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ABSTRACT
This paper presents a framework to reduce the computa-
tional e�ort of software programs, using value pro�ling and
partial evaluation. Our tool reduces computational e�ort by
specializing a program for highly expected situations and
such a reduction translates into both energy and perfor-
mance improvement. Procedure calls executed frequently
with same parameter values are de�ned as highly expected
situations (common cases). The choice of the best transfor-
mation of common cases is achieved by solving three search
problems. The �rst identi�es e�ective common cases to be
specialized, the second searches for an optimal solution for
e�ective common case, and the third examines the interplay
among the specialized cases. Our technique improves both
energy consumption and performance of the source code
up to more than twice and in average about 25% over the
original program. Also, our pruning techniques reduce the
searching time by 80% compared to exhaustive approach.

1. INTRODUCTION
With the widespread di�usion of processor-based embed-

ded systems, software becomes one of the key factors to
determine overall system quality. For this reason, software
design for embedded systems requires aggressive optimiza-
tions to increase the code quality at the cost of increased
development e�ort. Whereas in the past code quality was
traditionally measured in terms of performance and code
size, average energy of software code has become an impor-
tant (if not the most important) design metric [1, 2, 3, 4].
It has been shown that high-level, architecture-independent,

code transformations a�ect heavily both performance and
energy consumption [5]. Some approaches for energy sav-
ing adopt sophisticated high-level optimization techniques.
Their impact on energy consumption is assessed by instruction-
level simulation to consider the underlying hardware archi-
tecture [6, 7, 8]. Also, numerous source-level transforma-
tion techniques are introduced in [9] to reduce the power
consumed by memories in data-dominated applications.
From these approaches, two observations can be drawn.

First, transformations e�ective in reducing energy consump-
tion improve performance as well, even though the improve-
ment ratios are di�erent in general. Second, many high-level
transformation techniques largely bene�t from pro�ling [15].
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Based on these facts, in [15], Chung et al. proposed a
source code transformation technique to reduce the compu-
tational e�ort (the average number of executed instructions)
which is a common factor for both performance and energy,
using value pro�ling [14] and partial evaluation [12, 13].
Other approaches have also been proposed to reduce com-

putational e�ort by specializing the common cases such as
procedure cloning [11], redundant computation elimination
using memoization [10], and hardware specialization [17].
This paper presents algorithms for the automated op-

timization of programs by performing code specialization,
thus extending the technique proposed in [15]. In [15], the
common case was specialized based on value pro�ling in-
formation, but the common case was intuitively selected by
the user from a large set of candidates and the e�ectiveness
of the specialization strategy was ultimately dependent on
the user's ability. The proposed transformation framework
overcomes these shortcomings by providing a formal way to
search the common cases and their specializations for energy
and performance improvement.
The major contributions of our optimization framework

are three. First, for a given program, it identi�es the promis-
ing candidate code fragments for which the available set of
code optimizations are likely to produce non-marginal im-
provements. Second, it automatically explores the search
space (promising candidates) with a two-phase procedure.
In the �rst phase, architecture independent optimization is
performed for each promising candidates and in the second
phase, its impact on the code quality (in terms of energy
or performance) is quantitatively assessed by a re-targetable
architecture-sensitive measurement, i.e. instruction-level sim-
ulation. Third, search space pruning strategies are dynam-
ically applied during search space exploration to direct the
optimization strategy and reduce search time.

2. BASICS OF THE PROPOSED TECHNIQUE
2.1 Basic Idea and Problem Description
Figure 1 illustrates the basic idea of our approach. Con-

sider the �rst call of procedure foo in main. If the �rst pa-
rameter a is 0 for most cases, this procedure can be simply
reduced to sp foo by partial evaluation as shown in Figure 1
(b). But, parameter a is not always 0. Thus, the original
call is replaced by a conditional statement which selects ap-
propriate procedure call depending on the result of common
value detection procedure named cvd foo in Figure 1 (b).
We call this transformation source code alternation. Also,
the variable whose value is often constant(e.g. a) is called
constant like argument (CLA).
Next, consider two procedure calls inside the loop of Fig-

ure 1 with the assumption that parameter e has single com-
mon value, 200. Each procedure has a CLA as its second
argument, and partial evaluation can be applied for each of
them. However, there is not much to be done by partial
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main () f
int i, a, b, c[100], d[200], e, result = 0;

...............
result = foo(a, 100, c);

for (i = 0; i < 10; i++) f
result += foo(i, 100, c);
result += foo(b, e, d);

g
g
int foo(int fa, int fb, int *fc) f

int i, sum = 0;
for (i = 0; i < fb; i++)

for(j = 0; j < fb/2; j++)
sum += fa * fc[i];

return sum;
g

(a) Original program

main () f
int i, a, b, c[100], d[200], e, result = 0;
...............
if (cvd foo(a)) result += sp foo(b);

else result += foo(a, 100, c);
for (i = 0; i < 10; i++) f

result += foo(i, 100, c);
result += foo(b, e, d);

g
g
int foo(int fa, int fb, int *fc) f

int i, sum = 0;
for (i = 0; i < fb; i++)

for(j = 0; j < fb/2; j++)
sum += fa * fc[i];

return sum;

g
int sp foo(int *c) freturn 0; g
int cvd foo(int a) f
if (a == 0) return 1; else return 0; g

(b) Specialized program for the �rst call of foo with a=0
Figure 1: Example of source code transformation

evaluator except loop unrolling. The e�ect of loop unrolling
can be either positive or negative depending on the sys-
tem con�guration (e.g. cache size). For this reason, it is
�rst required to evaluate the e�ectiveness of partial evalu-
ation for each call. And then, it is also necessary to check
the combined e�ect of the two procedure calls because both
specialized calls will increase code size and they may cause
cache conict due to their alternative calling sequence.

2.2 Search Space and Transformation Flow
In Section 2.1, three search problems are addressed (Fig-

ure 1). The �rst problem searches the common cases to be
specialized, the second problem searches the optimal solu-
tion for the given common case and call site, and the third
problem examines the interplay among the specialized calls.

main
foo 1st call in main

2nd call in main

3rd call in main

a => fa

100 => fb

0

100

200

2

3

Procedure

Level

Call site

Level
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b => fa

e => fb

<0, −, −>

<−, 100, −>

<2, −, −>
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<2, 200, −>
<3, 200, −>

Figure 2: Hierarchical tree of common cases
For the �rst problem, we represent the common cases as

a hierarchical tree. An example for Figure 1 is shown in
Figure 2. We assume that variable b (the �rst parameter
of the third call) has two common values - 2 and 3. Call
site level has two-level sub-hierarchies: CLA level represents
the mapping relation between CLA and its corresponding
formal parameter and value level is used for common values
of CLAs. In case level, common values are related to each

formal parameter by positional mapping and \-" means don't
care - the parameter value in that position is not considered.
The overall search space for the �rst problem is the total

number of common cases shown at case level.
The second problem is to explore the loop combinations

to be unrolled. Thus, the size of search space for each case
specialization is simply 2n, where n is the number of loops
of the corresponding procedure.
The third search space size is also exponentially propor-

tional to the number of specialized calls.
The ultimate goal of our approach is to solve these three

problems sequentially with appropriate pruning techniques
to �nd the solution with reasonable searching time.
The overall code transformation ow is as follows.
1. Pro�ling: By performing execution frequency and value

pro�ling, the hierarchical tree is constructed and the com-
putation ratio of each procedure is estimated. The details
of pro�ling are described in [15].

2. E�ective common case selection: The search space for
common cases is explored (Section 3.1).

3. Common case specialization: The search space for sin-
gle case specialization is explored (Section 3.2).

4. Globally e�ective case selection: The search space sup-
porting global e�ect analysis for specialized calls is explored
(Section 3.3).

We introduce some notations for the hierarchical tree which
will be used in Section 3.1.
We denote the procedure level as P , each procedure as

pi 2 P , the call site level as Ci (which is a set of procedure
calls for pi) and each procedure call as cij 2 Ci. Similarly,
CLAs of each cij are denoted as aijk 2 Aij and common
values of aijk are denoted as vijkl.
Finally, the set for case level is denoted as Bij = fbijm;m =

0; 1; � � � ; jBij j � 1g. The vector of common values is de�ned
as bijm =< cv0; cv1; � � � ; cvk; � � � ; cvAij�1 >, where cvk is
vijkl; l 2 f0; 1; � � � ; jVijkj � 1g or \-" as in Figure 2.

3. CODE TRANSFORMATION
3.1 Effective Common Case Selection
E�ective common cases are selected based on normalized

computational e�ort (NCE) which is the computational ef-
fort of the given object normalized to the total computa-
tional e�ort. The computational e�ort of each procedure
is obtained using the technique proposed in [15]. Based on
this, NCE of each object can be estimated in a hierarchical
order. A user constraint called computational threshold (CT)
is de�ned in terms of NCE and any object whose NCE is
smaller than CT is pruned out.
First, procedure level pruning is performed by removing

every pi whoseNCE is smaller than CT . For each remaining
pi's, NCE of cij is calculated using Equation 1.

NCE(cij) = NCE(pi) � fij=

jCij�1X

j=0

fij (1)

where, fij is the execution frequency of cij (from pro�ling)
and cij whose NCE is smaller than CT is eliminated. The
same pruning is performed at CLA level and value level.
Finally, NCE of each case is obtained by multiplying

NCE of common values which are involved in forming the
case and represented as Equation 2 (NCE(�) = 1).

NCE(bijm) =

jBij j�1Y

k=0

NCE(cvk) (2)
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for (i = 0; i < 100; i++) {
    ..........
    for (j = 0; j < 50; j++) {
        for (k = 0; k < 50; k++) {
            for (l = 0; l < 50; l++) {
                ........
            }
        }
    }
    for (m = 0; m < 100; m++) {
        for (n = 0; n < 100; n++) {
            .....
        }
    }
}

L0:

L1:
L2:
L3:

L4:
L5:

L0:

L1:

L2:

L3:

L4:

L5:

Level

0

1

2

3
k=0

k=0k=0

k=0

k=0

k=1

Figure 3: An example of loop graph

To reduce the search space further, we exploit dominated

cases that can be eliminated from the search space. Vector
bijm is dominated by bijt if all common values of bijm appear
in bijt and NCE(bijm) is less than or equal to NCE(bijt).

3.2 Common Case Specialization
3.2.1 Semi-Exhaustive Approach
First, the entire loop structure inside a procedure is lev-

elized. The outermost loop is assigned to level 0 and the
next outermost loop is assigned to level 1 and so on. Af-
ter levelization, a loop graph is constructed as in Figure 3.
Each loop is represented as a node and the nested relation
between two loops is represented by an edge connecting two
nodes. If a loop has multiple nested loops, the connecting
edges are identi�ed as a branch. The basic rationale of this
approach is to �nd the best solution for each branch in the
order of computational e�ort, with the code size constraint
to consider the cache size of the target architecture.
An example is shown in Figure 3. The example has 64

(26) combinations of loop unrolling. Suppose the subgraph
on the right branch (L1) has higher computational e�ort
than the one on the left branch (L4). And the size con-
straint is initially set to the cache size of the target archi-
tecture. Thus, the best combination for the right subgraph
is searched �rst. Because the right subgraph is a three-level
loop nest(L1, L2, and L3), there are eight combinations of
loop unrolling and the best combination is found by exhaus-
tive search. Next, for the best combination, the unrolled
code size of the subgraph is estimated using pro�ling in-
formation (average number of iterations for each node) and
number of instructions for each node. And the estimated
code size is subtracted from the size constraint because the
loop unrolling strategy for this subgraph is already decided
and gives a tighter constraint to the next subgraph. Next,
the left descendent (L4) and the top node(L0) are examined
in the same way, but with di�erent size constraint.

3.2.2 One-Shot Approach
This approach is close to semi-exhaustive approach, but

di�ers because the choice of the best combination for each
subgraph depends on just code size estimation instead of
exhaustive search. The code size estimation is performed in
depth �rst search fashion for each subgraph.
As in Figure 3, the subgraph (L1) is visited �rst due to

the same reason in semi-exhaustive approach. Unrolled code
size is estimated from the lowest level (L3) to the highest
level (L1). If the estimated code size is smaller than the size
constraint, the current node is unrolled and the node in the
next level is visited. Otherwise, the estimation for the given
subgraph is terminated. For example, If the estimated code
size is larger than the size constraint at L1, L2 and L3 are
unrolled. Using the same technique, loop unrolling strategy
for the entire graph is decided.
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Figure 4: An example of binary tree for M

C programs Pruning Ratio
procedure call site case dominated case

Compress 0.75 0.00 0.00 0.75
Expand 0.60 0.00 0.00 0.83
Edetect 0.67 0.00 0.00 0.88
FFT 0.50 0.00 0.00 0.00

g721 encode 0.88 0.88 0.00 0.67
Convolve 0.50 0.00 0.00 0.98

Average 0.65 0.15 0.00 0.69

Table 1: Pruning by e�ective common case selection

3.3 Globally Effective Case Selection
Multiple candidates from common case specialization are

evaluated for the �nal solution. Each candidate is denoted
as mk 2 M;k = f0; 1; � � � ; jM j � 1g. candidate mk has an
attribute called gain denoted as gk, which is the improve-
ment amount in terms of the given cost metric (energy or
performance) and obtained at the previous step. The pur-
pose of this step is to select mk's for maximally improving
the quality of the specialized code. Thus, the search space
in this step is again exponentially proportional to jM j and
the branch and bound algorithm is used for the search space
reduction.
For this purpose, mk's are sorted in descending order of

gk. Then, set M is represented as a binary tree as in Figure
4 and the node with the largest gain is placed at level 0.
Each node has two descendents except the leaf nodes, but
the leaf nodes still keep their edges. The right edge of each
node represents that the node is included in the solution and
the left edge has the opposite meaning. Each edge has an at-
tribute called expected gain, which is the expected gain max-
imally obtained from its descendents (boxes in Figure 4).
The search starts from the rightmost path of the tree

(maximum expected gain). When the right edge is selected
and the simulation result is better than the expected gain of
left edge, the left descendent is pruned because it is obvious
that its maximal gain is smaller than the simulation result.
Otherwise, the path through the left edge is simulated and
either right or left edge is selected depending on the simu-
lation result. This procedure is recursively applied until the
traversal reaches the root node.

4. EXPERIMENTAL RESULTS
We have chosen Smart Badge, an ARM based portable

device, as the target architecture with the cycle accurate
energy simulator proposed in [16]. And we applied the pro-
posed technique to six DSP C programs - Compress, Expand,
Edetect, and Convolve [18], g721 encode [19], and FFT [20].
The experiment was conducted for two assessments - search

C programs common case global
semi-exhaustive one-shot

Compress 0.78 0.98 0.00
Expand 0.75 0.98 0.33
Edetect 0.87 0.98 0.86
FFT 0.13 0.88 0.00

g721 encode 0.25 0.50 0.00
Convolve 0.75 0.94 0.86

Average 0.59 0.87 0.35

Table 2: Search space reduction ratio in common
case and globally e�ective case selection step
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C programs Code Quality
exhaustive semi-exhaustive one-shot

energy performance code size energy performance code size energy performance code size

Compress 0.91 0.91 1.01 0.91 0.91 1.01 0.93 0.93 1.15
Expand 0.84 0.83 1.15 0.84 0.83 1.15 0.90 0.90 1.12
Edetect 0.44 0.37 1.20 0.44 0.37 1.20 0.44 0.37 1.20
FFT 0.86 0.86 1.16 0.86 0.86 1.16 0.86 0.86 1.16

g721 encode 0.88 0.88 1.04 0.88 0.88 1.04 0.88 0.88 1.04
Convolve 0.54 0.48 1.18 0.54 0.48 1.18 0.54 0.48 1.18

Average 0.74 0.72 1.12 0.74 0.72 1.12 0.76 0.74 1.14

Table 3: Quality of the code transformed with di�erent approaches (normalized to original code)

space reduction and the code quality. Each program was
pro�led to collect computational e�ort and common values.
There exist two important parameters in value pro�ling [15].
First, OR(Observed Ratio) is the ratio of the observation
frequency of a speci�c value over the total call site visit-
ing frequency for a given parameter. Second, OT(Observed

Threshold) is a threshold value to cut o� values whose OR
is lower than OT. In this experiment, OT was set to 0:5.
Table 1 shows the pruning ratio achieved by each step with

CT = 0:1. The procedure pruning was always important to
reduce the search space, but call site pruning showed large
variation depending on the property of the programs. This is
because the computational kernels of some programs such as
compress and FFT were called only once while the kernel of
g721 encode was called several times in di�erent sites with
di�erent calling frequencies. Thus, this step is useful for the
kernels called at di�erent sites with di�erent frequencies.
In some cases, the case pruning step was not e�ective due

to high OT which was set to 0:5 in value pro�ling. Under this
OT, the OR of each common value is usually large enough
not to be pruned out due to small CT. It is interesting that
dominated case pruning was e�ective for most of application
programs because at least one of the CLAs per each program
had a common value with OR = 1:0.
Next, the pruning in common case specialization and glob-

ally e�ective case selection were evaluated. In Table 2, both
semi-exhaustive and one-shot approach drastically reduced
the search space by 59% and 87%, respectively. Also, prun-
ing technique in globally e�ective case selection step showed
35% of search space reduction with the large variation de-
pending on the programs. There was nothing to be pruned
for Compress, FFT and g721 encode programs because only
one case was passed from common case specialization step.
But, it was e�ective when multiple cases were passed.
We also compared the total transformation time of two ap-

proaches to the exhaustive approach. Notice that e�ective
common case selection and globally e�ective case selection
were commonly applied with all three approaches to avoid
huge search space. As expected, one-shot approach showed
the shortest running time (12% of exhaustive approach) and
semi-exhaustive approach was ranked at second (36% of ex-
haustive approach). Exhaustive approach often generated
a huge size of code which was one of the main problems in
partial evaluation. In this case, compilation or simulation
was not terminated in a few hours. To avoid this problem,
we adopted time-out policy for the exhaustive approach.
Table 3 shows the quality of the transformed programs.

Semi-exhaustive approach is comparable to exhaustive ap-
proach with less computation time (2:8 times faster). One-
shot solution is also useful by trading o� its code quality
and computation time. (8:3 times faster and 3% more en-
ergy). It is also shown that the deviation of improvement is
depending on the nature of the programs. For the best case,
the improvement is more than twice(Edetect), but for the
worst case, about 10% is improved (Compress).

5. CONCLUSION
We presented algorithms and an automated tool ow to

reduce the computational e�ort of software programs, by
using value pro�ling and partial evaluation.
Within our approach, a �rst tool performs program instru-

mentation and pro�ling to collect information for transfor-
mations, such as execution frequency and common values at
each call site. Using the information, another tool selects ef-
fective common cases based on the estimated computational
e�ort. Each selected case is specialized independently using
a partial evaluator and code explosion due to loop unrolling
- which may hamper partial evaluation - is avoided by code
size estimation technique and pruning. Finally, the interplay
among the multiple specialized cases is analyzed based on
instruction-set level simulation. The overall transformation
time is 8 times faster than the exhaustive approach and the
transformed code shows in average 24% energy saving and
26% in average performance improvement with 14% code
size increase (one-shot approach).
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