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ABSTRACT 
This paper presents a low-power design of a motion estimation 
block targeting for a low-bit rate video codec H.263. The block is 
based on the Four-Step Search algorithm. The proposed design 
offers up to 38 % power reduction for logic blocks alone over a 
“baseline” implementation of the Four-Step Search (4SS) algorithm 
and up to 58 % power reduction over a baseline model of the Three-
Step Search (TSS) algorithm. In addition, our design reduces power 
dissipation of an on-chip memory by up to 32% over the 4SS and 
27% over the TSS. 

1. INTRODUCTION    
Motion estimation is one of the most important steps of any video 
encoding system. Motion estimation takes a reference block of 
pixels and attempts to find a suitable match for the candidate block, 
so re-encoding of the entire block can be eliminated. As result, the 
system can transmit only the difference across the channel, saving 
bandwidth. 
For mobile video encoding applications, the motion estimation 
causes a couple of technical problems. First, with even a modestly 
sized search area, the number of computations can grow large very 
quickly. Second, the motion estimation consumes nearly 50 % of 
the power of a video encoding system [1]. Therefore, it is critical 
that a motion block be designed to dissipate a small amount of 
power for portable devices. 
A motion estimation operation finds a motion vector, indicating the 
best direction of the motion, and a rating of the “fitness” of that 
motion vector. A variety of methods exist to compute the fitness of 
a motion vector. The method most widely used is the simple SAD 
(Sum-of-Absolute-Differences) method. SAD computes the sum of 
the differences in pixel values between the reference and the 
candidate blocks. The equation for a SAD rating for a given motion 
vector (x,y) is given as such: 
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where curr(i,j) is a pixel in the current (reference) frame and 
prev(i+x,j+y) is a pixel offset by (x,y) in the previous (candidate) 
frame. 

A variety of algorithms exist to perform motion estimation. The 
most simple and direct is the full-search block matching (FSBM) 
algorithm. It calls for searching the entire set of all possible motion 
vectors and always yields the optimum motion vector with the 
lowest SAD value. However, searching the entire area is time 
consuming and may be unnecessary for low-quality video. A variety 
of hierarchical algorithms were proposed to alleviate the problem. 
These algorithms include the Three-Step Search (TSS) algorithm 
and the Four-Step Search (4SS) algorithm [2], [3]. These algorithms 
search a few points initially and refine the search over time until 
possibly an optimum vector is found. They increase the throughput 
by searching fewer points, and hence dissipate less power, 
compared to the FSBM, but the solutions are not necessarily 
optimum. However, since the quality of low bit-rate video such as 
the H.263 video codec is often degraded to meet the low bandwidth 
requirement, an optimal solution may not be always necessary. The 
circumstance was exploited for the proposed design to reduce power 
dissipation. 
The rest of this paper is organized as follows. Section 2 describes 
the 4SS algorithm employed in the proposed design. Section 3 
explains implementation of a baseline 4SS algorithm, on which our 
low-power design is based. The baseline model also served as a 
reference for power improvement for the proposed design. We 
present proposed low-power design techniques in Section 4 and. 
experimental results on power estimation in Section 5. Finally, 
Section 6 concludes the paper. 

2. FOUR-STEP SEARCH ALGORITHM 
The 4SS algorithm attempts to address some of the problems with 
the TSS algorithm such as a fixed number of search steps and 
center-biasing [3]. A salient point of the 4SS is that all the four steps 
of the algorithm are not necessary for each motion estimation 
operation. The algorithm aborts early for motion vectors close to the 
center (0,0) of the search area. 

The four step algorithm proceeds as follows [3]: 

1. Using a search box of 5x5, search the area centered around 
(0,0). 

2. If the previous step’s winner is NOT the zero vector centered 
at (0,0), search again with a 5x5 box centered at step 1’s 
winner, otherwise proceed to Step 4. 

3. Repeat Step 2 centered at Step 2’s winner. 
4. Search using a 3x3 box around the previous step’s winner. 

The following Figure 1 illustrates two example searches finding 
motion vectors at (+3, -7) and (-7, +7). 
The 4SS algorithm needs 17 searches in the best case. The worst 
case for the 4SS algorithm is 27 search points compared to 25 for 
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the TSS. If most motion vectors are around at the center of the 
search area, the 4SS performs better than the TSS. 

 
Figure 1. Example Search Patterns for 4SS [3] 

 

3. BASELINE MODEL IMPLEMENTATIONS 
The ITU-T H.263 video codec standard is for low bit-rate video 
systems. It provides acceptable picture quality and frame rate for 
video streams at a multiple of 64 Kbps or less than 64 Kbps.  
Our baseline system design is based on the implementation (which 
is efficient in hardware) presented in [4] adapted for the 4SS 
algorithm. Since our system is targeted for H.263, the macroblock 
size is set to 16x16 pixels conforming to the H.263 standard. The 
search area is [-7,+7] by [-7,+7]. Figure 2 shows a block diagram of 
our motion estimation block. Several important blocks of the block 
diagram are explained in the following: 
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Figure 2. Block Diagram of the Motion Estimation Block [4] 
 

3.1 Processing Element (PE) 
The three PEs operates on a set of three motion vectors at a time. 
(Readers may refer to the block diagram of the low-power version 
of a PE shown in Figure 3.) A subtractor and an absolute value unit 
compute the difference between a pair of  pixels under 
consideration. The difference is accumulated by an adder and a 
register, whose final output is the computed SAD value. 

3.2 Variable Delay Unit (VDU) 
The implementation of the VDUs is a simplified model of the one 
presented in [4]. The delay unit can delay an 8 bit value (which is a 
pixel value) for either 1 or 2 clocks. Note that the 2 delay cycle 
mode effectively implements a 5x5 search box, or steps 1-3 of the 
4SS algorithm. The 1 cycle delay mode implements a 3x3 search 
box, or step 4 of the 4SS algorithm. 

3.3 Control Unit 
The control unit consists of counters to address the memory, a 
comparator logic to select which SAD value to use, and a finite state 
machine that controls the rest of the system.  

3.4 Memory  
The current pixel memory consists of 256 bytes to store all pixel 
values. The previous frame search area consists of 900 pixel values, 
to enable searching the entire search space. For the purposes of this 
implementation, a 1kB memory is considered for the previous frame 
search area memory. 

4. PROPOSED LOW-POWER DESIGN 
TECHNIQUES 
This section describes low-power techniques incorporated in our 
motion estimation block. The first two techniques are the 
elimination of redundant searches and an early termination of the 
SAD calculation. These are architectural enhancements that reduce 
the number of necessary computations without compromising the 
quality of the solution. The last two methods, zero-bias and the 
reduced range arithmetic, can possibly degrade the quality of the 
solution while reducing computation. 

4.1 Elimination of Redundant Searches 
As the 4SS algorithm proceeds to the 2nd and 3rd steps of the 
algorithm, substantial SAD calculations are unnecessary. Those 
SADs have already been computed or are found to be useless. If 
those calculations can be removed in subsequent steps, a power 
savings can be achieved. Generally speaking, six searches are 
redundant when a side point of a search box wins, and four searches 
are redundant when selecting a corner point of the search box [5]. 
Note that this method is more effective for video with large motion 
that usually requires the 2nd and 3rd steps of the algorithm to 
complete the motion vector calculation. 
In our low-power design, logic has been added to detect this case 
and remove the redundant SAD calculations from the subsequent 
step. A special bit is flagged if the SAD value of a PE is the lowest 
found so far. During the next search step, the bit is checked. If it is 
flagged, ENABLE signal to the AND gates in Figure 3 becomes 
"0," to gates off all inputs to the PE to “0.” It also disables its 
accumulator register, effectively stopping all switching activity for 
that SAD calculation. 

4.2 Early Termination of SAD Calculation 
The SAD calculation requires accumulation of differences of all 
individual pairs of pixels. During the accumulation, if the 
intermediate value of the SAD becomes larger than the best SAD 
(i.e., the smallest value) found so far, the SAD computation can be 
terminated immediately. This scheme is most effective for smaller 
motion video, in which an optimum SAD is usually found quickly 
around the center area, and, hence, subsequent SAD calculations 
can be terminated early. 
This method is implemented with a simple comparator built-in to 
each PE. The “best” SAD found so far is supplied to each PE 
(represented as signal SAD_IN in Figure 3). If the calculated SAD 
for that PE becomes greater than the best SAD found so far, the 
comparator shuts off the inputs to the PE and disables the 
accumulator register as well, effectively shutting off all the 
switching activity associated with the SAD calculation. 
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Figure 3. PE with Power-Saving Features 

4.3 Zero-Bias Method 
The zero-bias method artificially reduces the SAD value of the 
center point in the search box during the 1st through the 3rd steps. 
The artificial reduction of the value by a certain bias value may 
result in a faster termination of the search, while hopefully coming 
to an acceptable solution. 

Since PE1 is responsible for the SAD value of the center point, the 
SAD value of the center point is subtracted by a bias value before 
being applied to the comparator logic in Figure 1. One necessary 
design consideration is that the early termination of SAD 
calculation method explained in the above should not be applied for 
the center point. Note that early cutoff of the SAD calculation 
results in an incorrect SAD value. The bias value was set to 100 
based on our experiment. 

4.4 Reduced Range Arithmetic 
Our experiment on SAD values reveals that the best SAD values 
rarely exceed 12 bits for the 4SS algorithm and are often of much 
smaller bit-widths. In addition, H.263 does not use the motion 
estimation if the SAD value is too large (called INTRA mode). The 
observation offers a possibility to reduce the bit width of PEs for 
SAD computation, which is 16 for the baseline model to 
accommodate all possible SAD values.  

To handle the case where the SAD may “overflow.” PEs employ an 
overflow detection scheme, which simply compares the MSB of the 
previous sum with the newly computed sum. If the previous sum 
has an MSB of ‘1’ and the current sum has an MSB of ‘0’, then an 
overflow condition has occurred. A flip-flop is flagged to gate off 
any further inputs and to disregard the current SAD value during the 
output evaluation phase. The proposed PE with both comparator 
and reduced precision arithmetic logic is shown in Figure 3. 

5. EXPERIMENTAL RESULTS 
This section reports experimental results of three baseline (FSBM, 
TSS, and 4SS) motion estimation systems and the proposed one in 
terms of video quality, gate count, and power consumption. To 
measure the video quality and to collect other statistical data, an 
H.263 software encoder/decoder system was developed at the 

VTVT laboratory of Virginia Tech. Peak signal-to-noise ratio 
(PSNR) was used as a quantitative measure of video quality. The 
baseline and proposed systems were coded in VHDL and 
synthesized with a 0.35 µm CMOS standard cell library operating at 
3.3V. The power estimation was performed at the gate level using a 
commercial tool. Three QCIF (176x144 pixels) video clips, "Suzie," 
“Carphone,” and “Foreman,” were used for our experiment. Suzie 
and Carphone are low-motion video clips, while Foreman contains 
some high motion scenes. 

5.1 Video Quality 
Table 1 shows PSNR of four different motion estimation systems. 
The four systems achieve similar PSNRs for all the three video. The 
largest difference between the proposed system and the FSBM 
system is for Foreman, which is about 0.5 dB. It should be noted 
that degradation of the video quality, if any, for the last three 
systems, was unnoticeable compared with the FSBM system. 

 
Table 1. PSNR of Various Systems (dB) 
 Suzie Carphone Foreman 

FSBM 32.575 28.780 27.722 
TSS 32.476 28.618 27.199 
4SS 32.458 28.744 27.346 
Prop 32.451 28.866 27.213 

 

5.2 Gate Count 
The gate counts of the four different systems are reported in Table 
2. The gate count in the table denotes the number of equivalent 
NAND2 gates without considering the memory block. The last row 
in the table indicates the relative gate count (in percentile) of each 
system compared with that of the FSBM system. 

Table 2. Gate Counts of Various Systems 
FSBM TSS 4SS Prop. 
9583 3301 2828 3331 

100 % 50.1 % 30.0 % 34.8 % 
 
As expected the FSBM system has the highest circuit complexity, 
but it achieves the highest throughput. The 4SS requires less 
hardware than the TSS (mostly due to the fact that the VDUs shrink 
in size). The proposed system requires extra logic for power savings 
features and hence the circuit complexity is slightly higher than that 
of the 4SS system. We noticed that the PEs takes about 49% of the 
total gate count for the proposed system, VDUs about 10 %, and the 
controller about 39%. 

5.3 Power Estimation 
We considered power dissipation of logic blocks and memory 
blocks separately. The power for logic blocks was estimated 
through gate level simulation. The power consumed by the memory 
was estimated based on SRAM power statistics (such as power 
dissipation associated with read and write operations) in [6] and 
from RTL simulations of the systems.  

Power dissipation of logic blocks (without memory blocks) of the 
three baseline systems is shown in Table 3. The table includes the 
power consumed by major blocks of the circuit for later comparison 
with the proposed system.  Notice that there are miscellaneous logic 
blocks not reported in the table. 
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Table 3. Power Estimation for Baseline Models (mW) 
Baseline 
Systems 

 Suzie Carphone Foreman 

PEs 23.25 22.69 21.15 
Controller 1.45 1.44 1.44 

FSBM 

Total 25.93 25.33 23.88 
PEs 3.445 3.252 3.009 
VDUs 0.987 0.967 0.966 
Controller 0.785 0.786 0.785 

TSS 

Total 6.633 6.428 6.202 
PEs 2.335 2.231 3.394 
VDUs 0.396 0.387 0.656 
Controller 0.506 0.510 0.801 

4SS 

Total 3.858 3.758 5.853 
 
As expected the TSS and the 4SS systems dissipate much less 
power than the FSBM system, and PEs are the major source of 
power consumption for all the three systems. The table illustrates 
power dissipation for the 4SS system depends heavily on the video 
processed, while the power dissipation of the TSS system remains 
roughly the same. The 4SS system dissipates over 40% less power 
than the TSS model for low motion video, Suzie and Carphone. 
However, the difference is small for large motion video Foreman. 

Next, we examined the effectiveness of each low-power design 
technique described earlier and the overall power saving of 
proposed system which combines all the presented methods. Those 
results are shown in Table 4. 

 
Table 4. Power Estimation for Low-Power Techniques (mW) 

Model  Suzie Carphone Foreman 
PEs 1.856 1.862 2.321 
VDUs 0.339 0.343 0.544 
Controller 0.550 0.556 0.863 

 
Elimination of 

Redundant 
Search Total 3.467 3.491 4.875 

PEs 1.947 1.656 3.114 
VDUs 0.375 0.367 0.624 
Controller 0.504 0.508 0.798 

 
Early 

Termination of 
SAD Calculation Total 3.520 3.232 5.638 

PEs 2.137 2.065 3.165 
VDUs 0.354 0.350 0.604 
Controller 0.483 0.493 0.787 

 
Zero-Bias 

Total 3.523 3.472 5.466 
PEs 2.091 1.854 2.471 
VDUs 0.372 0.360 0.523 
Controller 0.485 0.485 0.671 

 
Reduced Range 

Arithmetic 
Total 3.565 3.320 4.525 
PEs 1.399 1.213 1.690 
VDUs 0.310 0.324 0.429 
Controller 0.479 0.524 0.670 

 
Proposed System 

(Combinted) 
Total 2.786 2.714 3.634 

 
From the table, elimination of the redundant search is the most 
effective, especially for the large-motion video. It is notable that the 
early termination of SAD calculation works best on Carphone. The 
zero-bias method resulted in an average power savings. 

Table 5 compares power consumption of both logic and memory 
blocks of the three baseline systems and the proposed system.  

 
Table 5. Power Estimation of the Four Systems (mW) 

 Suzie Carphone Foreman 
 Logic Memory Logic Memory Logic Memory 

FSBM 25.93 8.99 25.33 8.99 23.88 8.99 
TSS 6.63 6.65 6.43 6.65 6.20 6.65 
4SS 3.86 5.65 3.76 5.74 5.85 8.41 

Prop. 2.79 4.86 2.71 4.91 3.63 5.69 
 
The proposed system offers considerable power savings over the 
other three systems. Power reduction for logic blocks ranges from 
28 % to 40 % over the 4SS system and 41 % to 58% over the TSS 
system. Memory power saving of the proposed block is sensitive to 
the activity of video. The power saving on a memory block is 14% 
over the 4SS block for Suzie and 32% for Foreman. Note that 
Foreman contains several high motion scenes. Details on power 
estimation on memory blocks as well as logic blocks are available 
in [5]. 

6. CONCLUSION 
This paper presents methods to presents low-power design 
techniques for a motion estimation block targeted for H.263 video 
codec. The proposed techniques were implemented based on the 
4SS algorithm, and power savings were estimated at the gate level. 
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