excess of the II constraint. In Case IV, excess nodes are rescheduled 
in the next PSs to resolve the violation of the II constraint.  
The list scheduling result of the IIR filter in Figure 8 belongs to 
Case IV and contains two excess nodes, +f and +h, which are not 
related to COs. By performing incremental folding and 
rescheduling, we obtain the final scheduling result with 3 PS and 2 
II like Figure 9 for the IIR filter example. For the solution in Figure 
9, one multiplier executes two multiplication operation nodes, *a 
and *d with COs and the other one executes *b and *c nodes with 
COs. Note that this is one of solutions that our systematic pipelining 
algorithm generates for low power under the given PS and resource 
constraint. 
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Figure 8. List scheduling result for retimed DAG of IIR filter. 
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Figure 9. The final schedule. 

5. EXPERIMENTAL RESULTS 
We implemented our pipelining method using C++ under UNIX 
environment. Our implementation takes a VHDL description for a 
linear system and compiles it into a DFG. With the DFG, constraints 
on the number of pipeline stages, and a resource allocation table 
given by the user, the pipelining method produces a retimed, 
scheduled, and partially bound DFG, on which normal FU, register, 
and interconnect binding is performed. 
For the experiment, we selected linear systems from the well-known 
HYPER examples [9]. To show the effectiveness of the proposed 
method through comparisons, we also implemented the state-of-the-
art loop pipelining method proposed in [5], which minimizes the 
latency under constraints on target initiation interval and resource, 
and operand sharing algorithm proposed by Musoll et. al. [2]. We 
first compared our pipelining with existing loop pipelining [5] 
followed by normal binding to show that it produces the result with 
less power consumption, while having the same initiation interval. 
Next our pipelining algorithm is compared with the existing 
pipelining algorithm followed by binding, which is based on 
operand sharing, to indicate that the synthesized results from our 
power-conscious pipelining consume less power than those from 
combination of such separate techniques. 
To estimate power consumption, we modified SPA [8], an RT-level 
power estimation tool that is based on Dual Bit Type model. For 
verification of its reliability, we compared the estimated powers of 
FUs for the second order IIR filter with those estimated by IRSIM 
[11], a switch level simulator, running on the simulation file 
extracted from the layout. For automatic generation of the layout, we 
used the LagerIV layout synthesis system [10] after transforming the 
synthesized DFG into .sdl file format, which is an input format of 
LagerIV system. We used 64 samples of speech data for functional 
simulation and power estimation. Table 1 denotes that our estimator 
is reliable because it has only 2.4% error in evaluating the effect of 
the power reduction in FUs. 
The 2nd order IIR filter in Figure 2 was synthesized under two 
different resource constraints. The first resource constraint is given 
as two array multipliers and two ALUs. We assume that all the 
multipliers and ALUs take one cycle to execute.  Column 5 and 6 in 
Table 2 show the comparisons both between our approach and the 
existing pipelining and between our approach and the combination 
of existing pipelining and operand sharing, in terms of switched 
capacitance. In this example, the ratio of the switched capacitance in 
FUs to that in overall system is about from 65% to 70%. The 
proposed method reduces the switched capacitance in FUs by about 
30% and that in the overall system by about 21%. Table 3 is for the 
case where one multiplier and one ALU are used. No reduction in 

column 6 in Table 2 means that the result from the existing 
pipelining has the same number of COs as our approach. On the 
contrary, column 6 in Table 3 implies that the existing one does not 
generate any COs and has no effects of operand sharing following 
it. 

Table 1. Comparisons of the estimator with IRSIM 
  Estimator IRSIM 

 Alloc. [5] 
(mW) 

Ours 
(mW) 

Red. 
(%) 

[5] 
(mW) 

Ours 
(mW) 

Red. 
(%) 

Error 
in red. 
(%) 

IIR2 +2,*2 33.1 23.3 29.7 29.0 20.7 29.0 -2.4 

Table 2. Comparisons of power consumption for the second 
order IIR filter, under two multipliers and two ALUs (II = 3 

clock cycles, the number of pipeline stages = 2) 

Module SC for 
[5] (pF) 

SC for 
[5] + OS 

(pF) 

SC for the 
proposed 

(pF) 

Red. 
([5] vs 

proposed) 
(%) 

Red. ([5] + 
OS vs 

proposed) 
(%) 

FU 398 280 280 29.7 0.0 
Bus 106 104 104 1.9 0.0 

Register 15 15 15 0.0 0.0 
MUX 23 21 21 8.7 0.0 
Clock 11 11 11 0.0 0.0 

Controller 8 7 7 12.5 0.0 
Total 560 439 439 21.6 0.0 

Table 3. Comparisons of power consumption for the second 
order IIR filter, under one multiplier and one ALU (II = 4 clock 

cycles, the number of pipeline stages = 2) 

Module SC for 
[5] (pF) 

SC for 
[5] + OS 

(pF) 

SC for the 
proposed 

(pF) 

Red. 
([5] vs 

proposed) 
(%) 

Red. ([5] + 
OS vs 

proposed) 
(%) 

FU 264 264 210 20.5 20.5 
Bus 97 97 94 3.1 3.1 

Register 13 13 15 -15.4 -15.4 
MUX 28 28 31 -10.7 -10.7 
Clock 12 12 12 0.0 0.0 

Controller 10 10 10 0.0 0.0 
Total 424 424 372 12.3 12.3 

We also present results for other benchmark examples in Table 4. 
First column shows the number of operation nodes of each type and 
the number of compatible edges, for each benchmark example. IIR7 
is 7th order IIR filter that has a high potential for CO generation. 
Parallel is a parallel form of Avenhaus filter and lattice is a lattice 
filter. Second column shows the initiation interval and the number 
of pipeline stages. Third column shows resource constraints. In 
fourth, fifth and sixth columns, we show the estimated switched 
capacitance values in FUs, after applying the existing pipelining, 
combination of the existing one and operand sharing, and our 
approach respectively. We assume that an ALU takes one cycle and 
a multiplier takes two cycles to execute. The same values in some 
rows in column 4 and 5 mean that no CO is generated after the 
existing pipelining is applied, or normal binding following existing 
one is the same as binding based on operand sharing. Compared to 
the two techniques, switched capacitance reductions of up to 22 % 
in FUs are obtained by the proposed method. As shown in column 7 
in Table 4, our pipelining algorithm consumes less power under the 
same initiation interval as the existing one. Column 8 in Table 4 
shows that our algorithm also obtains bigger power reduction than 
the combination of existing pipelining and operand sharing. It 
denotes that our CO-centric pipelining approach is effective with 
respect to power reduction, compared to combination of such 
separate techniques. Rows in boldface in Table 4 are exceptional 
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cases. In row 8, combination of existing pipelining and operand 
sharing has a little smaller switched capacitance than our approach. 
The reason is related to constants fed to one of inputs of multipliers. 
While our approach produces four pairs of COs, the combination 
obtains only two pairs of COs. But it also has two pairs of constant 
COs which are bound to the same multiplier and can be executed 
successively. As a result, both have the same number of pairs of 
COs. The fact that the value in column 5 is a little smaller than that 
in column 6 illustrates that the effect of constant COs on power 
reduction is a little bigger in our experiment. Exception in row 6 has 
a similar reason. 
Note that the power consumption of modules other than FUs, can 
increase as shown in Table 3. Generally speaking, pipelining and 
operand sharing techniques may increase the number of registers 
needed because variables have longer life times. Since the target 
architecture of our hardware synthesis system is based on point-to-
point interconnection scheme, the increase of the number of 
registers needed causes the increase of the number of buses (which 
means the interconnection between an FU and a register or the 
register-to-register interconnection in our current target 
architecture). This is a shortcoming of our approach in that the 
power consumption in buses is becoming more and more dominant 
as the technology goes into deep submicron. In the bus-based 
interconnection scheme, we can have more efficient use of 
interconnects through bus allocation and scheduling. We expect that 
by combining our pipelining with the bus-based interconnection 
scheme, better results in terms of power consumption in the overall 
system can be obtained. 

6. CONCLUSIONS 
In this paper, we proposed a systematic pipelining method for a 
linear system to minimize power and maximize throughput, given a 
constraint on the number of pipeline stages and a set of resource 
constraints. Our method deals with loop-carried dependencies in a 
DFG using the proposed force-directed retiming, while considering 
throughput and latency. Experimental results over a set of linear 
systems show that our CO-centric pipelining algorithm obtains 
power reduction of functional units by 13.9% on the average under 

the same initiation interval over the conventional one and reduction 
of 9.8% on the average over the combination of conventional one 
and operand sharing. 
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Table 4. Comparisons of power consumption at FUs in various examples under different constraints 

 (II, PS) (ALU, 
MULT) SC ([5]) (pF) SC ([5]+OS) (pF) SC (ours) (pF) 

Reduction 
([5] vs proposed) 

(%) 

Reduction 
([5]+OS vs 

proposed) (%) 
(16, 2) (1, 2) 848 848 794 6.4 6.4 
(17, 2) (1, 2) 956 956 803 16.0 16.0 
(9, 2) (2, 4) 802 825 760 5.2 7.9 
(9, 3) (2, 4) 802 825 682 15.0 17.3 
(10, 2) (2, 4) 816 695 760 6.9 -9.4 
(10, 3) (2, 4) 816 695 690 15.4 0.7 

IIR7 
(*:15, +: 10, 

-: 4) 
(compatible 
edges: 14) 

(7, 3) (3, 6) 703 547 576 18.1 -5.3 
(13, 2) (3, 3) 2174 2174 1936 10.9 10.9 
(14, 2) (3, 3) 2133 2099 1937 9.2 7.7 
(10, 2) (2, 4) 2209 2209 2090 5.4 5.4 
(10, 3) (2, 4) 2209 2209 1899 14.0 14.0 
(8, 3) (3, 5) 2287 2261 1974 13.7 12.7 

Parallel 
(*: 18,+: 16) 
(compatible 
edges: 20) 

(9, 2) (3, 5) 2400 2397 1866 22.3 22.2 
(18, 2) (2, 1) 1238 1238 1110 10.3 10.3 
(19, 2) (2, 1) 1202 1202 1109 7.7 7.7 
(11, 2) (2, 2) 1197 1197 1066 10.9 10.9 
(10, 2) (2, 3) 1215 1215 955 21.4 21.4 

Lattice 
(*: 9, +: 6, 

-: 3) 
(compatible 

edges: 8) (11, 2) (2, 3) 1215 1215 985 18.9 18.9 
     Average 13.9 9.8 
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