A Methodology for the Design of Application Specific
Instruction Set Processors (ASIP) Using the
Machine Description Language LISA

Andreas Hoffmann, Oliver Schliebusch, Achim Nohl, Gunnar Braun,
Oliver Wahlen and Heinrich Meyr
Integrated Signal Processing Systems, RWTH Aachen, Germany

Abstract

The development of application specific instruction set pro-
cessors (ASIP) is currently the exclusive domain of the semi-
conductor houses and core vendors. This is due to the fact
that building such an architecture is a difficult task that re-
quires expertise knowledge in different domains: application
software development tools, processor hardware implemen-
tation, and system integration and verification. This paper
presents a retargetable framework for ASIP design which is
based on machine descriptions in the LISA language. From
that, software development tools can be automatically gen-
erated including HLL C-compiler, assembler, linker, simu-
lator and debugger frontend. Moreover, synthesizable HDL
code can be derived which can then be processed by stan-
dard synthesis tools. Implementation results for a low-power
ASIP for DVB-T acquisition and tracking algorithms de-
signed with the presented methodology will be given.

1 Introduction

In consumer electronics and telecommunications high prod-
uct volumes are increasingly going along with short life-
times. Driven by the advances in semiconductor technology
combined with the need for new applications like digital TV
and wireless broadband communications, the amount of sys-
tem functionality realized on a single chip is growing enor-
mously. Higher integration and thus increasing miniatur-
ization have led to a shift from using distributed hardware
components towards heterogeneous system-on-chip (SOC)
designs. Due to the complexity introduced by such SOC
designs and time-to-market constraints, the designer’s pro-
ductivity has become the vital factor for successful pro-
ducts. For this reason a growing amount of system functions
and signal processing algorithms is implemented in software
rather than in hardware by employing embedded processor
cores.

In the current technical environment, embedded proces-
sors (EP) and the necessary development tools are designed
manually, with very little automation. This results in a
long, labor-intensive process requiring highly skilled engi-
neers with specialized know-how — a very scarce resource.
Most of today‘s processor design is conducted by EP and
IC vendors using a variety of development tools from differ-
ent sources, typically lacking a well-integrated and unified
approach. Engineers design the architecture, simulate it in
software, design software for the target application, and test
the implementation for hardware and software integration.

Each step of this process requires its own design tools and
is often conducted by a separate team of developers. As
a result, design engineers rarely have the tools or the time
to explore architecture alternatives to find the best-in-class
solution for their target applications. This situation is very
expensive, both in time and engineering resources, and has a
substantial impact on time-to-market. Without automation
and unified development environment, the design process is
prone to error and may lead to inconsistencies between the
hardware and software representations.

The efforts of designing a new architecture can be reduced
significantly by using a retargetable approach based on a
machine description. The Language for Instruction Set
Architectures (LISA) [1] was developed for the automatic
generation of consistent software development tools and syn-
thesizable HDL code. A LISA processor description covers
the instruction-set, the behavioral and the timing model of
the underlying hardware. Changes in the hardware spe-
cification are easily transferred to the LISA model and are
automatically applied to the generated tools and hardware
implementation. Moreover, speed and functionality of the
generated tools allow usage after the product development
has been finished. Therefore there is no need to rewrite
the tools to upgrade them to production quality standard.
In its predicate to represent an unambiguous abstraction
of the real hardware, a LISA model description bridges the
gap between hardware and software design, since it provides
the software developer with all required information and en-
ables the hardware designer to synthesize the architecture
from the same specification the software tools are based on.

2 LISA language

The LISA language [1] is aiming at the formalized descrip-
tion of programmable architectures, their peripherals and
interfaces. It was developed to close the gap between purely
structural oriented languages (VHDL, Verilog) and instruc-
tion set languages for architecture exploration and imple-
mentation purposes of a wide range of modern program-
mable architectures (DSPs and microcontrollers). The lan-
guage syntax provides a high flexibility to describe the in-
struction set of various processors, such as SIMD, MIMD
and VLIW-type architectures. Moreover, processors with
complex pipelines can be easily modeled. This includes
the ability to describe architectures with complex execution

schemes as e.g. out-of-order execution of instructions’.

LA complete reference of the language is provided here: [2]

The process of generating software development tools and
synthesizing the architecture requires information on archi-
tectural properties and the instruction set definition as de-
picted in figure 2.1. These requirements can be grouped

memory | resource | behavioral | instruction | timing s
del del del t model del architecture
mode mode mode set model mode| model
HLL- register instruction | instruction instruction
compiler allocation | scheduling | selection scheduling
instruction
assembler - - - N -
translation
linker memory - - - -
allocation
N Tator simulation o_peratlpn ldecoder/ operatlgn
of storage simulation | disassembler | scheduling
display .
debugger configuration profiling - - -
HDL basic c\gr:gi:t instruction | operation operation
generator | structure N decoder | scheduling grouping
resolution

Fig. 2.1: Model requirements of development tools.

into different architectural models - the entirety of these
models constitutes the abstract model of the target architec-
ture. The LISA machine description provides information
consisting of the following model components.

e The memory model lists the registers and memories of
the system with their respective bit widths, ranges, and
aliasing. The compiler gets information on available
registers and memory spaces. The memory configura-
tion is provided to perform object code linking. During
simulation, the entirety of storage elements represents
the state of the processor which can be displayed in the
debugger. The HDL code generator derives the basic
architecture structure.

e The resource model describes the available hardware
resources and the resource requirements of operations.
Resources reflect properties of hardware structures
which can be accessed exclusively by one operation at
a time. The instruction scheduling of the compiler de-
pends on this information. The HDL code generator
uses this information for resource conflict resolution.

e The instruction set model identifies valid combinations
of hardware operations and admissible operands. It
is expressed by the assembly syntax, instruction word
coding, and the specification of legal operands and ad-
dressing modes for each instruction. Compilers and as-
semblers can identify instructions based on this model.
The same information is used at the reverse process of
decoding and disassembling.

e The behavioral model abstracts the activities of hard-
ware structures to operations changing the state of
the processor for simulation purposes. The abstraction
level of this model can range widely between the hard-
ware implementation level and the level of high-level
language (HLL) statements.

e The timing model specifies the activation sequence of
hardware operations and units. The instruction latency
information lets the compiler find an appropriate sche-
dule and provides timing relations between operations
for simulation and implementation.

e The micro-architecture model allows grouping of hard-
ware operations to functional units and contains the
exact micro-architecture implementation of structural

components such as adders, multipliers, etc. This en-
ables the HDL generator to generate the appropriate
HDL code from a more abstract specification.

Besides, one of the key aspects in architecture development
is the ability to abstract on multiple levels of accuracy. How-
ever, it is mandatory that a working set of software develop-
ment tools can be successfully generated independently of
the abstraction level. The LISA language allows the realiza-
tion of models from ranging data-flow to micro-architecture
level in the architecture domain and from the level of bound-
aries of high-level language (HLL) statements to clock cycles
or even phases within cycles in the timing domain. This
enables stepwise refinement of the model from functional
specification to the micro-architecture implementation.

3 Related Work

Hardware description languages (HDLs) like VHDL or Veri-
log are widely used to model and simulate processors, but
mainly with the goal of developing hardware. Using these
models for architecture exploration and production qual-
ity software development tool generation has a number of
disadvantages especially for cycle-based or instruction-level
processor simulation. They cover a huge amount of hard-
ware implementation details which are not needed for per-
formance evaluation, cycle-based simulation and software
verification. Moreover, the description of detailed hardware
structures has a significant impact on simulation speed [3].
There are many publications on machine description lan-
guages providing instruction-set models. The language
nML was developed at TU Berlin [4] and adopted in se-
veral projects, e.g. [5]. However, the underlying instruc-
tion sequencer does not allow to describe the mechanisms
of pipelining as required for cycle-based models. Processors
with more complex execution schemes and instruction-level
parallelism like the Texas Instruments C6x cannot be de-
scribed, even at the instruction-set level, because of the nu-
merous combinations of instructions. The same restriction
applies to ISDL [6] which is very similar to nML. The lan-
guage ISDL is an enhanced version of the nML formalism
and allows the generation of a complete tool-suite consisting
of HLL compiler, assembler, linker and simulator. Even the
possibility of generating synthesizable HDL code is reported,
but no results on the efficiency of the generated tools nor
on the generated HDL code are given. The EXPRESSION
language [7] allows the cycle-accurate processor description
based on a mixed behavioral /structural approach. However,
no results are published on simulation speed and the ability
to synthesize the architecture.

The PEAS-IIT system [8] is an ASIP development environ-
ment based on a micro-operation description of instructions
that allows the generation of a complete tool-suite consist-
ing of HLL compiler, assembler, linker and simulator includ-
ing HDL code. However, no further information about the
formalism is given that parameterizes the tool generators
nor are results published on the efficiency of the generated
tools. The MetaCore system [9] is a benchmark driven ASIP
development system based on a formal representation lan-
guage. The system accepts a set of benchmark programs
and estimates the hardware cost and performance for the
configuration under test. Following that, software develop-
ment tools and synthesizable HDL code are automatically

generated. As the formal specification of the ISA is similar
to the ISPS formalism [10], complex pipeline operations as
flushes and stalls can hardly be modeled. Moreover, flexibi-
lity in designing the instruction-set is limited to a predefined
set of instructions. Tensilica Inc. customizes a RISC proces-
sor within the Xtensa system [11]. As the system is based
on an architecture template comprising quite a number of
base instructions, it is far too powerful and thus not suitable
for highly application specific processors which do in many
cases only employ very few instructions.

Our interest in a complete retargetable tool-suite for ar-
chitecture exploration, production quality software develop-
ment, architecture implementation and system integration
based on cycle-accurate models for a wide range of embed-
ded processor architectures motivated the introduction of
the LISA language which is used in our approach.

4 LISA processor design platform

The design and implementation of an embedded processor,
such as a DSP embedded in a cellular phone, requires the
following tasks or phases:

e architecture exploration,
e architecture implementation,
e application software design,

e system integration and verification.

The LISA processor design platform (LPDP) is an environ-
ment that allows the automatic generation of software devel-
opment tools for architecture exploration, hardware imple-
mentation, software development tools for application de-
sign, and hardware-software co-simulation interfaces from
one sole specification of the target architecture in the LISA
language. The set of LISA tools and their areas of applica-
tion are as follows:

Hardware Designer Platform — for exploration and pro-
cessor generation. Architecture design requires the designer
to work in two fields (see figure 4.1): on the one hand, the
development of the software part including C-compiler, as-
sembler, linker and simulator and on the other hand the
development of the target architecture itself.

LISA Description
Language Compiler

LISA C-compiler HDL Description
LISA assembler

Synthesis Tools
LISA simulator
Gate Level Model

Evaluation Results
Chip Size, Clock Speed, —
Power Consumption

ZO—4H>»0OrUXxXm
ZO0O——4>»HZmMEmMr U —

Evaluation Results
— Profiling Data,
Execution Speed

Fig. 4.1: Exploration and implementation.

The software simulator produces profiling data and thus
may answer questions concerning the instruction set, the
performance of an algorithm and the required size of mem-
ory and registers. The required silicon area or power con-
sumption can only be determined in conjunction with a

synthesizable HDL model. To accommodate these require-
ments, the LISA hardware designer platform can generate
the following tools:

Language debugger for debugging the instruction-set
with a graphical debugger frontend.

Exploration assembler which translates text-based in-
structions into object code for the respective pro-
grammable architecture.

Exploration linker which is controlled by a dedicated
linker command file.

Instruction-set architecture (ISA) simulator for cy-
cle accurate simulation including support for deep in-
struction and data pipelines.

Besides the ability to generate a complete set of software de-
velopment tools, synthesizable HDL code for the processor‘s
control path and instruction decoder can be generated auto-
matically from LISA processor descriptions. This also com-
prises the pipeline and pipeline controller including complex
interlocking mechanisms, forwarding, etc.

Software Designer Platform — for software application
design. To cope with the requirements of functionality and
speed in the software design phase, the tools generated for
this purpose are an enhanced version of the tools generated
during architecture exploration phase. The generated simu-
lation tools are enhanced in speed by applying the compiled
simulation principle [12] — where applicable — and are faster
by one to two orders in magnitude than the tools currently
provided by architecture vendors.

As the compiled simulation principle requires the content of
the program memory not to be changed during the simula-
tion run, this holds true for most DSPs. However, for ar-
chitectures running the program from external memory or
working with operating systems which load/unload appli-
cations to/from internal program memory, this simulation
technique is not suitable. For this purpose, an interpretive
simulator is provided.

System Integrator Platform - for system integration and
verification. Once the processor software simulator is avail-
able, it must be integrated and verified in the context of
the whole system which can include a mixture of differ-
ent EPs, memories, and interconnect components. In or-
der to support the system integration and verification, the
LPDP system integrator platform provides a well defined ap-
plication programming interface (API) to interconnect the
instruction-set simulator generated from the LISA specifi-
cation with other simulators. The API allows to control the
simulator by stepping, running, and setting breakpoints in
the application code and by providing access to the proces-
SOT resources.

5 Architecture Implementation

As we are targeting the development of application specific
instruction set processors (ASIP), which are highly opti-
mized for one specific application domain, the HDL code
generated from a LISA processor description has to ful-
fill tight constraints to be an acceptable replacement for
handwritten HDL code by experienced designers. Especially
power consumption, chip area and execution speed are criti-
cal points for this class of architectures. For this reason, the

LPDP platform does not claim to be able to efficiently syn-
thesize the complete HDL code of the target architecture.
Especially the data path of an architecture is highly critical
and must in most cases be optimized manually. Frequently,
full-custom design technique must be used to meet power
consumption and clock speed constraints. For this reason,
the generated HDL code is limited to the following parts of
the architecture:

e coarse processor structure such as register set, pipeline,
pipeline registers and test-interface;

e instruction decoder setting data and control signals
which are carried through the pipeline and activate the
respective functional units executed in context of the
decoded instruction;

e pipeline controller handling different pipeline inter-
locks, pipeline register flushes and supporting mech-
anisms such as data forwarding.

Additionally, hardware operations as they are described in
the LISA model can be grouped to functional units. Those
functional units are generated as wrappers, i.e the ports
of the functional units as well as the interconnects to the
pipeline registers and other functional units are automati-
cally generated while the content needs to be filled manually
with code. Emerging driver conflicts in context with the in-
terconnects are automatically resolved by the insertion of
multiplexers.

The disadvantage of rewriting the data path in the HDL
description by hand is that the behavior of hardware opera-
tions within those functional units has to be described and
maintained twice — on the one hand in the LISA model and
on the other hand in the HDL model of the target archi-
tecture. Consequently, a major problem here is verification
and will be addressed in future research.

5.1 LISA language elements for HDL synthesis

LISA descriptions are composed of resources and operations.
The declared resources represent the storage objects of the
hardware architecture which capture the state of the sys-
tem. Operations are the basic objects in LISA. They rep-
resent the designer’s view of the behavior, the timing, and
the instruction set of the programmable architecture.

The following sections will show in detail, how different
parts of the LISA model contribute to the generated HDL
model of the target architecture.

5.1.1 The resource section

The resource section provides general information about
the structure of the architecture (e.g. registers, memories,
pipelines). Based on this information, the coarse structure
of the architecture can be automatically generated. Exam-
ple 5.1 shows an excerpt resource declaration of the LISA
model of the ICORE architecture [13] which was used in our
case study.

The ICORE architecture has two different register sets —
one for general purpose use named R, consisting of eight
separate registers with 32 bits width and one for the ad-
dress registers named AR, consisting of four elements each
with eleven bits. The round brackets indicate the maximum

number of simultaneous accesses allowed for the respective
register bank — six for the general purpose register R and
one for the address register set. From that, the respective
number of access ports to the register banks can be automat-
ically generated. With this information — bit-true widths,
ranges and access ports — the register banks can be easily
synthesized. Moreover, a data and program memory re-
source are declared — both 32 bits wide and with just one
allowed access per cycle. Since various memory types are
known and are generally very technology dependant, how-
ever, cannot be further specified in the LISA model, wrap-
pers are generated with the appropriate number of access
ports. Before synthesis, the wrappers need to be filled man-
ually with code for the respective technology. The resources
labelled as PORT are accessible from outside the model and
can be attached to a testbench — in the ICORE the RESET
and the MEM_ADDR_BUS.

RESOURCE

{
REGISTER S32
REGISTER bit[11]

R([0..7]1)6; /* GP Registers */
AR([0..3]); /* Address Registers */

DATA_MEMORY S32 RAM([0..255]); /* Memory Space */
PROGRAM_MEMORY U32 ROM([0..255]);/* Instruction ROM */

PORT bit[1]
PORT bit[32]

RESET;
MEM_ADDR_BUS;

/* Reset pin */
/* External address bus */

PIPELINE ppu_pipe = { FI; ID; EX; WB };
PIPELINE_REGISTER IN ppu_pipe {
bit[6] Opcode;

};

Ex. 5.1: Resource declaration of a LISA model

Besides the processor resources such as memories, ports
and registers, also pipelines and pipeline registers are de-
clared. The ICORE architecture contains a four stage in-
struction pipeline consisting of the stages FI (instruction
fetch), ID (instruction decode), EX (instruction execution)
and WB (write-back to registers). In between those pipeline
stages, pipeline registers are located which forward infor-
mation about the instruction such as instruction opcode,
operand registers, etc. The declared pipeline registers are
multiple instanced between each stage and are completely
generated from the LISA model. For the pipeline and the
stages, entities are created which are in a subsequent phase
of the HDL generator run filled with code for functional
units, instruction decoder, pipeline controller, etc.

5.1.2 Grouping operations to functional units

As the LISA language describes the target architecture‘s
behavior and timing on the granularity of hardware opera-
tions, however, the synthesis requires the grouping of hard-
ware operations to functional units that can then be filled
with hand-optimized HDL code for the data path, a well
known construct from the VHDL language was adopted for
this purpose: the ENTITY. Using the ENTITY to group
hardware operations to a functional unit is not only an es-
sential information for the HDL code generator but also for
retargeting the HLL C-compiler which requires information
about the availability of hardware resources to schedule in-
structions.

As indicated in section 5.1.1, the HDL code derived from
the LISA resource section already comprises a pipeline en-
tity including further entities for each pipeline stage and
the respective pipeline registers. The entities defined in the
LISA model are now part of the respective pipeline stages
as shown in figure 5.1. Here, a Branch entity is placed into
the entity of the Decode stage. Moreover, the EX stage con-
tains an ALU and a Shifter entity. As it is possible in LISA
to assign hardware operations to pipeline stages, this infor-
mation is sufficient to locate the functional units within the
pipeline they are assigned to.

Architecture Entity

Base Structure | Register Entity Pipeline Entity Memory Entity |

Pipeline Structure | FE Entity | [FE/DC | [DCEntity | [DC/EX |[EX Entity |

Stage Structure - LISA Entities [Branch Entity] [ALU Entity | [Shifter Entity]

Fig. 5.1: Entity hierarchy in generated HDL model.

As already pointed out, the entities of the functional units
are wrappers which need to be filled with HDL code by hand.
The reason for that is that the functional units mostly rep-
resent the critical parts of the architecture both in terms
of power consumption as well as in terms of maximum exe-
cution speed. Even hand-optimized semi-custom blocks are
often not sufficient to fulfill the posed requirements so that
frequently full-custom blocks come into operation. Never-
theless, in section 5.2.1 will be shown that by far the largest
part of the target architecture can be automatically gener-
ated from a LISA model.

5.1.3 Generation of the instruction decoder

The generated HDL decoder is derived from information in
the LISA model on the coding of instructions. Depend-
ing on the structuring of the LISA architecture description,
decoder processes are generated in several pipeline stages.
The specified signal paths within the target architecture can
be divided into data signals and control signals. The con-
trol signals are a straight forward derivation of the opera-
tion activation tree which is part of the LISA timing model.
The data signals are explicitly modeled by the designer by
writing values into pipeline registers and implicitly fixed by
the declaration of used resources in the behavior sections of
LISA operations.

5.2 Implementation results

The ICORE which was used in our case study is a low-
power application specific instruction set processor (ASIP)
for DVB-T acquisition and tracking algorithms. It has
been developed in cooperation with Infineon Technolo-
gies. The primary tasks of this architecture are the FFT-
window-position, sampling-clock synchronization for inter-
polation/decimation and carrier frequency offset estimation.
In a previous project this architecture was completely de-
signed by hand using semi-custom design. Thereby, a large
amount of effort was spent in optimizing the architecture to-
wards extremely low power consumption while keeping up
the clock frequency at 120 MHz. At that time, a LISA

model was already realized for architecture exploration pur-
poses and for verifying the model against the handwritten
HDL implementation.

Except for the data path within functional units, the HDL
code of the architecture has been automatically generated
completely. Figure 5.2 shows the composition of the model.

Pipeline

Fl ID

Instruction- |} |
Fetch

W : Write-

u I : BN Back
Wy : i

Decoder ———— B '.”:{ Addsub }.':

registers /0
:,?;{ Control i

Data Path — Autom. Gen. Process ()
v | Control Path — = Manual Entity]

Fig. 5.2: The complete generated HDL model.

ICORE Architecture
Entity [___|

The dark boxes have been filled manually with HDL code,
whereas the white boxes and interconnects have been com-
pletely generated.

5.2.1 Comparison of development time

The LISA model of the ICORE as well as the original hand-
written HDL model of the ICORE architecture have been
developed by one designer. The initial manual realization
of the HDL model (without the time needed for architec-
ture exploration) took approx. three months. As already
indicated, a LISA model was built in this first realization of
the ICORE for architecture exploration and verification pur-
poses. It took the designer approx. one month to learn the
LISA language and to create a cycle accurate LISA model.
After completion of the HDL generator, it took another two
days to refine the LISA model to RTL accuracy. The hand
written functional units (data path), that were added man-
ually to the generated HDL model, could be completed in
less than a week. This comparison clearly indicates, that
the time expensive work in realizing the HDL model was to
create structure, controller and decoder of the architecture.
In addition, a major decrease of total architecture design
time can be seen, as the LISA model results from the design
exploration phase.

5.2.2 Gate level synthesis

To verify the feasibility of automatically generating HDL
code from LISA architecture descriptions in terms of power-
consumption, clock speed and chip area, a gate level syn-
thesis was carried out. To get meaningful data, the model
has not been changed (i.e. manually optimized) to enhance
the results.

Timing and size comparison The results of the gate-
level synthesis affecting timing and area optimization were
compared to the hand-written ICORE model, which com-
prised the same architectural features. Moreover, the same
synthesis scripts were used for both models.

It shall be emphasized that the performance values are
nearly the same for both models. Moreover, it is interest-
ing that the same critical paths were found in both, the
hand-written and the generated model. The critical paths
occur exclusively in the data path, which confirms the pre-
sumption that the data path is the most critical part of the
architecture and should thus not be generated automatically
from an abstract processor model.

Critical path The synthesis has been performed with a
clock of 8ns, this equals a frequency of 125MHz. The crit-
ical path, starting from the pipeline register to the shifter
unit and multiplexer to the next pipeline register, violates
this timing constraints by 0.36ns. This matches the hand-
written ICORE model, which has been improved from this
point of state manually at gate-level.

Area The synthesized area has been a minor criteria, due
to the fact that the constrains for the hand-written ICORE
model are not area sensitive. The total area of the generated
ICORE model is 59009 gates. The combinational area takes
57% of the total area. The hand written ICORE model takes
a total area of 58473 gates.

Power consumption comparison Figure 5.3 shows the
comparison of power consumption of the handwritten versus
the generated ICORE realization.

Power consumption of different ICORE realizations

16,00 mW
14,00 mW

14,51 mW

12,64 mW

12,00 mW
10,00 mW
8,00 mW

6,00 mW
4,00 mW

2,00 mW
0,00 mwW

handwritten ICORE generated ICORE

Fig. 5.3: Power consumption.

The hand-written model consumes 12,64mW, whereas the
implementation generated from a LISA model consumes
14,51mW. The reason for the slightly worse numbers in
power consumption of the generated model versus the hand-
written is due to the early version of the LISA HDL gener-
ator which in its current state allows access to all registers
and memories within the model via the test-interface. With-
out this unnecessary overhead, the same results as for the
hand-optimized model are achievable.

6 Conclusion and Future Work

In this paper we presented the LISA processor design plat-
form (LPDP) — a framework for the design of application
specific integrated processors. The LPDP platform sup-
ports the architecture designer in different domains: archi-
tecture exploration, implementation, application software
design and system integration/verification.

In a case study it was shown that an ASIP, the ICORE ar-
chitecture, was completely realized using this novel design
methodology — from specification to implementation. The
results concerning maximum frequency and power consump-
tion were comparable to those of the hand optimized version
of the same architecture.

Moreover, in earlier work [12] the quality of the generated
software development tools was compared to those of the

semiconductor vendors. Due to the usage of the compiled
simulation principle, the generated simulators run by one to
two orders in magnitude faster than the vendor simulators.
Moreover, the generated assembler and linker can compete
well in speed with the vendor tools.

Our future work will focus on modeling further real world
processor architectures and improving the quality of our re-
targetable C compiler. As the data-path in the architecture
implementation phase has to be specified twice — once in C
within the LISA-model and once in the hardware description
language — verification is a major problem. For this reason
we will examine techniques to formally verify the data-path
of the different models against each other.

References

[1] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr,
“LISA — Machine Description Language for Cycle-
Accurate Models of Programmable DSP Architec-
tures,” in Proc. of the Design Automation Conference
(DAC), (New Orleans), June 1999.

[2] LISA Homepage, hitp://www.iss.rwth-aachen.de/lisa.
ISS, RWTH Aachen, 2001.

[3] J. Rowson, “Hardware/Software co-simulation,” in
Proc. of the Design Automation Conference (DAC),
1994.

[4] A. Fauth, J. Van Praet, and M. Freericks, “Describing
instruction set processors using nML,” in Proc. Furo-
pean Design and Test Conf., Paris, Mar. 1995.

[5] Hartoog, M. et al., “Generation of software tools from
processor descriptions for hardware/software code-
sign,” in Proc. of the Design Automation Conference
(DAC), Jun. 1997.

[6] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL:
An instruction set description language for retargetabil-
ity,” in Proc. of the Design Automation Conference
(DAC), Jun. 1997.

[7] Halambi, A. et al., “EXPRESSION: A language for ar-
chitecture exploration through compiler/simulator re-
targetability,” in Proc. of the Conference on Design,
Automation & Test in Furope (DATE), Mar. 1999.

[8] Kobayashi, S. et al., “Compiler generation in PEAS-
III: an ASIP development system,” in SCOPES 2001
- Workshop on Software and Compilers for Embedded
Systems, Mar. 2001.

[9] C.-M. e. a. Kyung, “Metacore: An application specific

DSP development system,” in Proc. of the Design Au-

tomation Conference (DAC), Jun. 1998.

M. Barbacci, “Instruction set processor specifications

(ISPS): The notation and its application,” IEEE Trans-

actions on Computers, vol. C-30, pp. 24-40, Jan. 1981.
R. Gonzales, “Xtensa: A configurable and extensible

processor,” IEEE Micro, vol. 20, 2000.

A. Hoffmann, A. Nohl, G. Braun, and H. Meyr, “Gener-
ating Production Quality Software Development Tools
Using A Machine Description Languagexs,” in Proc. of
the Conference on Design, Automation € Test in Fu-
rope (DATE), Mar. 2001.

T. Gloekler, S. Bitterlich, and H. Meyr, “Increasing
the Power Efficiency of Application Specific Instruction
Set Processors Using Datapath Optimization,” in Proc.
of the IEEE Workshop on Signal Processing Systems
(SIPS), Oct. 2001.

[13]

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

