
Power-aware Partitioned Cache Architectures �

S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam, M. J. Irwin and E. Geethanjali
Dept. of Computer Science and Engineering

Pennsylvania State University, PA 16802

ABSTRACT
This paper focuses on partitioning the cache resources archi-
tecturally for energy and energy-delay optimizations. Specif-
ically, we investigate ways of splitting the cache into sev-
eral smaller units, each of which is a cache by itself (called
subcache). Subcache architectures not only reduce the per-
access energy costs but can potentially improve the locality
behavior as well. We present a uni�ed framework for design-
ing, implementing and evaluating di�erent subcache archi-
tectures. Di�erent techniques for data placement, subcache
prediction, and selective probing are proposed and evalu-
ated using a diverse set of applications. The results show
that intelligent subcache mechanisms proposed in this paper
are e�ective.

1. INTRODUCTION
An important trend in low power hardware design is the

partitioning of hardware components into smaller and less
energy consuming components [4]. The selective disabling of
unused components is an e�ective mechanism for reducing
energy consumption. Partitioning has been used for caches
for both performance and energy considerations. A large
cache is broken down into smaller subbanks to reduce the
wiring and di�usion capacitances of the bitlines as well as
the wiring and gate capacitances of the wordlines used to
activate the memory cells. The reduced capacitance helps
lower the dynamic energy consumption when accessing the
caches.
Existing approaches have looked at partitioning the caches

at the circuit level and enabling/disabling these subbanks at
the architectural level from both the performance and en-
ergy viewpoints [1]. In contrast, this paper focuses on par-
titioning the cache resources architecturally for energy and
energy-delay optimizations. Speci�cally, we examine ways of
splitting the cache into several smaller units, each of which

�This work was supported in part by NSF grants CCR-
0073419 and CCR-0082064

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ILSPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008 ...$5.00.

is a cache by itself (called subcache), and selectively acti-
vating the one holding the data upon a memory reference.
The partitioning at the architectural level enables more so-
phisticated data placement and data probing mechanisms
than those available at the circuit level. This is because at
the architectural level, the application characteristics such
as spatial and temporal data locality patterns can be ac-
counted for.
This paper presents a uni�ed framework for designing, im-

plementing and evaluating di�erent subcache architectures.
Novel techniques for placement, prediction and probing are
proposed and evaluated using a diverse set of applications
from the MediaBench and SpecJVM98 benchmark suites.
While there has been substantial work in architectural-level
cache partitioning strategies from a performance perspective
[5, 7], to our knowledge, this is the �rst paper that provides
an extensive evaluation of di�erent subcache architectures
from an integrated energy-performance perspective. While
the subcache architectures are applicable to both instruc-
tion and data caches, we primarily focus our experimental
evaluations on the data cache.
The rest of this paper is organized as follows. Section 2

presents the design space for subcache organizations and
explores data placement, subcache prediction and probing
techniques for speci�c subcache architectures. Section 3 de-
scribes the experimental setup and is followed by an energy-
performance evaluation of the di�erent subcache architec-
tures. Section 4 presents conclusions.

2. SUBCACHE ARCHITECTURE

2.1 A Taxonomy for Subcache Architectures
To explore tradeo�s between di�erent ways of partition-

ing a given cache memory space into subcaches, we �rst
de�ne our exploration space, and then discuss the in
uence
of each parameter in detail. We de�ne a subcache-based
system at a given level in the cache hierarchy using a tu-
ple (N,T,PL,PR,RP,DP) where N gives the number of sub-
caches, and T is an array of size N that is used to de�ne
the topology of each subcache. More speci�cally, each el-
ement of T is of the form (C,l,a,ndwl,ndbl,e), where C, l,
and a give, respectively, the capacity, line (block) size, and
associativity of the corresponding subcache. ndwl and ndbl
denote the number of wordline and bitline divisions that de-
termine the number of subbanks. The e parameter denotes
the energy-e�cient features present in the subcache (e.g.,
way-prediction [6]). In all our experiments, the number of
subbanks are determined using the timing model proposed

6164

Due to the type 3 fonts used, please increase the magnification to view

Figure 1: Subcache architecture.

in [9]. Note that N and T completely de�ne the physical
characteristics of the subcaches in the system. The subcache
architectures that we study in this paper can be broadly
divided into two categories. In homogeneous systems, all
the subcaches have exactly the same topology (T) whereas
in heterogeneous systems the subcaches may have di�erent
topologies.
PL is termed as the placement policy, and indicates how

an item brought from memory is placed into the subcache
system. More speci�cally, it is used to select the subcache
into which the data is placed. Once a subcache is selected,
the exact location of the data within the subcache is deter-
mined by its own topology. A wide variety of implementa-
tion choices exists for the placement policy. Selecting a good
placement policy has both energy and performance implica-
tions, and its e�ectiveness usually depends on the amount
of past history information maintained by the system.
PR is called the cache prediction (probing) policy and de-

�nes the strategy used to probe for the required data item
in the cache system. One can come up with a wide range
of probing policies. If the prediction fails, the other sub-
caches need to be probed (incurring performance and en-
ergy penalties). This policy is termed as the re-probing
policy (denoted RP). Probing and re-probing schemes are
closely tied to each other. Both policies could use strate-
gies such as most-recently-used subcache (MRU), search-
all-subcaches (denoted All), or history-based policies.
DP is the policy that will be activated by default for both

probing and re-probing if a prediction cannot be made. Our
current implementations set the default probing (DP) mech-
anisms to All.

2.2 Subcache Organization
Figure 1 shows a possible hardware strategy for imple-

menting and evaluating numerous subcache organizations.
The proposed design strives to derive an energy-e�cient
organization without signi�cantly impacting performance.
Normally, the virtual address (VA) generated by the CPU
is fed to the TLB to �nd out the physical frame number,
after which a cache lookup is done (we are considering a
physically addressed cache). In a subcache based system,
additional logic is needed to examine the address before se-
lecting (activating) the appropriate subcache. The decision
(denoted PR in the previous section) to determine which
subcache needs to be activated for the �rst probe is done

by a logic, called the cache predictor. If the cache predictor
is introduced after the physical address translation, there is
the danger of extending the critical path for data references.
Instead, we propose that this operation be performed con-
currently with the TLB lookup, in which case the logic will
have to work with a virtual address. The output of the cache
predictor will be either a subcache id (which will be used by
the cache controller for the probe), or will be a no prediction
(if it cannot make any certain determination). In the latter
case, a default predictor (that implements DP) is used to se-
lect the cache for activation (e.g. activate-all-caches, MRU,
etc.).
Based on the cache predictor output, the cache controller

can activate the appropriate subcaches. The cache controller
issues the read/write operation to the selected subcache,
by sending it the physical frame number and page o�set.
This could either hit or miss in the selected subcache. If
it hits, the access is complete. Otherwise, the cache miss
logic informs the re-probe logic (that implements RP), which
determines the next subcaches to probe. The next probe
could either be to an individual subcache, or could be to all
the remaining subcaches. The re-probe logic is active until
the data is found or is determined not to be in the on-chip
subcaches.
When all the re-probes fail (i.e., the main memory needs

to be accessed), the cache miss and placement logic takes
over and brings the block from main memory. In the pro-
cess, one of the blocks may need to be evicted. It may be
necessary to update information maintained by the cache
predictor and re-probe logic units at this time. The cache
predictor may also be updated whenever there is a cache hit
but it has not made a prediction for it.

2.3 Implementation of Placement, Prediction
and Re-probing Mechanisms

Placement Strategies: The placement policies deter-
mine the target subcache for a block brought from mem-
ory upon a miss. We investigate four di�erent placement
strategies: Random, Least-Recently-Used (LRU), Spatial-
Temporal (ST) and Modi�ed-Spatial-Temporal (MST). The
Random policy is being considered to illustrate the impor-
tance of an e�ective strategy. We select one of the subcaches
at random for placing the block. The LRU policy places the
incoming block into the subcache that was least recently
used.
We investigate two di�erent versions (ST and MST) of

subcache placement mechanisms for heterogeneous subcache
systems. Our ST scheme categorizes all cache lines into
three groups: spatial, temporal, and bypass (non-spatio-
temporal). A locality prediction based on recording the
stride between consecutive data accesses is used in deter-
mining this categorization of the cache line. The data is
then placed into one of the two subcaches: a spatial sub-
cache with larger cache lines or a temporal subcache with
smaller cache lines. The proposed scheme is similar to that
proposed in [5]. The di�erence is that while the spatial and
temporal data are stored in their respective subcaches, the
bypass data is cached in the temporal subcache instead of
bypassing the caches as is done in [5]. This modi�cation
is done as the performance is observed to be better for our
target suite and con�gurations. Instead of �xing the loca-
tion for the bypass data, it may be better to dynamically
choose either the spatial or temporal subcache for better

6265

Table 1: Di�erent subcache con�gurations used in the

experiments.
Name PL/PR/RP/N Assoc. Predictor

Direct -/-/-/1 direct -
Random Random/MRU/All/2 direct 1
Split-2 LRU/MRU/All/2 direct 1
Split-4 LRU/MRU/All/4 direct 1
2-way-predict -/WP/All/1 2-way 1
4-way-predict -/WP/All/1 4-way 1
CIB LRU/CIB/-/4 direct BS
2-way -/-/-/1 2-way -
4-way -/-/-/1 4-way -
ST-Direct ST/All/-/2 direct LPT
ST-2-way ST/All/-/2 2-way LPT
MST-Direct MST/MRU/All/2 direct LPT
MST-2-way MST/MRU/All/2 2-way LPT
MST+CIB MST/CIB/-/2 2-way LPT, BS

performance. This is the basis of the modi�ed ST scheme
(referred to as MST), which monitors the number of spatial
and temporal misses and puts the data in the subcache with
a fewer number of misses (for better load balance).
Subcache Prediction (First Probe) Strategies: The

subcache probing strategies are used to select the subcache
for the �rst probe. We investigate three di�erent probing
strategies. The �rst strategy, All, accesses all subcaches
concurrently. This does not require any additional predic-
tion logic and does not provide any opportunities for en-
ergy savings during the probing stage. The second strategy,
MRU/WP, accesses the most recently used subcache/way
�rst. This MRU/WP information can be maintained in a
single register that is updated with the subcache/way id on
every access. The third probing strategy uses a cache iden-
ti�er bu�er (CIB) to hold a list of most recently generated
virtual addresses and the corresponding physical subcaches
(ids) holding those blocks. The use of virtual addresses is
to allow concurrent operation with the TLB lookup rather
than imposing this logic in the critical path. Whenever the
CIB is not able to make a prediction (lookup fails), a default
predictor (such as All) is employed. The CIB entries are up-
dated whenever the corresponding cache line is accessed and
evicted by the cache miss and placement logic.
Subcache Re-Probing Strategies: In order to reduce

re-probe penalty on the �rst probe misses, all subcaches
other than the one probed in the �rst access are accessed
simultaneously in all our experiments. Con�gurations that
use single monolithic cache and the CIB probing mechanism
do not require a re-probe strategy.

3. EXPERIMENTAL RESULTS
The details of the evaluated con�gurations are provided in

Table 1. 256 entries are used in the direct-mapped CIB (BS),
and the direct-mapped locality prediction table (LPT) has
64 entries. MRU/WP uses just a single entry to maintain the
most-recently-used subcache/way. We consider traditional
single cache con�gurations, namely, direct-mapped (Direct),
2-way set associative (2-way), and 4-way set associative (4-
way). These caches only provide circuit-level energy opti-
mizations using sub-banking. We also consider two energy-
e�cient single cache con�gurations, namely, way prediction
in a 2-way (2-way-predict) and 4-way (4-way-predict) set as-
sociative cache. In these caches, the way prediction (WP)
mechanism is used to probe only one of the ways (by keeping
track of the most recently used way), thus saving energy in
the unaccessed ways beyond the circuit-level optimizations.

The di�erence between our subcache prediction and tradi-
tional way-prediction schemes is that the prediction gran-
ularity in the former scheme is a subcache whereas that of
the latter is a way. We compare these single cache con�g-
urations with nine di�erent subcache organizations. These
include �ve heterogeneous con�gurations (ST-Direct, ST-
2-way, MST-Direct, MST-2-way and MST+CIB) and four
homogeneous con�gurations (Random, Split-2, Split-4 and
CIB). In both the homogeneous and heterogeneous con�g-
urations, the subcaches are of equal size. Except for the
spatial cache (in ST and MST schemes) which has a line
size of 64 bytes, all other caches and subcaches used a line
size of 32 bytes. For a fair comparison, in all the con�gura-
tions, the total subcache capacity including the overheads is
equal to the size of a 32K direct-mapped cache.
We feed the data references from the execution of applica-

tions using the Shade binary instrumentation tool [2] to the
cache simulator. Our cache simulations use the cachesim5
simulator available in the Shade suite for the direct-mapped
and set associative con�gurations. All other schemes are
built on top of the cachesim5 code. We use the applica-
tions from two benchmark suites, SpecJVM98 and the Medi-
aBench. The energy consumption of the subcache con�gura-
tions is evaluated using 0.18 micron technology parameters
and a 2V supply voltage with the cache energy models pro-
posed by Kamble et. al. [8]. O�-chip energy consumption is
based on measured values reported for a 8MB RDRAMmod-
ule [10]. The performance evaluation is done based on the
number of cycles spent in servicing a memory request. On-
chip accesses are modeled to perform single-cycle accesses
and o�-chip accesses have a latency of 100 cycles.
Results: We give experimental data on performance, en-

ergy, and energy-delay product. For purposes of clarity and
space limitations, rather than presenting the results of each
application, we present results averaged over all the appli-
cations for each benchmark suite. The results are summa-
rized in three normalized graphs for each benchmark type
(one for energy, one for performance, and one for energy-
delay product). In obtaining these graphs, �rst, the values
for each con�guration are normalized with respect to the
corresponding direct-mapped cache con�guration, and then
averaged over all benchmarks in the suite in question.
Performance: There are two factors a�ecting the overall

performance of a given con�guration. First is the capability
of reducing the number of cache misses, and second is the ef-
fectiveness of the probing strategy that in
uences re-probing
penalty. As can be observed from Figure 2, the MST+CIB
provides an e�ective subcache management scheme as it sup-
ports both e�cient placement and probing strategies. The
use of MST is observed to improve the overall performance
due to the �rst factor as it allows better cache utilization by
exploiting the inherent data reuse, and by placing the data
into appropriate subcache depending on the type of local-
ity it exhibits. Overall, we observe that CIB is an e�ective
probing strategy, making the subcache schemes that employ
CIB for probing (i.e., CIB and MST+CIB) very competitive.
When the program exhibits good locality, CIB has a high
probability of making a prediction.
Energy: Two factors in
uence the energy consumption

of a given subcache architecture. First, improved perfor-
mance can lead to reduction in number of o�-chip accesses
that are more expensive from an energy viewpoint as com-
pared to on-chip accesses. Second, the e�ectiveness of the

6366

Figure 2: Performance, energy, and energy-delay results

of MediaBench and SpecJVM98 (s10 datasets) suites for

di�erent subcache con�gurations.

probing strategy determines the number of subcaches ac-
cessed per data reference which has a direct consequence on
energy. The energy consumption is pro�led for the subcache
system (including the predictors), bus, and o�-chip memory
components. We �rst observe that the cache energy is a
dominant part of the overall memory system energy across
all the subcache and traditional cache organizations. Since
the CIB scheme employs four subcaches, its per access en-
ergy cost is better. It is also able to predict reasonably well
as observed from the performance results. The combination
of these two factors and the dominance of the cache energy
in the overall picture make this the least energy consuming
alternative. Split-4 has the same per access energy, but since
it predicts poorly, its energy consumption is much higher.
The use of ST subcache con�guration can have two ef-

fects on the energy consumption. First, it can reduce the
o�-chip energy consumption by improving the data locality
as in the case of MediaBench (See Figure 2). Second, since
it employs two subcaches accessed in parallel rather than a
single cache, the energy consumption per access increases. It
must be noted that the reduction in cache energy with size
is sublinear. Since the reduction in o�-chip energy is rela-
tively smaller compared to the higher per access energy cost,
it makes ST the most energy consuming version. The CIB-
based schemes (CIB and MST+CIB) give much more en-
ergy savings than 2-way-predict and 4-way-predict schemes.
The energy trends between MediaBench and SpecJVM98 are
quite similar, and the CIB-based schemes consistently give

around 40% energy savings compared to a uni�ed direct-
mapped cache.
Energy-Delay: It is also important to quantify the trade-

o�s between the energy and performance optimizations of
the proposed schemes. In many mobile systems both of
these issues are of critical importance, making energy-delay
product an important parameter to evaluate di�erent design
alternatives. We observe that due to their success in selec-
tively activating the right subcache, the CIB-based schemes
give the best energy-delay product. This observation is valid
across the di�erent applications evaluated as observed from
Figure 2. Among the subcache con�gurations, Split-4 and
ST-direct perform the worst and also worse than traditional
set associative caches. The circuit-based energy-e�cient
schemes (2-way-predict and 4-way-predict) have an energy-
delay product that falls between the CIB-based schemes and
the other subcache con�gurations studied.

4. CONCLUDING REMARKS
This paper has shown that with intelligent subcache archi-

tectures (especially the MST+CIB scheme proposed in this
paper), we can get 23% and 28% improvement in memory
system performance, 42% and 42% improvement in memory
system energy, and 55% and 58% improvement in energy-
delay product, as compared to a single 32K direct-mapped
cache for the MediaBench and SpecJVM98 applications re-
spectively.

5. REFERENCES
[1] D. H. Albonesi, Selective cache ways: On-demand

cache resource allocation, In Proc. The 32nd
International Symposium on Microarchitecture,
November 1999.

[2] R. F. Cmelik and D. Keppel, Shade: A fast
instruction-set simulator for execution pro�ling,
Tech. Rep. SMLI TR-93-12, Sun Microsystems Inc,
1993.

[3] A. Chandrakasan, W. J. Bowhill and F. Fox, Design
of High-performance Microprocessor Circuits, IEEE
Press, 2001

[4] J. L. Cruz, A. Gonzalez and M. Valero,
Multiple-banked Register File Architecture, In Proc.
International Symposium on Computer Architecture,
June 2000.

[5] A. Gonzales, C. Aliagas and M. Valero, A data cache
with multiple caching strategies tuned for di�erent
types of locality, In Proc. International Conference
on Supercomputing, July, 1995.

[6] K. Inoue, T. Ishihara and K. Murakami,
Way-predicting set-associative cache for high
performance and low energy consumption, In Proc.
International Symposium on Low Power Electronics
and Design, 1999.

[7] T. L. Johnson and W. W. Hwu, Run-time adaptive
cache hierarchy management via reference analysis,
In Proc. Annual International Symposium on
Computer Architecture, 1997.

[8] M. B. Kamble and K. Ghose, Analytical energy
dissipation models for low power caches, In Proc.
International Symposium on Low Power Electronics
and Design, 1997.

[9] S. Wilton and N. Jouppi, An enhanced access and
cycle time model for on-chip caches, Technical
Report 93/5, DEC WRL Research report, 1994.

[10] 128/144-MBit Direct RDRAM Data Sheet, Rambus
Inc., May 1999.

6467

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

