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ABSTRACT
The L1 data cache is a time-critical module and, at the same time,
a major consumer of energy. To reduce its energy-delay product,
we apply two principles of low-power design: specialize part of the
cache structure and break the cache down into smaller caches. To
this end, we propose a new L1 data cache structure that combines
a Specialized Stack Cache (SSC) and a Pseudo Set-Associative
Cache (PSAC). Individually, our SSC and PSAC designs have a
lower energy-delay product than previously-proposed related de-
signs. In addition, their combined operation is very effective. Rela-
tive to a conventional 2-way 32 KB data cache, a design containing
a 4-way 32 KB PSAC and a 512 B SSC reduces the energy-delay
product of several applications by an average of 44%.

1. INTRODUCTION
Continuous technical advances are fueling the trend toward more

sophisticated and powerful chip designs. Unfortunately, they also
lead to increased energy consumption. Currently, chips have a
higher power density than a hot plate; if the current trend holds,
before 2010 they will have a power density close to a nuclear reac-
tor [9].

Reducing the energy consumption of processor chips is not an
easy task. No single module in the processor is solely responsible
for most of the energy consumption. Rather, energy consumption
is spread across different modules, including for example the data
cache, instruction cache, clock, branch predictor, and instruction
window. In this paper, we focus on energy-efficient designs for the
L1 data cache.

It is well known that smaller caches consume less energy per
access and are faster. Consequently, a potentially energy-efficient
design for L1 is to partition the L1 cache into several, smaller
caches that can be probed independently. One cache organiza-
tion that can use this approach is the Pseudo Set-Associative Cache
(PSAC). A PSAC is a set-associative cache that has more than one
hit time [1, 2, 4, 5, 11, 13, 19]. Recent examples of PSAC organiza-
tions that use cache partitioning are the Predictive Sequential Asso-
ciative cache [4] and the Way-Predicting Set-Associative cache [11].

Another approach towards energy efficiency is to specialize the
cache to handle certain types of references particularly well. If
these references are frequent, specialization can significantly im-
prove both the performance and the energy savings of the cache.
One proposed type of specialization is the stack cache [7, 16],
which is designed to handle stack accesses. Stack caches can be
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effective because stack accesses are numerous and have a typical
behavior that can be exploited.

In this paper, we propose an L1 data cache design that combines
new PSAC and stack cache designs. The new stack cache, which
we call Specialized Stack Cache (SSC), is a small cache with two
pointers. Using an algorithm that is not time critical, the hard-
ware uses these pointers to reduce unnecessary write backs and line
fetches. The new PSAC schemes are based on the concept of the
Phased cache [10], whereby a cache access first activates the tag
array before trying to access the data array.

Our complete L1 data cache design is shown in Figure 1. In-
dividually, our PSAC and SSC designs have a lower energy-delay
product than previously-proposed related designs. In addition, their
combined operation is very effective. If, instead of a conventional
2-way 32 KB data cache, we use one of our 4-way 32 KB PSAC
and our 512 B SSC, we reduce the energy-delay product of several
applications by an average of 44%.

L1 Cache

To L2 Cache

From Processor

Specialized
Stack
Cache

Pseudo Set-Associative Cache

Figure 1: Proposed L1 data cache organization.

The paper is organized as follows: Section 2 describes our SSC;
Section 3 describes our new PSAC organizations; Section 4 de-
scribes the setup that we use to evaluate the caches; Section 5
presents the evaluation; and Section 6 discusses related work.

2. SPECIALIZED STACK CACHE
Stack variables tend to have two interesting properties:

1. It is easy to identify when a variable is dead. A vari-
able that resides in the stack can be live only as long as it
is below the Top-Of-Stack (TOS) pointer. Once the TOS is
lowered past the variable, the variable effectively becomes
dead. This knowledge can be leveraged to reduce unneces-
sary write backs.

2. It is easy to track whether or not a variable is initialized.
The typically small size of the stack makes it feasible to add
simple hardware support to bound the range of memory lines
that have not been displaced from the cache. This knowledge
can be used on a write cache miss. If the write misses on a
line whose address is inside this range, it is guaranteed that
the line has not been initialized yet. As a result, the write
miss can be serviced by simply allocating an empty line in
the cache without fetching the line from L2 or memory.
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These two properties have been used by Lee et al. [16] to reduce
unnecessary write backs and line fetches. They have proposed spe-
cialized microarchitecture for the stack. Their design is an 8 KB
circular buffer (Section 6).

However, if energy efficiency is a major goal, a different design
is called for. Instead of a large circular buffer, we would like a
cache for stack references that both is small and has only simple
extensions over a conventional cache design. Our solution to this
problem is what we call the Specialized Stack Cache (SSC).

The SSC is connected in parallel to the rest of the L1 data cache
as shown in Figure 1. It receives all the stack references issued by
the processor. It has two registers, namely the TOS and the Safe
Region Bottom (SRB) registers. The TOS contains the address of
the top of the stack. It is used to reduce unnecessary write backs.
Specifically, any line above the TOS is dead and, therefore, if it is
displaced from the cache, it does not need to be written back to L2.

The SRB is used in combination with the TOS to reduce un-
necessary line fetches. We want to set the SRB such that we can
guarantee that no useful data in the range of addresses between the
TOS and the SRB has been displaced from the SSC. Cache lines in
this range of addresses can contain either initialized or uninitialized
data. A stack cache write miss in this range of addresses means that
the corresponding memory line is uninitialized. As a result, there
is no need to fetch the line from L2 or memory.

To guarantee these conditions, the SRB is set as follows. When
a process is scheduled, we set the SRB to the TOS. As the process
runs, the TOS may move below or above the SRB. If it moves below
(leaving the SRB outside the stack), we reset the SRB to the TOS.
If it moves above, we do not change the SRB. However, if a dirty
line between the TOS and the SRB addresses gets displaced from
the SSC, we set the SRB to point to the displaced address plus
one memory line closer to the TOS. Note that such a displaced
dirty line may or may not contain live variables, but we have to be
conservative and assume that it does. If, instead, a non-dirty line
between the TOS and the SRB is silently displaced, no action is
taken because it contained uninitialized data. With this support, it
is guaranteed that no useful data in the range of addresses between
the TOS and the SRB has been displaced from the SSC cache.

Fortunately, checking the TOS or SRB registers occurs off the
critical path, and updating them occurs infrequently. Specifically,
checking mostly occurs on write misses and on dirty line displace-
ments: on a write miss, the SRB is checked to see if a line fetch can
be avoided; on a dirty displacement, the TOS and SRB are checked
to see if a line write back can be avoided and if the SRB needs to
be updated. On a TOS move, the SRB is also checked to see if it
needs to move.

Updates may occur in the following cases. The SRB may be
updated in a dirty line displacement. Both the TOS and SRB may
be updated on a stack pointer move. Finally, they are both set to the
top of the stack when a process gets scheduled.

Finally, for this system to work, we also need two other supports.
The first one is to keep the SSC virtually tagged. If we tagged the
SSC with physical addresses, stack addresses could become non-
contiguous, which would complicate address comparisons with the
TOS and SRB. Fortunately, using a virtually-tagged SSC also saves
energy because address translation is eliminated.

The second support is to ensure that all stack references go to the
SSC. If some of them went to the rest of L1, our algorithm would
not work properly. Consequently, we need to detect stack refer-
ences. A good way to do so has been proposed by Bekerman et
al. [3]. In the decode stage, instructions that use the stack pointer
are identified. Their accesses are later forwarded to the SSC. Since
not all the stack accesses use the stack pointer, a snooping mech-

anism is used to redirect the remaining stack accesses to the SSC.
With this solution, only the accesses redirected by the snooping
mechanism to the SSC require one additional cycle. According
to [3], only 1.2% of the accesses need any redirection.

Overall, the resulting SSC is very energy efficient: both unneces-
sary write backs and unnecessary line fetches are reduced, the SSC
can be quite small, and it is virtually tagged.

3. PSEUDO SET-ASSOCIATIVE CACHE
Pseudo Set-Associative Caches (PSAC) are set-associative caches

that have more than one hit time [1, 2, 4, 5, 11, 13, 19]. One
way to organize a PSAC is by combining a set of smaller caches
(also called ways) that can be probed independently (Figure 1).
In such designs, probing one of these small caches is likely to be
faster and less energy-consuming than accessing a conventional set-
associative cache. Recent examples of PSAC designs that are based
on multiple smaller caches are the Predictive Sequential Associa-
tive cache [4] and the Way-Predicting Set-Associative cache [11].
In these schemes, on an access, a prediction mechanism selects
which way to probe. If the probe hits, the access is satisfied with
high speed and low energy consumption. Otherwise, further prob-
ing is necessary.

To predict which way to probe first, recent PSAC schemes use
a steering table [4]. The table is a small cache where each entry
has a pointer to the predicted way in the set. The table is indexed
with some prediction source. Examples of prediction sources are
the address of the load or store instruction inducing the access, or
the number of the base register used by the instruction [4].

If the first probe misses, different policies are possible. One ap-
proach is to sequentially probe all the remaining ways until the
data is found or an L1 miss is declared [13]. We call this scheme
Sequential. A second policy, used in the Way Predicting Set As-
sociative cache [11], is to simultaneously probe all the remaining
ways. We call this scheme Fall Back Regular (FallBackReg), since
“it falls back to a regular” associative cache. Overall, Sequential
tends to be slow and conserve energy while FallBackReg tends to
be fast and energy-consuming.

To obtain a better balance between energy and overall speed,
we propose two new PSAC schemes. These schemes are based
on the concept of the Phased cache [10]. The phased cache is a set-
associative cache where an access first activates all the tag arrays.
If there is a match, only the data array in the correct way is subse-
quently activated. Consequently, relative to a conventional cache,
the phased cache saves energy at the cost of extra delay.

The first PSAC scheme that we propose is called Fall Back Phased
(FallBackPha). In this scheme, the first probe activates a predicted
way (tag and data array). If it misses, the cache acts like a phased
cache: in the second attempt, all the remaining tag arrays are acti-
vated and, if a match is detected, the data array in the correct way is
subsequently activated. Overall, this scheme favors energy savings
at the expense of speed.

The second PSAC scheme that we propose is called Predictive
Phased (PredictPha). In this scheme, the first probe activates all
the tag arrays and the data array of the predicted way. If the pre-
diction is incorrect, at least we know which way (if any) has the
correct data. In this case, the data array of the correct way is subse-
quently accessed. Overall, this scheme favors speed at the expense
of energy consumption. Note, however, that this scheme can use a
unified tag array structure for the whole PSAC, which can likely be
designed to be more energy-efficient than separate tag arrays.

The proposed PSAC schemes can use different algorithms to in-
dex the steering table and to select a line for replacement on a miss.
Due to lack of space, our evaluation section (Section 5) only con-
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siders a small subset of the design space. Specifically, to index the
steering table, we use the address of the load or store instruction.
Such information is available very early in the pipeline. It can be
shown that this scheme is as accurate for our applications as the
more complicated schemes in [4].

Initially, the table is loaded with pointers randomly pointing to
the different ways with a uniform distribution. In a more sophisti-
cated design, the compiler could analyze the program and provide
heuristics to initialize the table. However, this is beyond the scope
of this paper.

For the line replacement algorithm, we examine two choices.
One approach is to always load the line into the way selected by
the steering table. This scheme is not very flexible and may cause
cache conflicts. To alleviate this problem, we also examine an adap-
tive scheme. The scheme uses MRU bits in each set of the PSAC. In
this scheme, at line fill time, if the predicted way happens to be the
MRU way, we instead load the line into another, randomly selected
way and update the table entry accordingly. While this approach
may induce a higher number of mispredictions, it may also reduce
the miss rate. This approach is called Adaptive. Note that, since we
are targetting high-associative PSAC systems, LRU information is
unavailable.

4. EXPERIMENTAL SETUP
To evaluate our cache designs, we use detailed software simu-

lations at the architectural level. The simulations are performed
using a MINT-based execution-driven simulation system [15] that
models out-of-order processors.

4.1 Architecture
The baseline architecture is an out-of-order processor with two

levels of cache. The architecture loosely models a MIPS R10000
processor. Table 1 lists the parameters used in the simulation. While
the latency numbers in the table correspond to an unloaded ma-
chine, we model contention in the whole system. For the processor
chip, we assume 0.18 �m technology.

Processor Caches Bus & Memory

Freq: 1 GHz L1 size: 32 KB Bus: split transaction
Issue width: 4 L1 OC,RT: 1,3 ns Mem: 1-channel Rambus
Dyn issue: yes L1 assoc: 2 Bus width: 16 bits
I-window size: 96 L1 line: 32 B DRAM bandwidth: 2 GB/s
Ld/St units: 1 L2 size: 512 KB Mem RT: 81 ns
Int,FP units: 2,2 L2 OC,RT: 4,12 ns
Pending Ld,St: 8,8 L2 assoc: 8
BR penalty: 4 cyc L2 line: 32 B

Table 1: Baseline configuration. BR, OC, and RT stand for branch,
occupancy, and round trip from the processor, respectively.

4.2 Energy
To evaluate the different cache organizations under different ap-

plications, we use the energy-delay product metric. For all cache
configurations, we calculate latencies and energies for reads, writes,
line fills, write backs, and cache misses using an extension of the
CACTI tool [18] that we developed called XCACTI. XCACTI scales
down the technology parameters to match 0.18 �m technology. It
also searches for configurations with the lowest energy-delay prod-
uct, delay, or energy. The search can be optimized based on several
timing constraints, the expected ratio of number of loads to stores,
and the cache miss rate. Based on our observations of our appli-
cations, we optimize the L1 and L2 cache organizations for 25%
of writes, while the stack caches are optimized for 50% of writes.

Because we are evaluating energy-efficient designs, we use latched
sense amplifiers instead of the ones from Wada in CACTI [18]. The
tool also includes a phased cache model.

Table 2 shows the energy consumed in a cache access for dif-
ferent stack caches and for the baseline L1 and L2 caches. The
baseline L2 cache is a phased cache. The numbers include only the
energy consumed in the corresponding cache structure, and not in
buses or buffers outside the cache. The table shows the case of a
read hit, write hit, read miss, and write miss.

Access Type
Energy Per Access (pJ)

Direct-Mapped Stack Cache 2-Way 8-Way
256B 512B 1KB 2KB 32KB L1 512KB L2

Read Hit 130 146 166 195 735 3201
Write Hit 141 157 180 214 780 3775
Read Miss 130 88 144 146 735 535
Write Miss 17 20 23 30 79 535

Table 2: Energy consumed in a cache access for different stack
caches and for the baseline L1 and L2 caches.

Table 3 shows the energy consumed in a cache access for dif-
ferent PSAC organizations and associativities. As usual, the num-
bers include only the energy consumed in the corresponding cache
structure, and are organized according to the type of access. Since
an access may involve several sequential probes, each access type
in the table has several columns corresponding to the different probes.
Each column is labeled with the latency in cycles taken to com-
plete the corresponding probe. For comparison, we also show an
L1 phased cache. In all the caches, a write checks the tag first and
does not access the data array until a hit is detected. This phased
write architecture saves energy with minimal performance degra-
dation.

The TLB is modeled after the TLB of the MIPS R10000 proces-
sor. It uses 40-bit physical addresses, has 64 entries, and is fully
associative. The best possible XCACTI configuration requires 141
pJ per read. Its access time is short enough for the fastest caches
considered.

The steering table has 1024 entries. For a 4-way PSAC, the total
size is 2 Kbits. This structure spends 59 pJ per read. For our appli-
cations, it can be shown that the energy spent reading the table is
on average about 4% of the energy spent in instruction fetching in
the baseline configuration.

We model a 1-channel Rambus memory system. Intel expects
that such a system will consume about 1.2 W [12]. For a single
channel at full bandwidth, we assume that each cache line fill con-
sumes 48000 pJ.

4.3 Applications
For our experiments, we use a mix of multimedia, SpecInt, mem-

ory intensive, and pointer intensive applications. We compile them
with IRIX MIPS 7.3 with -O2. Each application generates several
millions of data references.

The applications are as follows. BLAST is a protein matching
application. The algorithm tries to match an amino acid sequence
sample against a large database of proteins.

BSOM is a neural network that classifies data. It uses only fixed-
point arithmetic.

CRAFTY is from SpecInt 2000. We use a data set with a reduced
search depth that produces about the same data cache, instruction
cache, and TLB miss rates as the reference set.

GZIP is from SpecInt 2000. We use a reduced data set that gen-
erates about the same data cache, instruction cache, and TLB miss
rates as the reference set.
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Energy Per Access (pJ)
PSAC 4-Way 32 KB PSAC 2-Way 32 KB PSAC
Organization Read Hit Write Hit Read Miss Write Miss Read Hit Write Hit Read Miss Write Miss

2cy 4cy 6cy 8cy 4cy 6cy 8cy 10cy 2cy 4cy 8cy 2cy 4cy 8cy 2cy 4cy 4cy 6cy 2cy 4cy 2cy 4cy

Sequential 288 442 596 750 317 364 411 458 - - 616 - - 188 427 688 472 533 - 522 - 122
FallBackReg 288 750 - - 317 458 - - - 616 - - 188 - Same as Sequential
FallBackPha 288 - 536 - 317 - 458 - - 295 - - 188 - Not Interesting
PredictPha 324 430 - - 352 - - - 189 - - 82 - - 444 644 489 - 78 - 78 -
Phased - 422 - - 451 - - - 82 - - 82 - - - 489 534 - 78 - 78 -

Table 3: Energy consumed in an access for different PSAC organizations and associativities. Since a PSAC access may involve several sequential
probes, each access type in the table has several columns corresponding to the different probes. Each column is labeled with the latency in cycles
(cy) taken to complete the probe. For comparison, we also show an L1 phased cache.

MCF is from SpecInt 2000. We use an increased version of the
test input set.

MP3D is an MP3 decoder. We use mpg123 version 0.59r, which
is the fastest available UNIX GPL MP3 decoder. We reproduce
three different samples, namely voice, cd, and hifi.

MP3E is an MP3 encoder. We use lame3.85, which is fast and
widely used in the MP3 community. We encode two different sam-
ples, namely voice and cd.

TREE is the Treeadd pointer-intensive, recursive application from
the Olden suite.

To estimate the working set of the applications, Figure 2 com-
putes the miss rates of each application for several plain L1 data
caches. The caches are 2-way set-associative. The figure does not
show MCF because of its high miss rate. From the figure, we see
that it is realistic to use a 32 KB L1 in our baseline system: L1
captures most of the working set of the applications but the system
can still benefit from an L2 cache.
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Figure 2: Application miss rates for different data cache sizes.

5. EVALUATION
In this section, we evaluate our SSC and PSAC organizations,

both individually and combined. As indicated before, we use as a
metric the energy-delay product. In this metric, delay is the exe-
cution time of the application, and energy is the energy consumed
in the data memory hierarchy. The latter includes the TLB, the L1
and L2 caches, and the main memory. Different applications spend
a different percentage of their energy in the data memory hierarchy.
In our application suite, this percentage ranges from 15% to 55%
and is on average 30%. In all the figures, the results are normalized
to those of the baseline architecture described in Table 1.

5.1 SSC Analysis
The benefit of using a small cache is two-fold: faster access and

lower energy consumption. Stack references have far more spatial
locality than the rest of the data references. Therefore, a small

structure fulfills the role of stack cache nicely. In our simulations,
we find that the miss rate barely changes for stack cache sizes larger
than 2 KB. Moreover, XCACTI shows that beyond 2 KB, the cache
cannot be accessed in one processor cycle for 1 GHz. Thus, we
only show data for stack cache sizes between 256 B and 2 KB.

In Figure 3, we use our baseline 32 KB L1 cache and we add
a small stack cache for stack references: either an SSC or a plain
write back cache (WB). We use different stack cache sizes as shown
in the legend. The bars are ordered from left to right in the order
of decreasing energy-delay products. The bars correspond to the
average of the applications.
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Figure 3: Delay, energy, and energy-delay product of the baseline
system with a stack cache. WB stands for plain write back stack
cache.

Figure 3 shows that adding a small structure to cache stack refer-
ences is very energy efficient. Although the performance does not
improve much, the energy savings range from 17% to 24%. The
result is a much reduced energy-delay product.

Our proposed SSC system delivers an energy-delay product that
is always lower than the one delivered by the WB system. The
difference becomes smaller as the SSC increases in size. The rea-
son is that larger caches have lower miss rates and, therefore, fewer
write backs and line fills. Overall, if we try to balance performance,
energy, and area cost, we recommend using a 512 B SSC.

Figure 3 only shows the average of all the applications. In ap-
plications with frequent stack activity like MP3E, the benefits of
SSC over plain WB are significant. Figure 4 repeats Figure 3 for
the MP3E application only. We can see that the SSC system deliv-
ers an energy-delay product that is substantially lower than the one
delivered by the WB system. In no application of our suite does
the system with SSC have a higher energy-delay product than the
system with WB.

Finally, software optimizations specific to stack caches are an
interesting issue not applicable to traditional architectures. With a
stack cache (SSC or WB), stack accesses are faster and spend less
energy. We can exploit this difference by making sure that variables
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Figure 4: Delay, energy, and energy-delay product of a system with
a stack cache for the MP3E application.

that are used as temporaries inside a subroutine as declared as auto-
matic inside the subroutine. Of course, over-utilizing the stack can
be bad. Large structures allocated in the stack can increase the miss
rate, negating the benefit. In our application suite, the two MP3 ap-
plications have structures that can be bigger than the stack cache
itself. We changed these structures into static variables so that their
accesses do not go to the stack cache. With a 512 B SSC or WB
cache, these changes improve the energy-delay product by an av-
erage of 19% and 14% in MP3D and MP3E, respectively. These
changes have no impact on the baseline architecture.

5.2 PSAC Analysis
We simulate all the PSAC schemes and algorithms discussed in

Section 3. For clarity, Figure 5 only shows the most representative
schemes. It excludes the schemes with adaptive replacement and
the 2-way phased cache.
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Figure 5: Delay, energy, and energy-delay product of systems with
different PSAC organizations.

From Figure 5 we can make several observations. First, 4-way
PSAC structures have a lower energy-delay product than 2-way
ones because smaller structures are more energy efficient. Sec-
ond, the phased cache suffers from low performance. Thus, de-
spite its low energy consumption, it has a poor energy-delay prod-
uct. Third, Sequential is not as good as other schemes; for 4-way
set-associative systems, its energy-delay product is 7% higher than
PredictPha’s. Finally, PredictPha has the best energy-delay prod-
uct. The difference in energy-delay product between PredictPha
and the other optimized schemes (FallBackPha and FallBackReg)
is small.

Not shown in the figure is the impact of adaptivity in the line
replacement algorithm as described in Section 3. Although adap-
tive schemes always have a lower miss rate than their non-adaptive

counterparts, they often have a higher misprediction rate. The re-
sulting energy-delay product changes little. Consequently, we do
not consider adaptivity further.

5.3 Combination
Figure 6 shows the effect of using an SSC and a PSAC simulta-

neously. For the PSAC, we use PredictPha with an 8 KB bank in
each way. We vary the number of ways from 3 to 4. The last five
bars in each group add an SSC of size ranging from 256 B to 2 KB.
As usual, the bars are relative to the baseline system of Table 1.

If we focus on the energy-delay product bars, we see that, even if
we have a PSAC as our L1, we still want to add an SSC. Comparing
Figure 6 to Figure 3, we see that the energy-delay product reduc-
tions delivered by an SSC and by a PSAC are not fully additive.
However, a system combining a PSAC and a 512 B SSC delivers
the best balance between performance, energy consumption, and
area cost.
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Figure 6: Delay, energy, and energy-delay product of systems with
combinations of SSC and PSAC structures. For the PSAC, we use
PredictPha with different numbers of ways. The last five bars in each
group add an SSC.

For designs in which chip real estate is an issue, Figure 6 also
shows an interesting tradeoff. The first three bars in each group cor-
respond to a 3-way 24 KB PSAC, a 4-way 32 KB PSAC, and a com-
bination of a 3-way 24 KB PSAC and a 512 B SSC, respectively.
We can see that reducing the PSAC size from 32 KB to 24 KB
(second and first bars) increases the energy-delay product by 7%.
However, adding a 512 B SSC to the 24 KB PSAC (third bar), not
only makes up for the loss, but actually improves the energy-delay
product by 10% over the 32 KB PSAC. Consequently, a smaller
PSAC combined with an SSC is a relatively good solution if real
state is tight.

5.4 Energy Breakdown
Figure 7 shows the breakdown of the total energy consumption

in the data memory hierarchy across different applications. The
breakdowns are shown for different L1 organizations: the baseline,
a 4-way 32 KB PredictPha PSAC, the baseline plus a 512 B SSC,
and a 4-way 32 KB PredictPha PSAC plus a 512 B SSC. The en-
ergy is broken down into main memory, L2, L1 outside the SSC,
and SSC. As we can see, our PSAC and SSC designs target what is
usually the largest energy consumption chunk in the data memory
hierarchy. They reduce it effectively.

6. RELATED WORK
Proposals for special hardware to handle the top of the stack, or

even a hardware stack, are not uncommon. For example, Ditzel and
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Figure 7: Breakdown of the total energy consumed in the data
memory hierarchy. PSAC is a 4-way 32 KB PredictPha, while Comb
is PSAC plus a 512 B SSC.

McLellan [8] proposed using a large register file to simulate a stack.
However, many of such designs are performance driven. Our ap-
proach, instead, is to exploit stack properties for energy efficiency,
which leads to different designs.

Perhaps the design closest to ours is the circular buffer for the
stack proposed by Lee et al. [16]. The buffer exploits the stack
reference properties discussed in Section 2 to save line fills and
write backs. Its goal is to improve performance, rather than to do it
in an energy-efficient manner, as our SSC. As a result, the buffer is
very large (8 KB), and includes two status bits per word. The large
size is needed to avoid conflicts. Our SSC, instead, is very small
(512 B), is organized as a plain cache, and adds two pointers that
perform simple, low-energy operations.

Cho et al. proposed a plain stack cache for high-performance
processors [6, 7]. The stack cache is accessed by an additional
load/store unit to simplify coherence between multiple load/store
units. They did not evaluate their design for energy-efficiency.
Later, Lee and Tyson proved that such a design is good for low
energy-delay product in embedded processors [17]. We show that
an SSC has a lower energy-delay product than a plain stack cache.
Furthermore, our analysis suggests that for high-frequency proces-
sors, a small SSC (512 B) is the most desirable design.

Several PSAC designs have been proposed which can be imple-
mented as a set of smaller, independently-probed caches. They dif-
fer in the algorithms used for way selection and line replacement.
Many of the proposals are for 2-way PSAC systems, including the
Hash Rehash [1], Column Associative [2], Predictive Sequential
Associative [4], and MIPS R10000 [19] caches.

The PSAC schemes with higher associativity tend to use MRU
information in the target set to select the order to probe the ways.
For example, Kessler et al. sequentially probe the ways from MRU
to LRU [13]. The Way-Predicting Set-Associative cache probes
the MRU way first, and then the remaining ways in parallel [11]. A
similar approach is used by Chang et al. [5]. Using MRU informa-
tion necessarily introduces a serialization step right after we know
the address to load or store.

All the mentioned proposals except [11] are evaluated for per-
formance. The system in [11] is evaluated for energy-delay prod-
uct using a simplistic model. In other related work, Kim et al. [14]
calculate the energy consumed by several 2-way PSAC systems,
which they call Multiple-Access Caches.

Our work in this paper differs in several ways. First, we focus on
PSAC systems with associativity higher than 2. Secondly, we pro-
pose two new PSAC systems based on the phased cache. Finally,

we evaluate many schemes under the energy-delay product metric
using a very detailed model based on an extension to CACTI.

7. CONCLUSIONS
This paper presented a design for a high-performance, energy-

efficient L1 data cache. The cache combined new designs of a stack
cache and a PSAC. Overall, we recommend an L1 design with a
small SSC and a 4-way PSAC. Relative to a conventional 2-way
32 KB data cache, a 512 B SSC with a 4-way 32 KB PredictPha
PSAC reduced the energy-delay product of our applications by an
average of 44%. Furthermore, in an area-constrained design, we
recommend to use a smaller PSAC and still keep the small SSC.
For example, we can use a 3-way 24 KB PSAC with a 512 B SSC.
Finally, we found that changes in the line replacement algorithm
to ignore the prediction scheme and not replace MRU lines have a
negligible impact on the energy-delay product.
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