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ABSTRACT 
This paper presents a new algorithm for designing efficient 
harmonic resonant rail drivers. The circuit solution is coupled to a 
standard pulse source and uses only discrete passive components. 
It can thus be externally tuned to minimize the consumed power 
in the target IC. A new efficient algorithm based on current-fed 
pulse-forming network theory is proposed to find the value of 
each discrete component for a target frequency and a given load 
capacitance. The proposed driver topology can be used to 
generate any desired periodic 50% duty-cycle waveform by 
superimposing multiple harmonics of the desired waveform, 
however, this paper focuses on the generation of square-wave 
clock signals. We have tested the driver with a capacitive load 
between 38.3pF and 97.8pF. The overall dissipation for our 
second-order harmonic rail driver is 19% of fCV2 at 15MHz and 
97.8pF load. 

Keywords 
Harmonic-resonant rail driver, energy-recovery circuit, pulse-
forming network, clock generation. 

1. INTRODUCTION 
The clocking circuitry of a VLSI chip is a significant source of 
power dissipation in many cases [1]. Reducing the power 
dissipated inside the clock drivers and clock signal lines can 
significantly reduce the overall power dissipation of the VLSI 
system. Since for CMOS VLSI the clock signal line loads are 
highly capacitive, it is possible to use resonant charging 
techniques to dissipate only a small fraction of the energy stored 
in the clock lines during each clock cycle. The simplest approach 
is to use a flyback circuit shown in Fig. 1 that will produce 
sinusoidal pulse [2]. In spite of its simple structure, energy 
efficiency of the driver is relatively poor when the nFET is driven 
non-resonantly. Blip circuits (Fig. 2) [3] have been successfully 
demonstrated that all-resonant almost non-overlapping sinusoidal 
pulses can be generated by cross-coupling two such circuits. 
These pulses have been used as a source of cheap power for 
driving the large on-chip CMOS signal lines of a VLSI 
microprocessor [2][4] and can also be used as a two-phase clock. 
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Fig. 1: A single-rail resonant clock driver 
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Fig. 2: The all-resonant blip driver 

A common disadvantage of both these drivers is that the output 
signal frequency and magnitude depend heavily on the load 
capacitances Cϕ. Because the load capacitances Cϕ may be data-
dependent and can vary from cycle to cycle, these clock drivers 
can exhibit some frequency variation, which adversely affects 
system stability and performance [5]. Of the two drivers, 
frequency variation in the blip driver is often more pronounced 
because of the positive-feedback nature of the two outputs. 
Another disadvantage of both of these drivers is the need for a 
distinct power supply Vdc whose value is determined by the load 
capacitance and the target frequency. 

The slow rise and fall times of the sinusoidal pulse is another 
major concern for non-adiabatic applications for two reasons. 
First, the slow transition times generally increase the amount of 
short circuit current in internal clock drivers and/or clock-related 
circuits, i.e., flip-flops and latches. To overcome this problem, 
designers are forced to use lower than nominal supply voltages to 
limit short circuit current, thereby reducing achievable 
performance. Second, the speed penalty imposed by the slow 
transition times of sinusoidal pulses can be a significant portion of 
the cycle time, making them often impractical. A resonant rail 
driver with faster transition times can overcome these difficulties, 
making it applicable to both adiabatic and non-adiabatic 
applications. 

Younis and Knight [6] proposed a non-dissipative rail driver to 
generate square-wave signals resonantly. However, depending on 
the number of harmonically related sinusoids in the output signal, 
their circuit requires several distinct power supplies, which are 
prohibitive for practical implementations. 

In this paper, we present a new algorithm and experimental results 
for harmonic resonant rail driver circuits that generate desired 
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waveforms with 50% duty cycle by superimposing multiple 
harmonics. Linear network theory is normally applied to predict 
the waveform that would be generated by a network of passive 
components. We seek to apply it for the inverse problem, i.e., 
given a waveform, derive the network of passive components. An 
incremental solution to this problem was proposed in [6]. In our 
work, however, we have developed a direct method for calculating 
the component values given the desired waveform shape and the 
nominal value of the load capacitance. We have experimentally 
validated the theory for generating waveforms approximating 
square waves. Our algorithm is based on current-fed pulse-
forming network theory [7]. Traditionally, these current-fed 
networks are powered by a constant current source, which can 
often consume significant power. In contrast, we propose using a 
conventional pulse generator so that no additional distinct voltage 
or current supply is needed.  

Our circuit topology has been tested for various load capacitances 
at frequencies up to 15MHz. The worst-case overall dissipation 
for a second-order harmonic signal is 19% of fCV2 at 15MHz and 
97.8pF load. Frequency variation due to a change in load 
capacitance is minimal because the input pulse generator serves as 
a continuous correcting factor. In addition, the stable input pulse 
level substantially suppresses variation of the peak voltage. 
Variations in the load capacitance appear as higher dissipation in 
the clock driver. 

The remainder of this paper is organized as follows. First, we 
briefly review the theory of waveform synthesis using a current-
fed pulse-forming network. Then, we present our new algorithm 
to identify the value of each component in the proposed driver. 
We then discuss practical implementations and laboratory 
measurement results. We conclude by discussing potential 
applications and future work. 

2. CURRENT-FED PULSE-FORMING 
NETWORKS 
One way to generate an arbitrary periodic pulse is to exploit its 
Fourier series expansion by superimposing a finite number of its 
harmonics. In particular, an ideal square-wave v(t) can be 
represented using the following infinite series. 
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where T is the period of the square-wave. In practice, only the first 
few terms are needed to yield a waveform that closely 
approximates a square-wave. 

A current-fed pulse-forming network (CFPN) yielding the first n 
harmonics is shown in Fig. 3 [7]. To analyze this network, we first 
assume that switch S opens at t=0 and there is no energy initially 
stored in the network. 
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Fig. 3: Current-fed pulse-forming network (CFPN) 

The voltage across k-th LC-section is shown in Eq. 2. 
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Cascading n such a LC-section in series yields the following 
equation for the output voltage v(t). 
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By comparing Eq. 3 with Eq. 1, the values of all components in 
the network can be directly determined.  

As is, however, this network cannot directly be used as a driver 
because none of the capacitances model the load capacitance 
residing between the output node and ground. To meet this 
requirement, an equivalent network can be derived through 
mathematical transformations of impedance and admittance 
functions as shown in the following equations. 
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Fig. 4 depicts one of the equivalent networks of Fig. 3 that 
corresponds to Eq. 5. By inspection, 
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Fig. 4: Equivalent network of Fig. 3 where C0 represents the 
on-chip capacitance load 
The values for C0 and L0 are found by noting that 
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To find values of other components, we can use partial fraction 
expansion of the admittance function Y(s) [8]. In the following 
section, we show that this incremental procedure can be replaced 
by finding the roots of a characteristic equation and solving a 
corresponding set of linear equations. 

3. ALGORITHM 
Since the two networks shown in Fig. 3 and Fig. 4 are equivalent, 
we can write the Laplace transform of v(t) by converting Eq. 1 for 
the order of n, i.e., 
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It is straightforward to get the Laplace transform for each branch 
current using Eq. 8 as follows. 
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The last condition in Eq. 12 should be satisfied to prevent the 
LkCk-section from introducing a new pole at ωk. The second and 
third conditions can be derived from a partial fraction expansion 
of the Eq. 11. These conditions are combined to produce a 
characteristic equation, 
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Let’s assume that n-1 roots of this characteristic equation are 
found, that is, 
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By applying KCL on the output node of the network, the 
relationship of branch currents is defined by the equation 
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Comparing both sides of Eq. 15, the linear equations shown in Eq. 
16 determine the inductance values L1,…,Ln-1. These values are 

combined with Eq. 14 to calculate the capacitance values 
C1,…,Cn-1. 
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As an example, consider the task of finding the value of all 
components of the second-order driver for a 1MHz clock and a 
100pF load. From Eq. 13, we have 
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Using this value, we can rewrite Eq. 16 as follows. 
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By solving these equations, we find inductor values, L0=140.72uH 
and L1=79.16uH. Lastly, since ω1

2=5ω0
2=1/L1C1, it follows that 

C1=64pF. 

4. IMPLEMENTATION 
Even though the CFPN shown in Fig. 4 has an appropriate 
configuration for our applications, two problems preclude the 
network from being directly applied as a clock driver. First, the 
waveform swings between +V0 and –V0 as opposed to 0 to +V0 
swing. Second, the need for a constant current source is a major 
disadvantage of the CFPN. In particular, the benefit of low-power 
consumption of the CFPN would be cancelled out in the presence 
of a constant current source that generally consumes large 
amounts of power. We propose a unique solution that overcomes 
these impediments. 

A voltage pulse-fed positive-swing pulse driver circuit is shown in 
Fig. 5. To generate the first n harmonic sinusoids at the output, we 
must filter out most of the sinusoids of higher frequencies present 
in the input square-wave pulse. This can be done by placing a 
resistance R between the input pulse generator and the output of 
the driver. Since the driver circuit is designed to resonate at the 
first n-th harmonic frequencies, ideally these sinusoids will not be 
affected by the resistance.  

Pulse
Generator

R

L0 L1 Ln-1

CT C1 Cn-1
C0

Vi VO

 
Fig. 5: Voltage pulse-fed harmonic resonant rail driver 

Fig. 6 depicts the frequency response of the second-order driver 
circuit for a 1MHz clock signal with different resistance values. It 
is clearly shown that no distortion is incurred at two resonant 
frequencies (1MHz and 3MHz) for all resistance values. From this 
graph, it seems favorable to increase the resistance to reject higher 
harmonics. However, parasitic resistances of the components and 
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wires reduce the voltage level of output signal as R becomes 
larger. Therefore, it is important to use an adequate resistance 
value while maintaining proper voltage levels of the output signal 
for low-power dissipation. For driving 97.8pF load capacitance at 
1MHz, test measurement demonstrates that 15% of fCV2 was 
dissipated with 2kΩ resistance.  

To make the output signal to swing positively, a large capacitance 
CT is connected in series with L0. In particular, due to its small 
impedance the required DC voltage across CT (1/2VH of the input 
clock signal) can be successfully induced without affecting the 
resonant characteristic of the driver. In our lab tests, 100nF off-
the-shelf capacitor was enough to achieve the desired DC voltage. 
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Fig. 6: Frequency response of network shown in Fig. 5 
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5. MEASUREMENTS 
The harmonic resonant rail drivers containing up to four terms 
(i.e., fourth order) were designed and tested on a wire-wrap board 
that included tunable inductors and capacitors. We varied the 
frequency from 0.8 to 15MHz by setting these components to 
theoretical values we calculated using Eq. 16. We then tuned each 
component to achieve minimum measured power dissipation and 
compared them with their theoretical value. Testing at higher 
frequency was limited by the test setup and equipment that are 
available to the authors. 

Table 1 summarizes the lab measurement results for various 
configurations. In most cases, the measured values of the 
components are within 7% of the theoretical values. Deviation 
between the theoretical and tuned capacitance values is larger than 
for the inductors presumably because of the large parasitic 
capacitances in our wire-wrapped board. As reported in Table 1, 
approximately 19% of the calculated conventional power 
dissipation fCV2 was dissipated for the second-order driver at 
15MHz to drive 97.8pF load capacitance. Power dissipation 
increases as the order of the driver increases. This effect appears 
to be due to more parasitic components in the test board. In 
addition, tuning the circuit for minimum measured power 
dissipation is increasingly error prone since more design variables 
are involved.  

The last row in Table 1 shows the measurement data of the second 
order driver for different load capacitances at 1MHz. Resistance 
values are reduced to achieve 10% rising and falling times of the 
total cycle time. Power dissipation is increased by approximately 
7% for this case while rising and falling times are shortened by 
3% from the minimal power dissipation mode. This result 
suggests that by changing resistance value, we can control the 
rising and falling times at the expense of power consumption. Fig. 
7 illustrates the measured power dissipation as we changed the 
resistance value R for 1MHz and 100pF. The transition time with 
2kΩ resistance was measured as 110ns and other transition times 
are normalized in the graph. At 285Ω, the transition time drops to 
50ns (45%) while the power dissipation increases from 15% to 
57.9% of fCV2. 
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Fig. 7: Normalized power dissipation and transition time 
versus resistance R. fCV2 is the theoretical conventional power 
dissipation to drive load capacitance C 
Fig. 8 and Fig. 9 show oscilloscope traces of the output signal of 
the driver for the second and third order harmonics. To see how 
the output signal is synchronized, the input pulse is also shown. 
FFT-enabled oscilloscope trace for the fourth-order driver output 
is presented in Fig. 10. It is shown in the figure that only four 
harmonic frequencies are present in the output signal. Fig. 11 
presents the trace of the output signal of the second order 
harmonic driver for 10MHz frequency. 

 
Fig. 8: Scope trace of output waveform for 2nd-order driver at 
1MHz 
To measure power dissipation and frequency variation as a 
function of load capacitance change, we varied the load 
capacitance C0 from –30% to +30% of the nominal value while 
keeping all other components the same. The power was then 
measured. The results for a 1MHz clock and a 100pF load 
capacitance are plotted in Fig. 12. Normalized power dissipation 
in the graph is the ratio between the measured power dissipation 
and fCV2. Power dissipation at 100pF is minimum because the 
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circuit is designed to harmonically resonate at this value. Virtually 
no frequency variation was noticed for this range of capacitances. 
This is in sharp contrast to previously reported rail drivers whose 
frequency varies proportional to the square root of variations in 
capacitance [5]. For capacitance greater than 130%, however, 
slow transition times and low voltage swings are observed. On the 
other hand, if we reduce the load capacitance below 70% of 
nominal, the power dissipation increases rapidly because current 
from the input pulse generator charges the load capacitance 
instead of it being charged resonantly. 

 
Fig. 9: Scope trace of waveform for 3rd-order driver at 1MHz 

 

 
Fig. 10: FFT-enabled scope trace of waveform for 4th–order 
driver at 1MHz 

 
Fig. 11: Scope trace of waveform for 2nd-order driver at 
10MHz 
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Fig. 12: Normalized power dissipation versus load capacitance. 
All components except load capacitance C0 are kept same as 
designed for 100pF load capacitance. 

6. CONCLUSION 
In this paper, we presented a new algorithm and a prototype 
implementation of a harmonic resonant rail driver. The design 
goal was to produce an energy-efficient harmonic resonant clock 
signal using a simple network topology requiring no additional 
DC power supply. The experiment result shows that a significant 
energy for driving clock load can be recycled and saved by the 

Table 1: Measured data of second, third and fourth harmonic resonant rail driver for various clock frequencies and load 
capacitances. The first three rows are data for driving 97.8pF load capacitance at different clock frequencies and the last row shows 
data for different load capacitances at 1MHz. Theoretical and measured values of each component are also shown for comparison. 

C1 C2 C3 L0 L1 L2 L3  fCLK 
MHz 

C0 
theory measured theory measured theory measured Theory measured theory measured theory measured theory measured 

R 
P/fCV2 

(%) 
0.8 97.8 62.6 59.8 - - - - 224.83 215.0 126.47 119.6 - - - - 3.151 14.29 
1.0 97.8 62.6 59.8 - - - - 143.89 135.9 80.94 75.6 - - - - 2.015 14.53 
2.0 97.8 62.6 59.0 - - - - 35.97 34.6 20.23 18.8 - - - - 1.183 14.88 
5.0 97.8 62.6 59.3 - - - - 5.76 5.6 3.24 2.96 - - - - 0.493 14.66 

10.0 97.8 62.6 56.0 - - - - 1.44 1.50 0.81 0.79 - - - - 0.120 16.58 

2nd 
order 
VH=3 
VL=0 

15.0 97.8 62.6 56.5 - - - - 0.64 0.67 0.36 0.36 - - - - 0.056 19.00 
0.8 97.8 105.3 98.8 21.4  - - 155.28 155.2 81.49 80.3 98.84 94.8 - - 2.311 16.45 

1.0 97.8 105.3 99.5 21.4 19.5 - - 99.38 99.7 52.15 50.7 63.26 61.8 - - 1.671 16.61 
2.0 97.8 105.3 100.1 21.4 19.4 - - 24.84 24.3 13.04 12.6 15.81 15.3 - - 0.879 16.78 

3rd 
order 
VH=3 
VL=0 5.0 97.8 105.3 103.5 21.4 19.3 - - 3.98 3.9 2.09 1.9 2.53 2.3 - - 0.353 17.48 

0.8 97.8 146.4 137.0 33.2 30.8 11.7 10.2 118.53 117.5 60.86 60.8 66.68 67.0 83.15 78.0 1.417 26.41 
1.0 97.8 146.4 138.3 33.2 30.4 11.7 9.9 75.86 76.6 38.95 39.8 42.68 43.8 53.22 50.0 0.958 28.03 
2.0 97.8 146.4 138.0 33.2 31.4 11.7 9.9 18.96 19.2 9.74 9.7 10.67 10.7 13.30 12.0 0.617 27.16 

4th 
order 
VH=3 
VL=0 5.0 97.8 146.4 138.2 33.2 31.8 11.7 10.3 3.03 2.9 1.56 1.5 1.71 1.6 2.13 2.1 0.223 28.52 

1.0 38.2 24.4 21.6 - - - - 368.39 350.0 207.32 199.6 - - - - 2.48 23.85 
1.0 55.4 35.5 34.2 - - - - 254.01 243.3 142.88 138.4 - - - - 1.867 23.27 
1.0 67.7 43.3 45.5 - - - - 207.86 198.0 116.92 109.3 - - - - 1.592 22.73 

2nd 
order 
VH=3 
VL=0 1.0 84.0 53.8 56.0 - - - - 167.53 160.30 94.23 90.10 - - - - 1.577 22.76 
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resonant characteristic of the proposed driver. Depending on the 
number of harmonics in the driver, we were able to save 70-85% 
of the conventional power dissipation. Moreover, the frequency 
variation caused by changes in load capacitance demonstrated 
significant improvement from the previously reported resonant 
clock drivers. 

Application to two-phase requires more work. In particular, 
generating non-overlapping two-phase clocks using this driver is 
inherently impossible due to 50% duty cycle and relatively slow 
transition times for low-order drivers. One possible solution 
would be to drive a single-rail resonant rail driver shown in Fig. 1 
by the proposed driver. This all-resonant rail driver has better 
energy efficiency than the single-rail driver and does not suffer 
from the load balancing issues of the blip driver. True single-
phase energy-recovery logic [9] is another possible application for 
the proposed driver as we can adjust the clock waveform to 
closely simulate a voltage ramp rather than a sinusoidal clock 
signal. For single-phase low supply voltage system, the proposed 
driver can be directly applied for driving a clock network since 
the short-circuit current caused by the slow-edge of the clock 
signal becomes negligible as the supply voltage approaches 2Vth 
[10]. In addition, for high frequency applications, the proposed 
drivers ’  transition times of 10% of the total cycle time is 
sufficiently small to ensure nominal static power dissipation. 
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