Due to the type 3 fonts used, please increase the magnification to view

Low-Energy Encoding for Deep-Submicron
Address Buses

Luca Macchiarulo

Enrico Macii

Massimo Poncino

Politecnico di Torino
Torino, ITALY 10129

ABSTRACT

In this paper, we introduce a new encoding scheme that ex-
plicitly targets the minimization of the bus energy due to the
crosstalk capacitances between adjacent bus lines. The key trans-
formation operated by the code consists of a permutation of
the bus lines, implemented directly during physical design; as
a desirable consequence, no additional encoding/decoding logic
is required at the bus boundaries, thus implying that no latency
penalty is introduced on the processor-memory path. An addi-
tional feature of the permutation-based code is that the encoding
function can be determined without any knowledge of the binary
stream being transmitted. Therefore, the code can be effectively
exploited in general-purpose computing systems. The proposed
code works best on address buses; savings obtained for different
address traces generated by two different processors are in the
order of 26% with respect to the unencoded streams.

1 INTRODUCTION

Several bus encoding schemes for low power have been proposed
in the literature in the last few years. Most of these approaches
target the minimization the transition activity on the bus, with
the objective of reducing the switching of the capacitances of
the bus lines. Some codes, e.g., the Bus-Invert [1], its vari-
ants [2, 3] and the Adaptive [4], have general applicability, i.e.,
they do not require any knowledge about the streams being
transmitted. Others achieve more aggressive transition activ-
ity minimization by taking advantage of some characteristics
of the pattern sequence traveling on the bus. In particular, a
whole class of encoding methods is targeted towards address bus
power minimization, whose strong sequentiality is exploited by
codes such as Gray [5], TO [6] and their modifications [7, 8].
Unfortunately, sizable transition activity reductions are accom-
panied by high-overhead codecs. In particular, while for Gray
the penalty is in performance, TO encoders and decoders are
more energy demanding. Thus, the TO solution is only suit-
able to off-chip buses, where high wiring capacitances allow to
amortize the codec overhead.

Further optimizations can be obtained when the encoding func-
tion is derived from the analysis of a (set of) specific stream(s).
In this case, the statistical properties of the input sequence are
assumed to be known and can be used to automatically gen-
erate the encoding/decoding functions and their corresponding
interface circuitry.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.
ISLPED’01, August 6—7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008...$5.00.

176

Codes of this kind are well suited for embedded systems, where
cores and microcontrollers tend to repeatedly execute a given
application. Beach [9] and Working Zone [10] are examples of
application-specific codes thought explicitly for address buses,
while the information-theoretic code of [4], a practical general-
ization of the work of [11, 12], finds application also in data bus
encoding.

All the encoding solutions mentioned above have one point in
common: They try to minimize the number of transitions on
the bus lines, because this translates to a reduction of the ca-
pacitance that is switched during the communication. With
technology scaling, however, the importance of inter-wire, or
crosstalk, capacitances is becoming predominant.

It has been estimated that the simultaneous transition to op-
posite values (i.e., 0 — 1 and 1 — 0) of two adjacent bus lines
dissipates about four times more energy than without consid-
ering coupling effects, for technologies below 0.25um [13]. As
a consequence, accounting for crosstalk capacitances between
pairs of adjacent wires is becoming key for the applicability of
low-power bus encoding in modern designs.

Recent papers [13, 14] provide some pioneering research on this
subject. The solutions proposed in those works share however a
major limitation with any other bus encoding technique avail-
able in the literature: They require some interface circuitry to
implement the transformation defined by the encoding. In sev-
eral cases, e.g., performance-constrained designs, the addition of
the extra logic cannot be afforded because it lies on the critical
path of memory-to-processor transfers, even if some encoding
schemes reduce this hardware overhead to the minimum.

In this work, stemming from the observation that the minimiza-
tion of the coupling capacitances can be achieved with a permu-
tation of the bus lines, we propose a new address bus encoding
scheme that does not require explicit encoding/decoding cir-
cuitry. The permutation of the bus lines is accomplished at the
layout level; this is a distinctive feature of our approach, because
it allows the introduction of the encoding during physical design,
where bus capacitance information can be accurately estimated.
Conversely, all existing techniques need to be applied at the ar-
chitectural level, since the presence of the encoding/decoding
logic must be taken into account during RTL-to-layout synthe-
sis in order to possibly enable a recovery of the extra latency
imposed by the codec.

We formulate the problem of finding an effective permutation of
the bus lines as a graph problem (a variant of the well-known
TSP [15]), for which very efficient heuristics do exist. We pro-
vide experimental evidence that permutation-based encoding is
general enough not to require a pre-processing phase of the ad-
dress stream of binary patterns being transmitted over the bus;
therefore, the method can be categorized among the general-
purpose address bus encoding schemes, such as the Gray code.

The effectiveness of the code has been assessed for a large variety
of address streams corresponding to various programs run on
two core processors (namely, the MIPS and the ARM). When
used in its general-purpose form (i.e., no preliminary program
profiling is executed), the permutation-based encoding yields an
average bus energy savings of 26% with respect to the case of
no encoding.

The performance of the proposed code is comparable to those
of codes like Gray, with the advantage that it no encoding is
required. Furthermore, the proposed code should not be con-
sidered as an alternative to conventional encodings; rather, it
could be combined with this encoding to further reduce bus en-
ergy with no latency penalty, as proved by our results.

Usage of the permutation-based encoding in the context of data
buses has also been tried for a set of different data streams
of different nature. As expected, the achieved energy savings
are limited (average of 5%) if the code is not customized to
each specific trace. On the other hand, savings increase to an
average of 14% if preliminary analysis of each data sequence is
performed and the codec functions determined accordingly.

2 DEEP SUBMICRON BUS MODEL

The physical capacitances of a bus line can be modeled as shown
in Figure 1. Besides the usual capacitance between the line and
ground, Cr, (the self capacitance), also the coupling capacitance
between the line and its adjacent lines, C;, must be modeled.
The ratio A = g—i represents the relative weight of the two ca-
pacitive effects. The case A = 0 represents the conventional bus
energy model based on the switching of the bus self capacitances.

Line 1

Line 2 75 G % A

Line 3 75 G % a
#4 Fa

Line N—1 :

Line N 7{ G é a

Figure 1: Model of a Sub-Micron Bus.

In deep-submicron technologies, A tends to become larger than
1, expressing the increasingly dominant effect of coupling capac-
itances w.r.t. to self capacitances. The energy model per cycle
for a bus line will thus include the two capacitive effects:

Eyys = (aLCL + aICI)Vd%iv (1)
where ay and aj denote the rates at which each capacitance
is switched. While aj represents the conventional switching
activity of the lines, ay is related to the simultaneous switching
of two adjacent lines. There are four types of transition pairs
between two adjacent lines a and b:

1. a and b switch to different final values;

2. One of the two lines switches, while the other does not;

3. a and b switch to the same final value;

4. None of the lines switches.

Of these four types, only the first two cause Ct to switch, yet
by a different amount. The first type of transitions will cause
C1 to switch twice in a cycle, while transitions of type 2 imply
a single switch per clock cycle. In the case of type 2 transitions,
however, Cr will switch only if the final values on the two bus
lines are different.

177

We assume that the transitions on a and b are perfectly aligned
in time. This assumption is reasonable because the drivers typ-
ically latch the data sent on the bus, thus eliminating possi-
ble misalignments between two simultaneous transitions. If this
assumption does not apply, we should also consider possible
switchings for transitions of type 3.

Table 1 shows the normalized energy consumption for a two-line
bus, when all capacitive effects are considered [13]. In the table,
only transitions from 0 to 1 are counted as power dissipating
transitions on Cp. This is because the 0 — 1 transition is the
one that actually charges the capacitance, drawing energy from
the power supply. In practice, this distinction replaces the %
factor in the conventional power dissipation model.

GRGE)
0—0 0—1 1—0 1—-1
0—0 0 1+ A 0 0
(at,atth) | 0= 1 | 14+ 2 142X\ 1
1—0 0 142X 0 A
1—1 0 1 A 0

Table 1: Normalized Energy on Two Adjacent Bus Lines.

The table clearly shows that increasingly larger values of A, as a
result of smaller technologies, will tend to emphasize the impor-
tance of the energy consumption due to switching of the coupling
capacitances, as opposed to that of the self capacitances. Con-
ventional bus encoding schemes that target the minimization of
the energy component due to C7, will thus target an increasingly
smaller fraction of the overall energy consumption.

3 WIRE PERMUTATION ALGORITHM

In the existing literature [13, 14], the problem of minimizing
the energy consumption due to coupling capacitances has been
tackled by properly encoding the information transmitted on the
bus so that the crosstalk energy is minimized. In other terms,
redundancy, i.e., additional logic, is used to minimize the cost
function.

The solution we propose in this paper is based on a different
idea. A careful analysis of the problem shows that the mini-
mization of the energy due to the coupling capacitances can be
achieved by properly permuting (some of) the bus lines. Such a
solution has the advantage of not requiring an explicit codec, be-
cause the transformation of the data is equivalent to a crossbar
switch.

Problem Formulation

The problem of finding the best permutation of the bus lines
can be formulated as a graph problem. We build a completely
connected undirected graph G(V, E,W), where V = {v;} is the
set of vertices, E = {e; ;} is the set of edges, and W = {w; ;}
is the set of edge weights. Vertices correspond to bus lines, and
weights denote the conditional switching probabilities between
pairs of bus lines. More precisely, given the asymmetric nature
of the weights (not all transition pairs have the same impor-
tance, as shown in Table 1), the actual weights are the product
of conditional switching probabilities and the coefficients that
multiply parameter A in Table 1. From the statistical point of
view, the computation of the weights requires the knowledge of
both transition and signal probabilities of each bus line.

The graph G is completely connected because it represents all
the potential permutations of the nodes. The cost of a permu-
tation, that is, of a path in the graph, is simply the sum of the
costs of the edges that belong to the path.

The problem of finding the permutation with the minimum over-
all cost is therefore equivalent to finding the Hamiltonian path
(i.e., a path that visits each vertex exactly once) with minimum
cost, starting from a given vertex v;, and ending with another
vertex vy. The minimum-cost Hamiltonian path in the graph
represents the permutation of the bus lines that minimizes the
given cost function. This problem is a variant of the well-known
traveling salesman problem (TSP), that solves the more specific
problem of finding the minimum cost Hamiltonian cycle, that
is, a path with the same initial and final vertices. A further
difference in our case is that the initial and final vertices are not
specified in advance, because all possible permutations must be
explored. Nevertheless, minimal modifications to an existing
TSP solver are sufficient to make it applicable to our case.
Although the size of the TSP that must be solved is relatively
small (the number of nodes in the graph is equal to the number
of bus lines), it is large enough to prevent the use of an exact
TSP algorithm. We must then resort to a heuristic solution,
to allow reasonable execution time. In general, we can sacrifice
some performance for a better quality of the solution, since the
TSP will be executed once and for all for a given system.
Among the vast choice of heuristic TSP solvers in the literature,
we have implemented a local search algorithm inspired by the
work of Lin [16]. Local searches are based on the exploration
of the neighborhood of an initial solution to the problem. To
guarantee a reasonably large exploration of the search space,
several initial solutions should be tried as starting points of the
search. Customizing the general paradigm of local search to a
specific problem requires the definition of: (i) The neighborhood
and its size; (ii) The set of starting points and its cardinality.
In the case of T'SP, the definition of neighborhood is based on the
representation of a solution as a permutation IT = {71,...,7n}
of the vertices. Solving the TSP thus consists of finding the
minimum-cost permutation of a set of elements, as opposed to
a path, according to the conventional definition of TSP.

The neighborhood of a solution for the TSP can then be defined
as the set of permutations that can be obtained by swapping a
subset of the elements of the initial permutation. The size of
the neighborhood depends on the number k of elements in this
subset; we thus speak of the k-neighborhood of a solution.

In general, if N is the number of vertices, this amounts to eval-
]]\cf points. The term —1 accounts for the
fact that one out of k! permutations of k elements coincides with
the initial solution.

It has been proved that the best tradeoff between the size of the
neighborhood and the quality of the solution is achieved with
32

3
24800 neighbor points of the initial solution. Furthermore, in
our implementation the search using the 3-neighborhood scheme
has been repeated for R = 100 different random starting points.
This value has shown to yield the optimum length of the TSP
with a probability of 0.99 [16]. The average runtime of the
algorithm with R = 100,k = 3 is of a few seconds on an Alpha
Personal Workstation 433 with 128 MB of main memory.

4 PHYSICAL DESIGN ISSUES

In principle, the encoding/decoding functions can be realized
without any area, performance and power overhead, because
it simply consists of a permutation of some of the bus lines.
In practice, however, their implementation may have introduce
some overhead at the physical level. As a general observation,

uating (k! —1) -

k = 3; in our case, this amounts to evaluating (3!—1)-

178

we note that the routing overhead (occupation of other levels
of metal and vias) is confined to relatively small areas close to
the components, and therefore has small impact to the global
routing. In this section, we analyze and quantify the impact of
the encoding/decoding logic on conventional design metrics.

4.1 Design of the Permutation Network

In order to evaluate the impact on area, performance and power
of the codec on the final design, we must perform an accurate
analysis at the physical level. The first issue is how to realize
an effective layout of the permutation network.

Since our objective is that of employing a unique permutation
for all applications, we can think of inserting a sort of “hard-
wired” crossbar switch into the layout of the design. However,
a plain implementation of a sorting network requires as many
vias as the number of bus lines, in the worst case.

For these reasons, we decided to implement a different strategy,
that guarantees the use of at most two vias per wire. The idea
is to route a signal directly to its final position (wire ¢ goes to
mi). Care must be taken, though, to prevent shorts between
distinct wires. We implemented a technique that is suitable for
any permutation: We first consider exchanges such that m; > ¢
and route them toward the final position 7; using a second metal
layer: This allows the routing of 2 different signals on the same
“bus slot” (see, for example, the two overlapping layers at the
bottom of the layout of Figure 2).

3 1
2 2
4 3
1 l 4

2 D P DO

Figure 2: Via-Constrained Routing Strategy.

In this solution, the overlap area has to be strictly controlled to
avoid high mutual capacitances. It is possible to route all 7; > ¢
signals without causing any short by using a slight modification
of the left-edge channel routing algorithm. After all m; > ¢
wires are routed (wires 4, 3 and 2 in the example of Figure 2),
the remaining wires are treated similarly, without introducing
vias, in the same metal layer as the rest of the bus. It might
be necessary, in some cases, to build a sort of “bridge” to cross
over a previously routed signal. This shows how it is possible
to reduce to 2 the maximum number of vias needed, and try to
compact the network.

Figure 2 shows that the complexity of the encoder is somehow
related to the number of wires to be permuted. This is in-
tuitive, because, if m wires have to be permuted, at most m
vertical tracks are needed. In the following, we refer to the
number of displaced wires as the weight D of a permutation
II = {m1,...,7n}, defined as D = Ezf[(m # i). This quan-
tity can be used to control the complexity of the permutation
network, so that the various cost metrics can be parameterized
with respect to D.

For an acceptable estimation of performance and power over-
head introduced by the codec it is necessary to accurately eval-
uate all parasitics of the interconnection network. To this pur-
pose, we generated the actual layout, using the algorithm dis-
cussed above, for 32 different permutations encompassing all
possible values of D (from 0 to 32, excluding 1), and we ex-
tracted resistance and capacitance values of a distributed net
describing the electrical behavior of the encoder-bus-decoder
cascade. The target technology is a 0.25 ym with 6 levels of
metal. We decided to route the bus on metal3, and route the
codec nets on metal3/metal4d. Minimum pitch has been used
throughout the designs. The detailed Standard Parasitics For-
mat obtained from an extraction with Cadence Affirma Hyper-
extract (a state-of-the-art extractor based on 2.5D extraction
that proved to give well-matched results with 3D extractors),
has been included in a SPICE netlist and then simulated. The
overall distance from the transmitter end to the receiver end
of the bus (including the presence of the encoder-decoder pair)
was chosen to be 1-mm long. The bus loads at the receiver end
were chosen according to actual memory blocks input charac-
teristics, and the driver capability according to its loads. The
netlists were simulated with HSPICE with inputs switching at
the maximal activity. The reason was that we were interested in
the comparison between the unencoded bus and the coded ver-
sion, rather than absolute values. For each net, all maximum
timings were considered in performance reports.

Figure 3 synthetically reports the results of the characterization.
The plot depicts area, delay, and power curves relative to the
encoder with respect to D. To allow the visualization of the
three quantities in the diagram, values have been normalized
with respect to the values without the permutation network
(assumed to be 1).

T
"Area" ——

"Power" -

Normalized Increase

Figure 3: Normalized Area, Delay, and Power vs. D.

The area overhead is roughly proportional to the weight of the
permutation. In fact, while the height of the encoder almost
stays constant, its width depends on the value of D. The ref-
erence value without encoding is the total area of the bus (i.e,
26,000 ;Lm2). ‘We observe that, since the permutation network
does not use active area (i.e., cells), we are using the same chip
area that would be occupied by the bus itself. The real area
overhead is given only by the second level of metal which is nec-
essary to exchange the wires. The delay overhead never exceeds
6.3 ps, a value which is well below the delay of a single library
cell. This amounts to less than 5% of the delay of the entire
bus (158 ps). We observe that the delay is almost insensitive
to D, while it depends on the resistive effects of the vias (that
are never more than 2). Power figures are also insensitive to
variations of D, and the overhead is always below 1%, which is
within the noise margin of the SPICE simulation.

179

4.2 Effect of Boundary Capacitances

The previous analysis considered the bus as it was isolated or,
equivalently, far enough from other sources of crosstalk (e.g.,
ground lines). Obviously, this is an ideal assumption and should
be removed when the effectiveness of the encoding must assessed
with accuracy.

The presence of neighboring wires adversely affects the poten-
tial energy optimization achievable by our method because the
designer typically has no control on the information traveling
on these wires. Therefore, the switching of the coupling capac-
itances between the two boundary bus lines (i.e., Lines 1 and
32) and their respective neighboring lines will cause additional
energy consumption.

Taking these effects into account in the algorithm of Section 3
requires the analysis of the information that is carried by neigh-
boring wires. In particular, we should evaluate the possible
correlation between these wires and the boundary bus lines.
The typical interaction between the bus and the neighbor wires
is depicted in Figure 4. In general, there will be several wire
segments of different lengths (typically much shorter than the
length of the bus), at different distances from the bus (and thus
with different coupling capacitances) and running in parallel

with it.
Wire 1
Wire 2 Wire 3
C1 Cc2
-[T T CTTIC

BUS

1

32

Figure 4: Effect of Boundary Capacitances.

In practice, however, the neighbor wires will not be driven by the
same drivers as the bus. From the point of view of energy bal-
ance, lines belonging to different drivers can be considered as in-
dependent. Therefore, the energy due to the boundary coupling
capacitances depends only on the statistics of the bus boundary
lines, and not on their relation with local boundary wires. This
implies that transition probabilities (of the bus boundary lines)
can be used instead of conditional transition probabilities (as
for internal bus lines).

The energy model per cycle can thus be modified as follows:

Epys = (ar,Cp + a;Cr + (af + o)Cp)VE (2

where a)lg and ag denote the transition probabilities of the two

boundary bus lines, Cp = CrL the boundary capacitance seen
by the two wires, parameterized with respect to the value of the
distance # of the neighbor wires. The minimum value of 3 is 1,
indicating that neighbor wires are at the same distance as the
bus lines (typically, the minimum pitch).

5 EXPERIMENTAL RESULTS
5.1 PB Encoding

We have applied the permutation-based (PB) encoding to sev-
eral address traces obtained from two different code profilers
(namely, pixie for a MIPS processor, and Armulator for an
ARM processor). Two artificial traces that cover a corner case
typical of address traces (i.e., highly sequential streams) have
also been considered: Counter represents a perfect counter that
starts from a random address; CountSkip is a counter sequence
intermixed with random jumps to new locations.

To determine the encoding and decoding functions, we have
first built the cost matrices (corresponding to the weights of the
graph edges) for all the chosen benchmarks. Then, all the ma-
trices have been averaged to a single correlation matrix. Finally,
this matrix has been used to compute the best permutation by
applying the T'SP solver on the graph corresponding to the sin-
gle correlation matrix.

Energy data are shown in Table 2. They are determined assum-
ing a supply voltage of 2.5V. Capacitance values are C; = 1.5pF
and Cp = 0.5pF, that is, A = 3. This ratio corresponds a 15-
mm bus, whose lines are spaced by 1 um (more than than the
minimum pitch — 0.8 um). Considering a relatively long bus
increases absolute capacitance values (but not the value of 3),
thus allowing a fair comparison with other encoding techniques
(which require relatively high-capacitance buses to amortize the
cost of the codecs). The non-minimum-pitch spacing between
lines allows to mitigate the effect of crosstalk noise.

Columns Orig and PB report the energy dissipated by a 32-bit
bus when transmitting the unencoded and the PB encoded ad-
dress traces, respectively. For comparison reasons, the table also
reports energy consumption obtained with Gray; values include
the cost of the codec, synthesized with Synopsys DesignCom-
piler on the usual 0.25um technology and estimated with the
original streams using Synopsys DesignPower.

Stream Orig PB Gray
E E A E A

[nJ] [nJ] [%] [nJ] [%]
AdaptFilter 3515 2704 23.0 2545 27.6
Butterfly 3107 2373 23.6 2206 29.0
DCT 127 93 26.6 79 37.8
DashBoard 1964 1472 25.0 1377 29.9
FFT 271 204 24.5 187 31.0
IirDemo 2108 1631 22.6 1596 24.3
Integrator 1489 1165 21.7 1100 26.1
MatMult 290 205 29.1 208 28.2
Count 2146 1456 32.1 1155 46.2
CountSkip 262 178 32.1 142 45.8

[Average [26.0] [32.5]

Table 2: Energy Results for PB and Gray.

PB encoding achieves an average energy decrease of 26% with
respect to the unencoded stream, while Gray reduces energy, on
average, by 32.5%. Although PB savings are slightly worse, we
emphasize that they are only due to minimization of crosstalk
energy, while Gray savings come mainly from a reduction of
the number of bus transitions (which, as a by-product, also re-
duces crosstalk energy). This indicates that the usage of PB
does not exclude a preliminary stage of Gray encoding; in the
next subsection, experimental data will confirm that PB can be
combined with other codecs to sinergically minimize the total
bus energy.

We observe also that Gray adds a significant amount of logic
on the critical path. The sum of the delay introduced by the
Gray codec is 6.2ns, confirming the fact that the usage of codes
that require complex interface circuitry is constrained to low-
performance systems, where some latency penalty on bus trans-
fers can be tolerated.

5.2 Combined Gray+PB Encoding

As mentioned in the previous subsection, the PB code attempts
to minimize a cost function (i.e., the number of simultaneous
pairwise transitions) which is different from that targeted by
codes such as Gray (i.e., total number of transitions). It may
thus be wise, whenever the design constraints (e.g., available
timing slack or latency on the bus) allow it, applying PB after
a preliminary step of conventional (i.e., Gray) encoding.

180

While this obviously reduces the absolute effectiveness of the
PB code (streams encoded with Gray exhibit less transitions
than the original traces), it helps in achieving a more sizable
bus energy optimization.

The results of Table 3 confirm our claim. In fact, cascading
PB to Gray yields, on average, a total energy savings w.r.t. the
unencoded stream of 46% (14% more than using Gray alone and
20% more than using PB alone).

Stream Orig Gray+PB A
[
AdaptFilter 3515 2167 38.3
Butterfly 3107 1920 38.2
DCT 127 60 52.8
DashBoard 1964 1097 44.1
FFT 271 143 47.2
IirDemo 2108 1342 36.3
Integrator 1489 941 36.8
MatMult 290 162 44.1
Count 2146 810 62.3
CountSkip 262 99 62.2
[Average [46.2]

Table 3: Energy Results for Combined Gray+PB.

5.3 General-Purpose vs. Custom PB Encoding

It was mentioned in Section 5.1 that the permutation used by
PB for the experiments referred to the correlation matrix cal-
culated as the average of all the matrices corresponding to the
various benchmark programs.

If, for each program, a specific permutation is computed starting
from the corresponding correlation matrix, we obtain encoding
and decoding functions which are optimal with respect to the
considered program, and thus produce a more relevant mini-
mization of the crosstalk energy. Draw-back of this approach
is that code profiling of each application is required, and a cus-
tom codec must be synthesized, thus making PB an application-
specific code.

‘We have run an experiment to evaluate how much potential
energy savings is lost when the general-purpose permutation
network (computed as explained in Section 5.1) is used instead
of a trace-specific encoder for each individual stream; Table 4
shows the results.

Stream General PB Custom PB A

H E [nJ] E [nJ] ‘ [%]
AdaptFilter 2704 2663 1.5
Butterfly 2373 2255 5.0
DCT 93 88 5.4
DashBoard 1472 1415 3.9
FFT 204 194 4.9
IirDemo 1631 1601 1.8
Integrator 1165 1145 1.7
MatMult 205 186 9.3
Count 1456 1455 0.1
CountSkip 178 177 0.6

| Average | 3.4 |

Table 4: Energy Results with General and Custom PB.

We note that address streams have a significant degree of unifor-
mity in their statistics: The energy savings using the encoder for
the “average” case (column General PB) cause only a marginal
degradation (3.4% on average) of the savings with respect to
the custom case (column Custom PB), where each stream would
have a specific encoder. This results confirm the claim that PB
can be considered a general-purpose code, whose applicability
does not require the knowledge of the address streams being
transfered.

5.4 Boundary Capacitance Effect

In this section, we quantify the impact of the neighbor wires, as
discussed in Section 4.2, on the reduction of the energy savings
versus the value of # in Equation 2.

40

©w
a
T
L

[
o
T
L

N
(&)
T
L

Cost Function Reduction [%]
& 3
T T
L L

o
T
L

0 L L L L L
0 10 20 30 40 50

B
Figure 5: Effect of Boundary Capacitances.

Figure 5 reports the crosstalk energy savings averaged over all
streams. On the z-axis, the value of 3 is reported. The hori-
zontal line corresponds to the case of 8 = oo (i.e., the results of
Table 4). From the curve, we note that for realistic values of
(i.e., between 5 and 10) the reduction in achievable savings is
relatively limited, and it is still above 20% for the case of 5 = 3.

5.5 Data Streams

We have applied the permutation-based encoding to a set of data
traces representing various types of information, with the objec-
tive of analyzing the applicability of the code to data buses. The
traces we used include ASCII files, binary files and multimedia
data (music, images, etc.), and the results are summarized in
Table 5 for the cases of both general and custom PB.

Stream Orig General PB A Custom PB A

| | i [“sh” o | ™™ | o |
Ascii 5055 4290 15.1 3851 31.3
Bison 4996 5020 -0.5 4705 6.2
Flex 6305 6210 1.5 5979 5.5
gee 1752 1695 3.3 1541 13.7
HTML 3078 2860 7.1 2726 12.9
M31 10561 10513 0.5 9880 6.9
MP3 4401 4341 1.4 4187 5.1

PS 4221 3693 12.5 3493 20.8
Screen 2459 2226 9.5 1648 49.2
Sound 174410 174280 0.1 169760 2.7
| Average | 5.0 | | 15.4 |

Table 5: Energy Results for Data Streams.

From the results in column General PB we observe that the
general-purpose version of PB is effective only for streams that
exhibit explicit non-randomness (e.g., text files, binaries, and
bitmaps), while it provides marginal savings for streams con-
taining information in compressed format (e.g., images, sound
files). The intuitive explanation for this is that compression
tends to flatten the statistical distribution of the bits towards
the random case.

Due to this non-uniform statistical characteristics of the data
streams, the custom version of the PB code is much more effec-
tive than the general purpose one, as shown in column Custom
PB of the table.

181

6 CONCLUSIONS

We have presented a permutation-based (PB) encoding scheme
that explicitly targets the minimization of energy dissipated due
to the switching of crosstalk capacitances. Code calculation does
not require the knowledge of the binary stream being transmit-
ted on the bus, and its implementation does not require explicit
encoding/decoding circuitry.

The method is particularly effective for address buses: Savings
obtained for different address traces generated by two different
processors are in the order of 26% with respect to the unencoded
streams. Our scheme is orthogonal with respect to conventional
encodings that target the energy dissipated due to the switching
of self capacitances. Therefore, it can be combined with such
encodings (e.g., Gray), yielding average energy savings around
46%.

Applicability to data buses is more dependent on the type of
data that must be transferred; in this case, using an application-
specific variant of the code is more appropriate.

References

[1] M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-
Power I/O,” IEEE Trans. on VLSI, Vol. 3, No. 1, pp. 49-58,
Mar. 1995.

M. R. Stan, W. P. Burleson, “Low-Power Encodings for
Global Communication in CMOS VLSI,” IEEE Trans. on
VLSI, Vol. 5 No. 4, pp. 444-455, Dec. 1997.

Y. Shin, S.-I. Chae, K. Choi, “Partial Bus-Invert Coding
for Power Optimization of System Level Bus,” ISLPED-98,
pp. 127-129, Aug. 1998.

L. Benini, A. Macii, E. Macii, M. Poncino, R. Scarsi, “Ar-
chitectures and Synthesis Algorithms for Power-Efficient Bus
Interfaces,” IEEE Trans. on CAD, Vol. 19 No. 9, pp. 969-980,
Sept. 2000.

C.L.Su, C.Y. Tsui, A. M. Despain, “Saving Power in the Con-
trol Path of Embedded Processors,” IEEE Design and Test of
Computers, Vol. 11, No. 4, pp. 24-30, Winter 1994.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
“Asymptotic Zero-Transition Activity Encoding for Address
Buses in Low-Power Microprocessor-Based Systems,” GLS-
VLSI-97, pp. 77-82, Mar. 1997.

H. Mehta, R. M. Owens, M. J. Irwin, “Some Issues in Gray
Code Addressing,” GLS-VLSI-96, pp. 178-180, Mar. 1996.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, “Ad-
dress Bus Encoding Techniques for System-Level Power Opti-
mization,” DATE-98, pp. 861-866, Feb. 1998.

L. Benini G. De Micheli, E. Macii, M. Poncino, S. Quer, “Re-
ducing Power Consumption of Core-Based Systems By Address
Bus Encoding,” IEEE Trans. on VLSI, Vol. 6, No. 4, pp. 554-
562, Dec. 1998.

E. Musoll, T. Lang, J. Cortadella, “Working-Zone Encoding for
Reducing the Energy in Microprocessor Address Buses,” IEEE
Trans. on VLSI, Vol. 6, No. 4, pp. 568-572, Dec. 1998.

S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “A Coding Frame-
work for Low Power Address and Data Busses,” IEEE Trans.
on VLSI, Vol. 7, No. 2, pp. 212-221, Jun. 1999.

S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “Signal Coding for
Low Power: Fundamental Limits and Practical Realizations,”
IEEE Trans. on CAS II, Vol. 46, No. 2, pp. 923-929, Jul. 1999.
P.P. Sotiriadis, A. Chandrakasan, “Bus Energy Minimization
by Transition Pattern Coding (TPC) in Deep SubMicron Tech-
nologies,” ICCAD’00, pp. 322-327, Nov. 2000.

K.-W. Kim, K.-H. Baek, N. Shanbag, C.L. Liu, S.-M. Kang,
“Coupling-Driven Signal Encoding Scheme for Low-Power In-
terface Design”, ICCAD’00, pp. 317-321, Nov. 2000.
C. H. Papadimitriou, Combinatorial Optimization:
rithms and Complexity, Prentice-Hall, 1982.

(2]

(3]

[4]

B

(6]

[7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15] Algo-

[16] S. Lin, “Computer Solution of the Traveling Salesman Prob-
lem,” Bell Systems Technical Journal, Vol. 44, No. 10,
pp. 2245-2269, Dec. 1965.

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

