
Fast, Flexible, Cycle-Accurate Energy Estimation

Phillip Stanley-Marbell, Michael S. Hsiao
Department of Electrical and Computer Engineering

Rutgers University
Piscataway, NJ 08854

fnarteh, mhsiaog@ece.rutgers.edu

ABSTRACT
Designing energy eÆcient hardware and software systems
demands di�erent tools at various levels in the design hier-
archy. There is however a dearth of tools to enable investi-
gation and implementation of energy eÆcient software and
hardware architectures. Presented is a fast,
exible, cycle-
accurate architectural simulator, Myrmigki, that models a
commercial microcontroller and microprocessor family, and
enables cycle-accurate power dissipation analyses through a
combination of instruction level power analysis and circuit
activity estimation.
Myrmigki is intended to be used to study the e�ect of

microarchitectural features on the energy eÆciency of hard-
ware and software systems. It provides facilities for dynamic
voltage scaling, clock speed setting and per-cycle architec-
ture recon�guration, and is easily extended to add new mi-
croarchitectural features and model new instruction set ar-
chitectures. The simulator provides over an order of mag-
nitude speedup over a contemporary state-of-the-art power
estimating simulator, while providing estimates within 10%
of measurements from prototype hardware that it models.

1. INTRODUCTION
Increasing device integration has heightened the desire to

reduce device power consumption. Besides mobile applica-
tions where battery life is a key utility metric, power con-
sumption is becoming increasingly important for tethered
applications, due to packaging and cooling costs. There is
therefore a growing need to investigate the impact of both
hardware and software architectures with low power con-
sumption, and the interactions therein. On the side of hard-
ware, system architectures and processor microarchitectures
for low power must be investigated, and on the software end,
compiler writers are beginning to investigate avenues for ex-
ploiting new low power hardware architectures. In order to
bridge the gap between the investigation of hardware archi-
tectures and compiler techniques for low power, an infras-
tructure for architectural tradeo� investigation is needed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008 ...$5.00.

Such an infrastructure must be functionally correct, fast
and
exible. Functional correctness and speed are essen-
tial to be able to run realistic workloads over the simulator,
while obtaining correct results. Speed is also key to mak-
ing techniques such as energy-pro�ling compilation a real-
ity. Flexibility is important since the level of detail in the
information required from the simulator will vary between
applications, and between di�erent phases of the same appli-
cation. In general, the greater the degree of detail required,
the slower the simulation, making it necessary to tradeo�
simulation speed for detail.
Presented is a simulation tool, Myrmigki, an execution

driven architectural simulator and energy estimation frame-
work, which models an embedded system based on the Hi-
tachi SH3 architecture [9]. It is a complete architectural
simulator capable of booting unmodi�ed commodity operat-
ing systems and embedded applications targeted at the SH3-
LCEVB [2], a hardware evaluation board for the SH7708F60
microcontroller. Although it currently only simulates the
Hitachi SH architecture family, the simulator can easily be
extended to model other processor families, due to its mod-
ular construction. It models the processor (CPU core, on-
chip cache, various on-chip peripherals), o�-chip memory,
and RS-232 serial communications interface. In addition to
an accurate functional model, it includes two complemen-
tary means of estimating energy cost of application software
{ An empirical instruction level power model similar to [13]
and circuit activity estimation. Also modeled are features
not present on the target hardware, such as dynamic volt-
age scaling, clock speed setting and a broad range of on-chip
cache con�gurations, to permit the investigation of archi-
tectural tradeo�s for energy eÆciency, and the investigation
of software and hardware architectures for dynamic voltage
scaling and clock speed setting.
The simulator provides over an order of magnitude per-

formance improvement over a contemporary state-of-the-art
power estimating simulator that models similar hardware.
The functionality of the simulator has been validated with
several benchmark programs, including a commercial op-
erating system [1]. The accuracy of the simulated energy
estimates were validated with hardware measurements, and
are shown to be within 10% of the measured values.
The remainder of the paper is structured as follows. Sec-

tion 2 describes related work. Section 3 describes the SH3
architecture and the overall architecture of the simulator.
Sections 4 and 5 describe the power estimation facilities
provided, and the facilities for investigating architectural
tradeo�s. Section 6 details a performance evaluation and

131141

Due to the type 3 fonts used, please increase the magnification to view

comparison with a contemporary power estimating simula-
tor, and Section 7 concludes the paper.

2. RELATED WORK
There has been a considerable amount of work in the �eld

of cycle accurate simulators for architectural investigation
and performance evaluation of application and system soft-
ware [3, 7, 15]. These have typically focused on fast func-
tional simulation for architecture emulation, address tracing
for memory hierarchy analysis and microarchitectural trade-
o� investigations.
The level of detail in the modeling performed by a sim-

ulator is a deciding factor in its performance. Generally,
the larger the amount of detail, the slower the simulator.
Fast functional simulators employing dynamic compilation
such as Shade [7] and Embra [15] can simulate commercial
microprocessors functionally at overheads of less than 10
host instructions per simulated instruction, whereas power
estimating simulators such as Wattch, SyCHOSys and Sim-
plePower [5, 11, 16] provide cycle accurate circuit activity
estimation at overheads of hundreds of host instructions per
simulated instruction.
Few tools exist for estimating the impact of hardware and

software architectures on energy consumption in embedded
systems. The majority of energy estimation tools available
are at lower levels of the system design hierarchy. Though
indispensable for gate level simulation, tools such as SPICE
can only be applied in the �nal stages of a design, where
it is often impossible to make sweeping microarchitectural
changes. Furthermore, simulation speeds of such tools are
very slow compared to application execution speeds on the
target architecture. Tools such as PowerMill [10] provide
higher simulation speeds with competitive accuracy, how-
ever still simulate designs in too great detail to be suitable
for power estimation and simulation of real workloads on
commercial processors.
Tools such as SyCHOSys [11] simulate at speeds of up

to 8 orders of magnitude faster than SPICE, at the cost
of reduced accuracy. SyCHOSys simulates portions of a
design by automatically generating a cycle accurate simu-
lator from a user supplied processor description. Simple-
Power [16] simulates a subset of the SimpleScalar [6] archi-
tecture. Wattch [5], like SimplePower simulates a derivative
of the SimpleScalar architecture. They both derive power
estimates from analysis of the circuit activity induced by ap-
plication programs and from detailed capacitive models for
the architectures they emulate. In [14] the authors extend
a commercial instruction-level simulator with an instruction
power model for a speci�c hardware device and its peripher-
als, obtaining energy estimates within 5% of hardware mea-
surements.
Myrmigki is functionally comparable to SyCHOSys, Sim-

plePower, Wattch and the simulator described in [14]. Un-
like Wattch and SimplePower, Myrmigki does not incorpo-
rate elaborate capacitive macro-models for the architecture
it simulates, but rather provides an equivalent amount of
insight by providing per-component transition counts for a
given workload. These may then be used by a system de-
signer o�-line to obtain per-component and system-wide en-
ergy consumption estimates. Furthermore, Myrmigki aug-
ments this circuit activity estimate with an instruction level
power model for the processor it models, enabling it to per-

16−bit Peripheral Data Bus

CPU

Bus State

Interrupt
Controller

User Break
Controller

Controller

Hardware
Multiplier

Unified
Cache
Memory

Unified

Instruction/data

TLB

MMU
Communication

Serial

Interface

Clock
Real−Time

Timer

Operation
Mode
Controller

Controller
Cache

PLL Clock
Oscillator

32−bit Data Bus

32−bit Physical Address Bus

32−bit Virtual Address Bus

Peripheral Address Bus

Figure 1: Hitachi SH3 architecture

form energy cost estimation within 10% accuracy of mea-
sured values.

3. MODELED ARCHITECTURE
The SH3 is the third generation of the Hitachi SuperH

RISC architecture [9]. It is a 32-bit RISC architecture, with
a 5-stage pipeline, most instructions completing in a single
cycle. Instructions are 16-bit for high code density. Figure 1
shows the functional layout of the SH3 architecture.
The simulator is controlled through a simple scripting

language, which includes the entire instruction set of the
modeled architecture, along with commands speci�c to the
simulator such as commands for recon�guring the simulated
cache architecture, toggling pipeline simulation, loading and
executing �les containing commands in the command lan-
guage and loading and executing binaries compiled for the
simulated architecture. The language interface is also ac-
cessible to applications running over the simulator through
a memory-mapped command register described further in
Section 5.1. A command line interface permits interactive
execution of commands in this command language. The sim-
ulator is also available as a library, that can be linked into
applications that wish to use the functionality of the simu-
lator, for example an energy-aware pro�ling compiler may
use the simulation engine to determine tradeo�s between
various optimizations, in terms of energy usage.
The simulator models a �ve stage pipeline, with pipeline

stages for instruction fetch, decode, execute, memory access
and register �le write-back. The simulation of the pipeline
can be enabled or disabled on a per-cycle basis. Simulation
of the pipeline provides an accurate account of the number
of cycles needed to execute an application, and it may be
turned o� to obtain a faster functional simulation. The fast
functional simulation provides functionally correct applica-
tion execution results at the cost of a loss in the accuracy
of application execution time and induced circuit switching
activity estimation. The signal transition activity model-
ing is discussed further in Section 4.1, and control over the
modeled architecture is discussed further in Section 5.

3.1 Shared Decode Cache
Myrmigki performs simulation of applications using a tech-

nique similar to threaded code [4]. Object code for the target

132142

Decode_Cache[0x375E] =

010101110011 1110

0481215

ADDC R5, R7

Cycles Format OP fptr

0x1 instr_nm ADDC addc()

032404347

Integer Value of Instruction = 0011011101011110 = 0x375E

Figure 2: Decode Cache entry

architecture is used to index into a structure called the de-
code cache, which maintains per-instruction information for
the quick simulation of instructions. Instructions in the SH
architecture are �xed length, 16-bit. This permits the use of
a small (64K-entry) software structure to maintain decode
information for every possible instruction encoding.
Each entry in the decode cache consists of four �elds: Cy-

cles, Format, OP and Fptr. The Cycles �eld speci�es the ex-
ecution latency of the instruction. The latency of memory
access instructions is determined by the cache con�guration,
and also by the simulated operating voltage discussed fur-
ther in Section 5. The Format �eld speci�es the instruction
format of the indexing instruction, and is used to extract
operand �elds from the instruction word. Instruction for-
mats in the Hitachi SH architecture map roughly onto ad-
dressing modes. The Fptr �eld is a pointer to a function
that simulates the instruction. The OP �eld is used for in-
ternal simulator bookkeeping. Figure 2 shows how an SH3
instruction is used to index into the decode cache. In the
example, the instruction used to index into the decode cache
is an ADDC (Add with carry) instruction, and the Fptr �eld
of the entry points to a function implementing ADDC. Each
entry in the decode cache is 6 bytes, for an overall decode
cache size of 384KB.

4. POWER ESTIMATION
The simulator's switching activity estimation models the

on- and o�-chip address and data busses of the SH3, the
peripheral address and data busses, register �le, program
counter and pipeline registers. Circuit activity estimation
tallies are maintained independently for the di�erent busses
and hardware components, to enable energy estimation to
be performed in the presence of capacitive models for the dif-
ferent circuit components, as is done in SimplePower [16].
Signal transitions in the control logic and within each func-
tional unit are presently not modeled. Given appropriate
models for these components, it is straightforward to add
such models to the simulator infrastructure.

4.1 Efficient Transition Counting
In performing circuit activity estimation, it is important

that the counting of transitions be performed correctly, and
as eÆciently as possible. Contemporary cycle accurate en-
ergy estimators which estimate circuit power via transition
counting during simulation such as [11] and [16] acknowledge
the need for eÆcient means of transition counting. There
are two primary methods employed in contemporary tools
for transition counting: A simple linear scan approach (Sim-
plePower Release 1.0) and an early terminating linear scan
[11]. Myrmigki employs a constant time hierarchical ap-
proach described in [8].

flips(a, b)
{

if (a == b)
return 0;

count = a ^ b;
count = count&0x55555555 + (count&0xaaaaaaaa >> 1);
count = count&0x33333333 + (count&0xcccccccc >> 2);
count = count&0x0f0f0f0f + (count&0xf0f0f0f0 >> 4);
count = count&0x00ff00ff + (count&0xff00ff00 >> 8);
count = count&0x0000ffff + (count&0xffff0000 >> 16);

return count;
}

Figure 3: Constant-time transition counting algo-
rithm

tmp=tmp&0x0000ffff+(tmp&0xffff0000 >> 16)

01 00 10 11 11 1010 011111100000111000

01011001101001000010010001 100001

00 1000 11000100100000 0100 1100 01 01

00 01 010000 01 0100 0000 1100010000 00

00 00 00 00 00 00 10 1001 11000000000000

01 010000000000000000000000000000

tmp

tmp=tmp&0x55555555+(tmp&0xaaaaaaaa >> 1)

tmp=tmp&0x33333333+(tmp&0xcccccccc >> 2)

tmp=tmp&0x0f0f0f0f+(tmp&0xf0f0f0f0 >> 4)

tmp=tmp&0x00ff00ff+(tmp&0xff00ff00 >> 8)

Figure 4: Illustrating the constant-time transition
counting algorithm

For determining the number of bits that change between
two 32-bit words, a simple linear scan approach requires at
least 1 XOR, 32 SHIFTS, 32 ANDs and loop overhead, a
minimum of 65 operations. The approach described in [11]
as an optimization over this approach terminates the linear
scan as soon as its data structures determine that the loop
index is within the sign bits of both words. The loop over-
head is still incurred, the algorithm may need to perform
all 32 loop iterations, and there is additional memory over-
head in maintaining data structures to determine when to
terminate.
The algorithm employed in Myrmigki is a hierarchical bit

counting scheme. It performs counting of the number of bits
set in a word in-place. The algorithm requires 21 operations
(1 XOR, 10 ANDs, 5 SHIFTs and 5 ADDs), and incurs
no loop overhead. The pseudo-code in Figure 3 illustrates
the implementation of a routine to determine the number of
bits that
ip between two 32-bit words. The operation of the
algorithm involves XOR-ing two words to obtain a bit-vector
with bits set at positions where the two words di�er, then
counting the number of bits set in this bit vector using the
hierarchical constant time bit counting algorithm. Figure 4
illustrates the operation of the transition counting algorithm
on a 32-bit word, tmp, obtained after XOR-ing two 32-bit
words, and indicating the bit positions in the two words
that di�ered. The �nal value of tmp after the last step in
the algorithm, is the count of the number of bits that were
set before operation of the algorithm.

4.2 Instruction Level Power Analysis
The simulator permits estimation of per-cycle power con-

sumption of simulated software by an instruction level power
analysis technique similar to [13]. The simulator incorpo-

133143

rates per-instruction power models for all instructions in the
instruction set of the SH3, the power values being speci�c to
a SH7708F60 microcontroller, running at 60MHz and 3.3V.
The instruction power models provide an empirical estimate
of the average current that is drawn by the processor and
memory subsystem when executing a speci�c instruction.
To obtain the model data, a loop of 100 identical instances
of each instruction was run on a processor evaluation board,
and the average current draw of the processor and memory
subsystem measured.
For each simulated instruction, a lookup is performed for

the average current that would be drawn by the processor
and memory, and this is used to calculate the correspond-
ing power consumption estimate for that cycle. No inter-
instruction e�ects such as the presence of di�erent instruc-
tion types in the pipeline are modeled. In the presence of
more accurate instruction power data, or accurate models
for modeling inter-instruction and instruction operand ef-
fects, the simulator can easily be extended.

5. ARCHITECTURAL EXTENSIONS
The simulator models the operating voltage of the proces-

sor, the default being 3.3V, and can be varied as described in
section 5.1. When the modeled operating voltage is changed,
the latency of memory operations is scaled accordingly. In
scaling the operating voltage of the processor, memory con-
tinues to operate at the same voltage and speed, and the
latency of a memory access in milliseconds remains �xed.
However, with respect to the simulation, a memory access
instruction that incurred a cache miss has to wait for fewer
cycles (at the new lower operating frequency), for data to
be available from the memory subsystem.

5.1 Flexible Simulation Control
The simulator takes advantage of an unused opcode in

the SH3 architecture to provide �ne-grained control over
simulation. This new instruction can be used to change the
simulated VDD, clock frequency, cache con�guration (cache
size, block size, associativity) or may be used to enable or
disable pro�ling activities, all on a per-cycle basis.
Insertion of recon�gure instructions into the instruction

stream could be performed by a compiler to investigate the
e�ects of application or operating system controlled dynamic
voltage scaling / clock speed setting, or other system or
hardware controlled architecture recon�guration. In the ab-
sence of explicit compiler support, recon�gure instructions
may be inserted into compiled binaries by replacing NOPs
such as those that often occur in the branch delay slots of
delayed control transfer instructions.
Applications running over the simulator may also interact

with it through a memory mapped command register. Any
string written to this memory region is passed to the simu-
lator's command language interface, and handled as would
any command issued from the simulator's interactive com-
mand line. This is an extremely useful interface as it is
easily programmed at the application level, and can be used
to perform such varied tasks as executing assembly instruc-
tions in-line, or may be used as a portal for applications
running over the simulator to access resources outside the
simulator.

En
er

gy
 (J

ou
le

s
x

1E
−0

4)

Estimated Energy

Measured Energy

bubble hanoi heap perm queens quick

30

5

10

15

20

25

35

40

45

50

55

60

Figure 5: Comparing energy estimates from simula-
tion and measurements from hardware

6. RESULTS
This section presents a comparison between the measured

and estimated energy consumption for a suite of applica-
tions, an illustration of the range of simulation speeds and
the accompanying tradeo� in Myrmigki, and compares its
performance to a contemporary state-of-the-art cycle-accurate
power estimating simulator, SimplePower Release 1.0.

6.1 Power Estimation
Figure 5 presents results on running six applications over

the simulator to obtain energy estimates, and also running
the same applications directly on the hardware. To obtain
the energy cost of the applications on the prototype hard-
ware, each application was run in an in�nite loop, and the
average current draw of the processor and memory mea-
sured. The application was then run over the simulator
to obtain the number of cycles necessary for completion,
which was then used to calculate the overall running time
and hence energy consumption of the application. Both the
simulation and the empirical measurements were performed
with the cache enabled. The estimated energy values in the
�gure are all within 6.5% of the measured values, which is
competitive with results obtained in contemporary studies
[5, 14, 16] on similar processor architectures.

6.2 Simulation Mode Tradeoff
It is often the case that not all portions of a simula-

tion are of interest in architectural investigations, and it
is desirable to be able to simulate portions of an applica-
tion correctly, but at a reduced level of accuracy. This
concept has previously been successfully employed in the
SimOS complete machine simulator [12]. Myrmigki permits
six di�erent levels of simulation detail, Fast Functional, Fast
Functional with Cache, Cycle-Accurate, Cycle-Accurate with
Transition Counting, Cycle-Accurate with Instruction Level
Power Analysis and Cycle-Accurate with Transition Count-
ing and Instruction Level Power Analysis, referred to as FF,
FFC, CA, CATC, CAILPA and CATC+CAILPA respec-
tively.
The FF simulation mode provides the highest simulator

performance. In FF, the simulator performs purely func-
tional simulation { The application is simulated in terms of

134144

Si
m

ul
at

io
n

Sp
ee

d
(K

 c
yc

le
s

/ s
ec

on
d)

dhry

bsort

membound

1100

FF FFC CA CAILPA CATC

100

200

300

400

500

600

700

800

900

1000

Simulation Mode

Figure 6: Trading o� simulation detail for simulation
speed

its e�ect on the state of the machine registers, main memory
and peripherals, but the motion of instructions through the
pipeline, instruction latencies and cache and main memory
latencies are not modeled. The FFC mode adds cache sim-
ulation. The CA, CATC and CAILPA modes provide cycle-
accurate simulation. These modes model the motion of in-
structions in the pipeline and also model ALU and memory
latencies. The CATC mode adds transition counting over
the basic CA mode. The CAILPA simulation mode pro-
vides per-cycle power consumption estimates by instruction
level power analysis as described in Section 4.2.
Figure 6 illustrates the simulator performance for �ve dif-

ferent simulation modes, for three sample applications { the
Dhrystone 2.1 benchmark (dhry), a memory-bound appli-
cation (membound) and bubblesort (bsort). For example,
from the �gure, the Dhrystone 2.1 benchmark simulates
at 1023,000 simulated cycles/second for the FF mode and
336,000 simulated cycles/second for CATC mode.
The di�erent simulation modes provide di�erent amounts

of detail at a tradeo� in simulation speed. For the Dhrystone
2.1 benchmark, enabling the cache simulation in FF mode
(i.e. going from FF to FFC mode) leads to a 18% reduc-
tion in the number of cycles simulated per second. Enabling
pipeline simulation and simulating instruction latencies fur-
ther decreases the simulated cycles per second by 30%. En-
abling instruction level power analysis in CA mode leads to a
simulation speed degradation of only 3%. Disabling instruc-
tion level power analysis in CA mode, and enabling only
transition counting analysis leads to a performance degra-
dation of 42%. Overall, for the Dhrystone 2.1 benchmark,
simulation can be sped up by 204% over the CATC mode,
by changing the simulation to the FF mode.

6.3 Performance Comparison
Simulations comparing SimplePower and Myrmigki were

run on a Sun Ultra 10 running SunOS 5.7, with 256MB RAM
and a clock speed of 440MHz. In this comparison, Myrmigki
was con�gured to match the default con�guration of Sim-
plePower as closely as possible. In the following comparison,
both simulators were con�gured to simulate processors with
in-order execution and perfect caches { all memory accesses
incur no extra latency. Table 1 shows the distribution of exe-

SimplePower Myrmigki
bubble 391,398 355,890
hanoi 220,820 231,034
heap 105,380 118,150
perm 751,789 878,080
queens 468,459 527,216
quick 67,543 65,668

Table 1: Simulated cycles on SimplePower and Myr-
migki for example applications. SimplePower ap-
plication compiled with ssbig-na-sstrix-gcc -O0 (gcc
version 2.6.3), and Myrmigki applications compiled
with sh-co�-gcc -O0 (gcc version 2.95.2)

Myrmigki, Fast Functional simulation

SimplePower, without power simulation

200

300

400

500

600

700

800

100

bubble hanoi heap perm queens quick

Si
m

ul
at

io
n

Sp
ee

d
(K

 C
yc

le
s

/ s
ec

on
d)

Figure 7: Comparing fastest simulation modes in
Myrmigki and SimplePower

cution time in simulated clock cycles for the six applications
used in the performance comparison with SimplePower, for
both simulators running in cycle-accurate power estimating
mode. As can be seen from the table, even though the sim-
ulated architectures di�er in instruction sets and processor
microarchitectures, the number of cycles required on each ar-
chitecture for the completion of the applications di�ered on
the average by no more than 10%. It is therefore reasonable
to compare the simulation speeds of this set of applications
on the two architectures.
Figure 7 depicts the simulation speeds for SimplePower

and Myrmigki with both simulators running at their fastest
possible con�guration. This mode is of interest especially
when large workloads need to be positioned prior to actual
estimation e.g. the boot-up sequence of an OS running over
the simulator might not be of interest to an investigator,
who might wish to \fast-forward" to a simulation region of
interest.
In its fastest simulation mode, even though it performs

no power estimation, SimplePower still generates statistics
on the signal transition activity on the instruction and data
cache buses, while Myrmigki performs no signal transition
estimation at all. Furthermore, the Fast Functional mode
for Myrmigki does not model the the pipeline, and all in-
structions complete in a single cycle. For this con�guration,
Myrmigki simulates the applications an average of 12.9 times
faster than SimplePower.
Figure 8 illustrates the performance of the two modes

135145

Myrmigki

SimplePower
with power analysis

80

bubble hanoi heap perm queens quick

20

40

60

100

120

140

160

180

200

220

240

Si
m

ul
at

io
n

Sp
ee

d
(K

cy
cl

es
 /

se
co

nd
)

CATC + CAILPA
Myrmigki

CATC

Figure 8: Cycle-accurate power estimation speeds
in Myrmigki and SimplePower

of cycle-accurate power estimation in Myrmigki against the
performance of SimplePower with power estimation enabled.
In CATC mode, in which Myrmigki performs cycle-accurate
simulation with transition counting, it simulates applica-
tions an average of over 36.5 times faster than SimplePower.
In SimplePower, the power estimation is performed in-line,
whereas in Myrmigki, an equally rich set of transition ac-
tivity information is generated that may be used to perform
energy estimation o�-line. The Figure also shows the per-
formance of Myrmigki's CATC+CAILPA mode, in which
in addition to transition activity estimation, Myrmigki per-
forms online power estimation using an instruction level
power analysis technique. The resulting estimate was shown
in Section 4 to be within 6.5% of measured values on hard-
ware. In this simulation mode, Myrmigki simulates applica-
tions an average of 22.7 times faster than SimplePower.

7. CONCLUSION
Presented is a simulation tool, Myrmigki, an execution

driven architectural simulator and energy estimation frame-
work, which models an embedded system based on the Hi-
tachi SH3 architecture [9]. It includes two complementary
means of estimating energy cost of application software { An
empirical instruction level power model and circuit activity
estimation. The simulator provides a
exible range of simu-
lation detail levels, and permits per-cycle recon�guration of
the simulated architecture.
The simulator has been shown to provide high perfor-

mance and great
exibility, being up to 36.5 times faster
than a contemporary power estimating simulator in one sim-
ulation mode, and up to 22.7 times faster than the same sim-
ulator in a comparable power estimating simulation mode.
The accuracy of the energy estimates generated by the sim-
ulator were veri�ed by hardware measurements and found
to be within 6.5% of measured values for the example appli-
cations presented.
We are currently using the simulator as a platform for

investigation into the e�ect of microarchitectural features on
power consumption, as well as a platform for investigating
the e�ect of compiler optimizations on application energy
eÆciency. Source and documentation for the simulator is
available from http://www.myrmigki.org.

8. REFERENCES
[1] eCos : The embedded Cygnus Operating System.

http://sources.redhat.com/ecos/hardware.html#sh.

[2] Hitachi SH7708 Development Board.
http://semiconductor.hitachi.com/tools.

[3] R. Bedichek. Some EÆcient Architecture Simulation
Techniques. In USENIX Winter Technical Conference,
pages 53{63, January 1990.

[4] J. R. Bell. Threaded Code. Communications of the
ACM, 16(6):370{372, June 1973.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis
and Optimizations. In 27th Annual International
Symposium on Computer Architecture, pages 83{94,
June 2000.

[6] D. Burger, T. Austin, and S. Bennett. Evaluating
Future Microprocessors: The SimpleScalar ToolSet.
Technical Report CS-TR-1308, Computer Sciences
Department, University of Wisconsin-Madison, 1996.

[7] R. Cmelik. Shade: A Fast Instruction-Set Simulator
for Execution Pro�ling. In Proceedings of the 1994
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 128{137, May
1994.

[8] R. Gutman. Exploiting 64-Bit Parallelism. Dr. Dobbs
Journal, (316):133{136, September 2000.

[9] A. Hasegawa, I. Kawasaki, K. Yamada, S. Yoshioka,
S. Kawasaki, and P. Biswas. SH3: High Code Density,
Low Power. IEEE Micro, 15(6):11{19, December 1995.

[10] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski.
The Design and Implementation of PowerMill. In
Proc. Intl. Workshop on Low Power Design, pages
105{110, April 1995.

[11] R. Krashinsky, S. Heo, M. Zhang, and K. Asanovic.
SyCHOSys: Compiled Energy-Performance Cycle
Simulation. In Workshop on Complexity-E�ective
Design, 37th Conference on Design Automation, 2000.

[12] M. Rosenblum, E. Bugnion, S. Devine, and S. A.
Herrod. Using the SimOS Machine Simulator to Study
Complex Computer Systems. ACM Transactions on
Modeling and Computer Simulation, 7(1):78{103,
January 1997.

[13] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of
Embedded Software: A �rst Step Towards Software
Power Estimation. In IEEE/ACM International
Conference on Computer-Aided Design, pages
384{390, August 1994.

[14] T. �Simuni�c, L. Benini, and G. D. Micheli.
Cycle-Accurate Simulation of Energy Consumption in
Embedded Systems. In Proceedings of the 36th
ACM/IEEE Design Automation Conference, pages
867 { 872, June 1999.

[15] E. Witchel and M. Rosenblum. Embra: Fast and
Flexible Machine Simulation. In Proceedings of the
ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 68{79, 1996.

[16] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin. The Design and Use of SimplePower: A
Cycle-Accurate Energy Estimation Tool. In
Proceedings of the 37th Conference on Design
Automation, pages 340{345, 2000.

136146

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

