
Local Search for Final Placement in VLSI Design

Oluf Faroe, David Pisinger, and Martin Zachariasen

Dept. of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.�
oluf,pisinger,martinz � @diku.dk

Abstract

A new heuristic is presented for the general cell placement
problem where the objective is to minimize total bounding box
netlength. The heuristic is based on the Guided Local Search
(GLS) metaheuristic. GLS modifies the objective function in a
constructive way to escape local minima. Previous attempts to
use local search on final (or detailed) placement problems have
often failed as the neighborhood quickly becomes too exces-
sive for large circuits. Nevertheless, by combining GLS with
Fast Local Search it is possible to focus the search on appro-
priate sub-neighborhoods, thus reducing the time complexity
considerably.

Comprehensive computational experiments with the devel-
oped algorithm are reported on small, medium and large in-
dustrial circuits, and for standard cell and general cell variants
of the problem. The experiments demonstrate that the devel-
oped algorithm is able to improve the estimated routing length
of large-sized general cell layouts with as much as 20 percent.

The general nature of the proposed method makes it easy
to incorporate other goals, such as routability and timing con-
straints, into the objective function. Current layout algorithms
use a feedback approach in which a placement is evaluated
by performing (partial) routing and timing analysis; the output
of this analysis is then used to construct an improved place-
ment. This iterative nature of the design process calls for
placement algorithms that take an existing placement and con-
struct an improved placement that resembles the original one,
but in which the information from the routing/timing analysis
is taken into account.

1 Introduction

The placement problem in VLSI design is the first phase in
the process of designing the physical layout of a chip. This
makes the placement problem of paramount importance, since
the quality of the attainable routing is to a high degree de-
termined by the placement. In the placement problem we are
given a set of rectangular modules (or cells/circuits/macros) of
different height and width that should be placed disjointly on
the chip surface. Every module has a number of connection
points, so-called pins, and the netlist is a partitioning of the
pins into nets that should be interconnected.

The problem is to place the modules such that an objec-
tive function that reflects the quality of the placement is mini-
mized. Most objective functions in placement add up the con-
tribution from each net separately, with the overall objective
of minimizing total wiring length after routing. Clearly, such
an objective function has the weakness of not taking timing is-
sues explicitly into account, since minimizing total length may
leave critical nets having a significant signal delay. However,

the general nature of the method proposed in this paper makes
it easy to incorporate additional or alternative objectives.

We present a new iterative placement algorithm which is
well-suited for solving the final (or detailed) placement prob-
lem. The algorithm both takes the packing problem, i.e. plac-
ing the modules disjointly, and the total bounding box (BB)
netlength into account. The algorithm uses the Guided Local
Search (GLS) metaheuristic [18, 19] for controlling the search.
The neighborhood structure is simple: Flipping and/or moving
a single module along one of the coordinate axes. This neigh-
borhood has previously been used by [6, 10, 11, 12, 14, 21], in
particular in conjunction with simulated annealing. The weak-
ness of all these algorithms is the slow convergence towards
good solutions — which is an inherent feature of simulated an-
nealing. By combining GLS with the Fast Local Search (FLS)
approach [18, 19], an algorithm that both finds good solutions
quickly and in the long run converges towards high-quality so-
lutions is obtained.

In addition to its applicability as a final placement algo-
rithm, the new heuristic can be used in the following setting.
Current layout algorithms use a feedback approach in which
a placement is evaluated by performing (partial) routing and
timing analysis; the output of this analysis is then used to con-
struct an improved placement. This iterative nature of the de-
sign process calls for placement algorithms that take an exist-
ing placement and construct an improved placement that re-
sembles the original one, but in which the information from
the routing/timing analysis is taken into account.

Finally, the new algorithm can be used to construct high-
quality placements of small general cell circuits. This is
known to be a very difficult problem in practice, and our ex-
perimental results show that the new algorithm on average pro-
duces significantly better solutions than existing algorithms
from the literature. For some instances the total netlength is
reduced by more than 20 percent when compared to the recent
results for the O-Tree algorithm [5].

The paper is organized as follows. In Section 2 we define
the placement problem. In Sections 3 and 4 we present the
details of applying GLS and FLS, respectively, to the place-
ment problem. Extensive computational results are presented
in Section 5, and concluding remarks are given in Section 6.

2 The Placement Problem

The placement problem asks to assign locations to the modules
of a circuit such that these are within the available placement
area and do not overlap. We assume that modules may have
arbitrary rectangular dimensions, thus the considered layout
style is general cell layout. The objective of the problem is to
minimize the total length of the nets connecting the modules.

To be more formal, a circuit � is defined by the tuple
���������
	��������� where � is the placement area, 	
is the set of modules, � is the set of pins, and � is the
netlist defining which pins should be connected. We will as-
sume that the placement area is defined as the integer grid
�����������������
����� �����������!�
"#�$� For each module %'&(
the corresponding (integer) width is)+* and (integer) height is, * . Moreover let ��-.*/�
01*2� denote the (integer) coordinates
of the lower left corner of the module in the placement area � .
In order to not exceed � the coordinates of module % must
satisfy - * &3�4�����!�����5�76�) * � and 0 * &8�4�����!�����
"96 , * � .
For technical reasons, some of the modules may be fixed at a
given position. In this case the module coordinates ��-:*/�01*2�
may not be changed. If some part of the circuit area � is not
available for the modules, this space may be represented by
one or more fixed modules which do not have any pins.

Depending on the restrictions from the layout style and the
fabrication technology, modules may be allowed to change ori-
entation. In the present definition we will allow modules to be
rotated in steps of 90 degrees and to be reflected around the
- - and 0 -axis. This gives eight different orientations of each
module. To make the following discussion simpler, we will
not mention the orientations explicitly, although they should
be taken into account in all definitions and algorithms.

Each pin ;<&�� has a relative position within its module
% . This is denoted the offset of the pin ; in % . The netlist �
is defined as a partitioning of the pins � , such that every pin
;=&>� is part of exactly one net ?@&A� .

For a given placement B we let ? P C�DFE denote the set of
pin coordinates corresponding to net ?�&�� , and BB ��? P � be
the bounding box netlength for the set ? P. In order to make
it possible to differentiate between how much the individual
nets should contribute to the objective function, a net weight
function)�GH�JILK+M�N assigns some weight)/��?3� to each
net ?�& � . We can now formulate the min-sum placement
problem as:

Placement Problem: For a given circuit � find a placement
B which minimizes the objective O9PRQ�ST)/��?3�VU BB ��? P � for
all feasible placements of � .

To further correct the BB netmodel a multiplier function
) BB ��?3� may be applied. Brenner [1] empirically shows that

the multiplier function) BB ��?3�W�YXZ\[:] ?]_^` makes the bound-
ing box netmodel become very close to the wire length after
routing. In our implementation, however, no multiplier func-
tion is used since this only makes a very small difference in
practice [2]. Also, using no multiplier function makes it easier
to compare our solution values with those from the literature.

3 Guided Local Search

In this section the application of the metaheuristic Guided
Local Search (GLS) to the placement problem is described.
GLS has proven to be effective on a wide range of prob-
lems [8, 17, 18, 19]; the metaheuristic can be applied to any
combinatorial optimization problem given by a solution spacea

for which an objective function value bc��dc� (to be mini-
mized) and neighborhood �e��df� C a is defined for every

d3� initial solution
d best � best solution
while stopping condition not satisfied do
dfgR� LOCALOPT hi��dc�
if bc��dfg��Vjkbc��d best � then
d best �kd g

end if
penalize and modify

,
d=�9d g

end while
return d best

Figure 1: Outline of Guided Local Search (GLS).

solution dl& a . The use of GLS for placement was moti-
vated by recent results on packing problems in two and three
dimensions [3].

Given an initial solution d [& a
, local search vis-

its a sequence of solutions d [�d Z �������!�dfm such that donT&
�p��d n�q Z � for r��ts1�vu$���������w . When the series of solutions
d [�d Z �����!���dfm fulfills bc��d [�pxybc��d Z �pxz�!���{x|bc��dcm1�
the process is denoted local optimization. Local optimization
stops when the current solution dfm is a local minimum, that is,
when �e��dcm}� contains no solution better than dfm . Applying
local optimization to a solution using the objective function b
will be denoted by the operator LOCALOPT ~ . In the above
case we have dfm2� LOCALOPT ~ ��d [� .

GLS extends local search with the concept of features, i.e.,
a set of attributes which characterize a solution to the problem
in a natural way. GLS assumes that any solution can be de-
scribed using a set of � features, that is, a solution d{& a ei-
ther has or does not have a particular feature r�&#�$s}���������
�e� .
The indicator function ��n��df� is 1 if d has feature r and 0 oth-
erwise. Features should be defined such that the presence of
a feature in a solution has a more or less direct contribution
to the value of the objective function. This direct or indirect
contribution is reflected in the cost ��n of the feature. A feature
with a high cost is not attractive and may be penalized. The
number of times a feature has been penalized is denoted by ; n ,
and is initially zero. Penalties are incorporated into the search
by constructing an augmented objective function

, ��df���9bc��df������U
��
n�� Z
;.n�U!��n��df� (1)

where � is a regularization parameter which balances the ob-
jective function to the contribution from the penalty term. In-
stead of optimizing the function b , GLS optimizes the aug-
mented objective function

,
.

The main GLS algorithm performs a number of optimiza-
tion steps, each transforming a solution d into a local mini-
mum d g � LOCALOPT hi��dc� (Figure 1). Note that since all
penalties initially are zero, the first iteration of GLS actually
finds a local optimum with respect to b . At each local min-
imum d g GLS takes a modification action which modifies

,
by penalizing one or more features by incrementing their ;:n
value by one. The idea is to penalize, in a controlled matter,
the features in d g which have the largest contribution to the
value of the objective function. The modification action there-
fore penalizes those features which have the maximum utility

Placement area

1
2

3

3

2

Overlap

Figure 2: Illustration of possible moves of a single module:
(1) change of orientation combined with either (2) translation
along the - -axis or (3) translation along the 0 -axis.

defined as �
n
��d g ��� ��n

s �8; n U���n
��d g � (2)

Informally, these are the features with maximum cost in d g
which have not been penalized too often in the past. After
having penalized these features, the local optimization contin-
ues from d g — now with respect to the modified

,
function.

3.1 Applying GLS to Placement

In order to apply local search to the placement problem the
constraint saying that no modules may overlap is removed,
and instead overlap is penalized in the objective function.
The problem handed to the GLS heuristic is thus a relaxed
placement problem in which all the modules must be placed
within the placement area and the objective is to minimize to-
tal netlength as well as the overlap between modules.

For a solution d�& a we define the neighborhood �e��dc�
as the set of solutions which can be obtained by orienting
and translating any single module along one of the coordi-
nate axis (Figure 2). The neighborhood �e��dc� makes it pos-
sible to traverse between any pair of solutions by follow-
ing a path of neighboring solutions. The neighborhood size� �]] �\� � "8�� is not polynomial in the input size.

The objective value bc��dc� is defined as a linear combination
of pairwise overlap and BB netlength:

bc��dc� �
�
*�� � Q�� overlap *�� ��dc�o�	� �PRQ�S BB P ��dc� (3)

Here overlap *
� ��dc� of two distinct modules %#���7&l	 is
defined as the area of the intersection between the modules,
and � P ��dc� is the BB netlength for net ? &�� in solution d .
The first sum in (3) is only evaluated for each pairs of modules
where %7j�� , assuming some linear ordering of the modules.
We observe that d{& a is a feasible solution to the placement
problem if and only if O *�� � Q�� overlap *�� ��dc�#�'� . The
parameter � is used to balance the two conflicting terms of the
objective function.

Two sets of features are defined, each reflecting the contri-
bution of the overlap and the contribution of the total netlength
in the objective function. An overlap feature is defined for

each pair of modules %{��� &9	 , such a particular solution
dT& a exhibits an overlap feature if the modules overlap, as
stated by the indicator function:

� of*
� ��dc��� � s if overlap *�� ��dc� x �
� otherwise

All overlap features must be eliminated to produce a feasible
placement. The overlap feature cost should reflect the contri-
bution of the feature to the overlap term in the objective func-
tion. As in [3] we identify bad overlaps with the general prin-
ciple that an overlap between large modules is worse than an
overlap between small modules. This observation is also made
in most packing heuristics, where better solutions usually are
obtained if the boxes (modules) which cover a large area are
placed prior to the small. Thus, the overlap feature cost � of*
�
should both depend on the overlap between the modules %
and � , and on the area of the modules:

� of*
� ��df��� overlap *
� ��dc�:� area ��%3��� area ���c�
This definition places a high cost on features which correspond
to pairs of large overlapping modules. The utility function
corresponding to the overlap features is defined as in (2).

A connection feature is defined for each pair of modules
%#���9&T	 . Let rdist *
�o��dc� be the minimum rectilinear dis-
tance between two points covered by modules % and � , re-
spectively; if the modules overlap then rdist *
�o��dc����� . For a
given pair of modules %7j�� and a particular solution d{& a
we let d exhibit a connection feature if there is a net connect-
ing the modules and the rectilinear distance between the mod-
ules is positive, as given by the indicator function:

� cf*
� ��dc��� � s if rdist *
� ��df� x ��� and %{��� connected
� otherwise

For modules % and � the connection feature cost � cf*
�
should reflect how much the modules contribute to the BB

netlength of the nets which connect % and � . As rdist *
����df� is
a lower bound on the BB netlength for the nets which connect
% and � , pairs of connected modules which are placed at a
large rectilinear distance from each other should be punished:

� cf*�� ��df� � rdist *
�o��dc�
Again, the utility function is given by (2).

As the neighborhood �e��df� allows translation of a module
along the horizontal or vertical axis it is suitable to also split
the indicator function � cf*
� into a horizontal and a vertical part
� cfx*
� and � cfy*
� . The augmented objective function for the re-
laxed placement problem becomes

, ��dc���<bc��dc���T� of
�
*�� � Q�� ;

of*
� U�� of*
� ��dc�
� � cf

�
�� � Q�� ; cf
� U ��� cfx*
� ��dc�:�(� cfy*�� ��dc�� (4)

where � cfx*�� ��dc�2� s if and only if the horizontal distance be-
tween two connected modules %#��� is strictly positive, and
� cfy*
� ��dc� is defined in a similar way. The sums are only eval-
uated for pairs of modules where % j�� . Parameters � of

and � cf are the regularization parameters corresponding to the
overlap and connection features, respectively. The concrete
choice of these will be discussed in Section 5.2.

3.2 Feature Costs and Duration of Penalties

We distinguish between soft and hard features. A soft feature
indicates whether a feasible solution has or does not have a
certain attribute. In many applications of GLS only this type
of features is used. Hard features are related to the infeasibil-
ity of solutions. The presence of a hard feature in a solution
means that the solution is not feasible, corresponding to the
violation of a constraint. This is typically reflected through a
penalty term in the objective function — in a manner similar
to Lagrangian relaxation.

The fundamental difference between soft and hard features
affects the costs of features and the duration of their penalties.
Soft features are often given fixed costs while hard features
have variable costs which depend on the amount of violation
of the respective constraint.

The augmented objective function (4) contains two terms
related to the overlap features and connection features. The
penalties corresponding to the overlap features are chosen
such that they increase monotonously as this makes it easier to
balance the conflicting terms in the augmented objective func-
tion (4). At the beginning of the search the overlap penalties
will be small and the search will mostly be guided by the total
bounding box length. As the overlap penalties increase, the
control is gradually transferred to eliminate overlap between
modules. When a feasible placement is found all penalties are
reset; this is a variation of the reset strategy described in [16].

The connection features are soft and thus some techniques
are needed to restrict the duration of the penalties. We used
a refinement of the multiple feature sets (MFS) strategy pro-
posed by Voudouris [16]. Two sets of counters ;.n and b4n are
used where b4n is increased each time the penalty ;.n is in-
creased. But whereas the penalty is decreased after � iterations,
b�n continues to increase. As opposed to the MFS strategy, only
the penalty term appears in the augmented objective function
while the b4n values are used in the utility function for the over-
lap features as follows�

n ��d g ��� ��n
sV�Tb n U�� n ��d g �

Thus the short term memory list is used to retract the penalty
from the objective function after � LOCALOPT h operations,
but the frequency memory is maintained in b n , thus providing
diversity in the utility function.

3.3 Problem Subdivision for Large Problems

Although much effort has been done to reduce the computa-
tional complexity of each LOCALOPT h operation (see Sec-
tion 4), practical experience indicates that the algorithm per-
forms badly for instances with a huge number of modules.
Thus a technique was developed where the placement problem
is divided into a number of overlapping regions, each region
being of appropriate size for the algorithm. The regions are
then considered by the GLS heuristic in a round-robin fash-
ion. As the regions overlap, modules are allowed to traverse
between the regions and move over the whole placement area.
The technique has similarities to the tiles of overlapping win-
dows by Kennings [7].

The overlapping regions are constructed such that they con-
tain at least � modules, where � is an experimentally deter-
mined constant (see Section 5.2). Initially the whole place-
ment area � is split into a grid, where each grid cell is marked

as a candidate cell for growing a region. Then the algorithm
repeatedly selects an unmarked candidate cell, grows a region
around the cell, and marks all the encircled cells.

The GLS algorithm is repeatedly applied to a region keep-
ing all cells outside the region fixed. The regions are con-
sidered according to increasing density, such that the easiest
regions are considered first. The GLS algorithm moves from
one region to another when no improving placement has been
found within some fixed number of FLS calls.

4 Fast Local Search

In most applications of GLS the LOCALOPT h operation is the
computational bottleneck. Searching large neighborhoods for
an improving solution can be very time consuming. Fast Local
Search (FLS) is a modification of local search which speeds
up the search by shadowing less promising parts of the neigh-
borhood. Although the development of FLS was closely con-
nected to its application in the GLS framework, it can be used
with other local search metaheuristics as well.

In FLS the neighborhood is divided into a number of
smaller sub-neighborhoods which can be either active or in-
active. Initially all sub-neighborhoods are active. FLS now
continuously visits the active sub-neighborhoods in some or-
der. If a sub-neighborhood is examined and does not contain
any improving move it becomes inactive. Otherwise it re-
mains active and the improving move is performed; this may
cause some sub-neighborhoods to be reactivated, if we ex-
pect these to contain improving moves as a result of the move
just performed. As the solution value improves, more and
more sub-neighborhoods become inactive, and when all sub-
neighborhoods have become inactive the best solution found
is returned by FLS as a (pseudo) local minimum.

The neighborhood is split into sub-neighborhoods by mak-
ing an association between features and sub-neighborhoods.
This association is used each time GLS settles in a local min-
imum. As penalties are assigned to one or more features, the
sub-neighborhoods associated with the penalized features are
activated and FLS is restarted. The limited reactivation and
the association between the penalized features and the reacti-
vated sub-neighborhoods focuses the search.

To apply FLS to the placement problem we let each mod-
ule % &t	 correspond to a sub-neighborhood. A sub-
neighborhood thus holds moves for all orientations and all
translations of a single module along the coordinate axes. A
module can be either active or inactive corresponding to the
state of the sub-neighborhood. The active modules are kept in
a queue. The FLS optimization repeatedly removes a module
from the queue and evaluates the moves which can be per-
formed for the module. If a move exists which improves the
augmented objective function the move is performed and the
module is re-appended to the queue. Otherwise the module is
made inactive. FLS stops when the queue is empty and returns
the current solution as the local minimum.

Features are penalized when FLS terminates in a local min-
ima. Each penalized feature corresponds to a pair of modules
on the placement area. After the features have been penalized
we therefore reactivate

1. the pair of modules corresponding to the penalized over-
lap feature and all modules which overlap with these two
modules

2. the pair of modules corresponding to the penalized con-
nection feature and all modules which are connected to
these two modules.

This reactivation scheme permits FLS to pay attention not just
to the penalized modules but also to the modules interacting
with the concerned modules. It may be profitable to penalize
more than one feature in a FLS minimum. This makes it pos-
sible to reactivate more modules after each FLS and shifts the
computational effort from the penalty assignment to the eval-
uation of FLS instead. The number of penalties assignments
after FLS is called the penalty depth of GLS (the setting of this
parameter is discussed in Section 5.2).

The performance of FLS depends on the size of the sub-
neighborhoods. For the placement problem, a naive evalua-
tion of a sub-neighborhood would require pseudo-polynomial
time, since there are ���\� ��"8� possible locations of mod-
ule % .

As the terms in the augmented objective function (1)
are all piecewise linear functions, we may restrict the sub-
neighborhood to the break-points of the terms. In this way the
minimum of

, ��dc� when considering the translation of mod-
ule % &3	 along the - -axis can be found in time ���] � *] �
�] 	7*] �] 	�*] �] �>*] ���������] 	�*] �] 	7*] �] � *] �� . Here
� * is the set of nets which contain a pin of module % , �R*
is the set of pins for the nets in � * , and 	 * is the set of
modules that are connected to % by some net.. Finally, 	7*
is the set of modules that % intersects when translated along
the - -axis (see [2] for details).

During the course of FLS, the algorithm maintains for ev-
ery module the list of modules that it overlaps with. When
FLS finishes, this information is used to quickly identify the
overlap feature with maximum penalty as defined by (2). The
connection feature with maximum utility is similarly identi-
fied quickly be iterating through the nets and computing the
distance between the modules that are interconnected by each
net.

5 Computational Experiments

In this section we present the results from the computational
experiments. The GLS heuristic was applied to three different
layout styles which besides the general cell layout included
pure standard cell layout and large real-life circuits with mixed
cell layout.

In order to evaluate the placements produced by GLS three
different placement heuristics were used as benchmarks: O-
Tree [5], TimberWolf v.1.2 commercial edition (TW) [12, 15]
and XQ [20]. The core in TW is a simulated annealing place-
ment heuristic which is specialized for standard cell place-
ment [13]. The XQ placement program uses quadratic opti-
mization and sophisticated partitioning.

For the small circuits, GLS is used as a stand-alone heuris-
tic starting with a random initial placement. For large-sized
circuits the quality of the initial solution becomes crucial for
the overall performance of the heuristic. One of the reasons
is the use of overlapping regions (Section 3.3), which is un-
able to give the algorithm the necessary global view of the
problem [2]. Therefore, we here report on improving existing
placements on large-sized instances.

In Section 5.1 we describe the computational environment
and the benchmarks used in our computational study. The set-

ting of parameters is presented in Section 5.2. Finally, in Sec-
tion 5.3 the computational results are presented and compared
with the output from other heuristics.

5.1 Benchmark Circuits

The GLS placement heuristic was implemented in C++ and
compiled using the GNU C++ compiler. All tests were per-
formed on an Intel Pentium III 800Mhz with 1GB memory
running the Linux RedHat 6.1 operating system.

The following benchmark circuits were used in the exper-
iments (see Table 1). It should be noted that for some of the
benchmarks there are restrictions on the possible orientations
of the modules. These restrictions are obeyed by the algo-
rithm.

MCNC general cell circuits

These circuits were considered in a recent paper on the O-
Tree heuristic [5]; this heuristic reports some of the best re-
sults on these circuits. One problem with these results is that
O-Tree has no restrictions on the size of the placement area.
To resolve this problem we have chosen to create a square
placement area with the same area as reported for placements
produced by O-Tree. This solution does not allow an exact
comparison between O-Tree and the GLS heuristic, but on the
other hand does not favor GLS: It restricts the GLS heuristic
to a square placement area and reduces the number of possible
placements.

Circuit Modules Pins Nets
Free Fixed Non-I/O I/O

MCNC general cell circuits
Apte 9 0 287 73 97
Xerox 10 0 698 2 183
Hp 11 0 309 45 71
Ami33 33 0 520 40 122
Ami49 49 0 953 22 396

MCNC standard cell circuits
Primary1 752 0 2,941 130 903
Struct 1,888 0 5,471 64 1,920
Industry1 2,271 0 8,837 814 2,593
Primary2 2,907 0 11,226 188 3,029
Biomed 6,417 0 21,040 97 5,742
Industry2 12,142 0 48,404 495 13,419
Industry3 15,059 0 68,418 374 21,940
Avqlarge 25,114 0 82,752 64 25,385
Golem3 99,932 0 338,623 2768 144,950

Industrial IBM circuits
CLK 29,056 42 111,902 414 30,293
DECODER 54,911 17 188,275 1,016 59,256
PU 163,960 550 617,190 744 184,231

Table 1: Circuit characteristics.

MCNC standard cell circuits

The MCNC standard cell circuits were obtained from the re-
cent GSRC release [4]. The circuits are published with bench-
mark placements produced by TW, which has produced some
of the best results published on these circuits [15].

Industrial IBM circuits

The GLS heuristic has also been applied to real-life industrial
IBM circuits made available by courtesy of IBM in Böblingen
and Research Institute for Discrete Mathematics, University of
Bonn. Three IBM circuits and the corresponding placements
produced by the XQ placement program were made available.

The circuits consist of a few very large fixed modules and a
large number of (mainly) small standard cells.

5.2 Parameter Settings

In the following we briefly describe the setting of all the pa-
rameters in the GLS heuristic. For a more thorough discussion
and motivation of these values, we refer to [2]. To ensure that
the heuristic performs well on a large range of instances, the
values of the parameters were made dependent on some gen-
eral characteristics of the instances. Numerous computational
results indicated that the average module area, denoted by � ,
was suitable for this purpose.

The bounding box weight � in the objective function (3)
is used to balance the contribution of the total netlength to
the amount of overlap in the placement solution. As the ob-
jective function is a sum of a linear and quadratic function a
variable value of � was chosen. Initially � initial �

� � and af-
ter each FLS call we let � decrease by 1%, until some lower
limit is reached. Each time a feasible placement is found, the
value of � is doubled to stimulate the process of finding alter-
native placements. The value of the � parameters in (4) de-
termines to what degree an increased feature penalty modifies
the augmented objective value. Suitable values were found to
be � of �9� cf ����� s�� .

With respect to the length of the connection feature memory
described in Section 3.2, the best results were obtained for a
very short memory of length � ��� U penalty depth (cf. Section
4). A penalty depth of 1 was used on circuits with less than
100 modules while the penalty depth was 3 for larger circuits.

The minimum subproblem size as defined in Section 3.3
was set to � ���1� . Thus fairly small subproblems were con-
sidered for large circuits.

5.3 Results

MCNC general cell circuits

The results for the small MCNC general cell circuits are pre-
sented in Table 2. For these instances we used the so-called
flat configuration of GLS which starts from a random initial
placement. A certain fixed time limit is given to the heuris-
tic. The heuristic runs until the number of non-improving
FLS calls exceeds 20,000 or the time limit is exceeded. In
case the GLS heuristic terminates before the time limit is ex-
ceeded a shuffle algorithm is applied to the placement and the
algorithm restarted with the shuffled placement as the initial
solution. The shuffle algorithm performs a random displace-
ment of all modules, but restricts the displacement distance
to 10% of the maximum displacement distance (which is the
BB length of the chip surface). Thus the randomization makes
small changes to the placements which may help the algorithm
to find new improving solutions.

In the last column in Table 2 we compare the minimum and
average solutions of the final GLS solutions to the correspond-
ing solutions for the O-Tree heuristic as reported by Guo et
al. [5]. No results are reported on maximum O-Tree solutions.
The O-Tree experiments were run on a 200MHz Ultra-1 Sparc
station with 512 MB memory. No run times are reported for
these results, but for similar results the authors report approx-
imate run times of less than 1 second for Apte and Xerox, 6

seconds for Hp, 25 seconds for Ami33 and 177 seconds for
Ami49.

Circuit GLS O-Tree Impr
BB short BB medium BB long BB %

Min 355,705 355,705 355,705 317,000 -12.2
Apte Avr 357,227 356,785 355,720 347,000 -2.5

Max 362,373 361,440 356,088 - -
Min 378,044 371,997 371,121 368,000 -0.8

Xerox Avr 440,048 409,228 384,370 426,000 9.8
Max 617,490 409,228 384,370 - -
Min 129,477 129,477 129,347 153,000 15.5

Hp Avr 131,216 130,747 130,262 163,000 20.1
Max 140,034 140,034 131,706 - -
Min 43,311 43,311 39,234 51,500 23.8

Ami33 Avr 55,846 53,710 44,786 57.200 21.7
Max 93,504 93,504 52,827 - -
Min 658,597 558,963 546,100 636,000 14.1

Ami49 Avr 815,189 687,773 601,861 734,000 18.0
Max 994,846 829,094 677,851 - -

Table 2: Results for the MCNC general cell circuits. Rows
indicate the minimum, average and maximum results for 100
runs with random initial solutions. The time limits are 5 sec-
onds (short), 10 seconds (medium) and 60 seconds (long). The
last column gives the relative improvement when compared to
the O-Tree solutions.

On average, GLS finds significantly better solutions for the
three largest circuits within a time frame comparable to the
running time of O-Tree. For the Xerox circuit, GLS was only
able to improve the average solution, while for Apte, GLS
finds inferior solutions. It is notable that when GLS finds bet-
ter solutions than O-Tree this happens within 10 seconds. An
explanation why GLS performs worse for the Apte and Xerox
circuits may be the restriction to a fixed placement area (cf.
Section 5.1).

MCNC standard cell circuits

For the MCNC standard cell instances high-quality place-
ments (with regard to total BB netlength) produced by the
TW heuristic were used as initial solutions for GLS. For the
TW results no exact run time information is supplied. Ap-
proximate run times were obtained from Madden [9] who re-
ported around half an hour for Biomed, 1 hour for Avqlarge
and around 30 hours for Golem3 on a Sparc 10 with 512MB
memory. It should be noted that the TW placements are not
very suitable as initial solutions. In these placements all the
modules are compressed as much as possible to the left. This
creates a very dense placement which is potentially difficult
for GLS to rearrange into alternative feasible placements.

The time limit was 1 hour for the small circuits and 3 hours
seconds for the large circuits (cf. Table 3). Even if GLS is not
designed for standard cell problems, significant improvements
can be obtained on several circuits. It is interesting that for
most of the circuits there are notable improvements already
within the first 10 minutes, even for the large Golem3 circuit.

Industrial IBM circuits

The results on the standard cell benchmarks showed promising
results for the region-based GLS heuristic with regard to im-
proving existing placements produced by TW. Table 3 presents
the results of GLS using the XQ placements as initial solu-
tions. For each circuit we let GLS run for 12 hours and output
the solution after 3, 6 and 12 hours. GLS is able to produce
significant improvements on all placements. Even for the large
PU circuit GLS improves the placement 6.1% within 3 hours,

Circuit Initial GLS Impr
solution BB short BB medium BB long %

Primary1 987,141 955,159 949,587 949,353 3.8
Struct 778,321 756,623 747,627 744,521 4.3
Industry1 1,866,177 1,742,048 1,695,917 1,634,801 12.4
Primary2 3,637,653 3,614,241 3,613,442 3,612,800 0.7
Biomed 3,467,190 3,457,618 3,447,534 3,442,250 0.7
Industry2 14,455,858 14,318,272 14,299,904 14,288,855 1.2
Industry3 42,652,420 42,622,856 42,612,226 42,582,937 0.2
Avqlarge 6,877,290 6,876,002 6,846,046 6,786,482 1.3
Golem3 118,572,063 118,341,850 116,347,638 113,614,220 4.2
CLK 5,286,746 4,959,800 4,933,650 4,903,923 7.2
DECODER 7,781,409 7,186,454 7,082,260 7,022,407 9.8
PU 62,368,385 58,557,990 55,763,712 52,414,317 16.0

Table 3: Results for the MCNC standard cell circuits (TW
placement as initial solution) and IBM circuits (XQ placement
as initial solution). For instances Primary1–Primary2 the time
limits are 10 minutes (short), 30 minutes (medium) and 1 hour
(long). For instances Biomed–Golem3 the time limits are 10
minutes (short), 1 hour (medium) and 3 hours (long). For in-
stances CLK–PU the time limits are 3 hours (short), 6 hours
(medium) and 12 hours (long).

and after 12 hours the placement is improved by 16.0%. It
is interesting to see that larger circuits give rise to larger im-
provements.

In Figure 3 we show the displacements vectors for the PU
circuit. A displacement is indicated by an arrow for each mod-
ule which has been moved by GLS to a new location. Several
interesting observations can be made from these illustrations.
Note first that GLS has made many small modifications over
the whole placement area. With respect to the displacements
which are longer than 6% of the maximum displacement, the
majority of these represent modules which have been moved
across fixed macros. Most of the displacements are not paral-
lel to the - - or 0 -axis, indicating that GLS has performed more
than one move on the modules.

Finally, a few notes on the routability of the placements
produced by GLS. The packing ability of the GLS heuristic re-
sults in placements for which dense clusters of modules appear
more frequently than in the corresponding XQ placements.
This could potentially cause problems for the router. In or-
der to investigate this, we performed global routing on the PU
circuit using an industrial quality router. Preliminary results
indicated that the reduction in total netlength after routing was
similar to the reduction given by the BB netlength. Also, the
circuit was no harder to route; in fact, the number of nets that
were routed by the global router decreased by more than 10%.
The reason is that more nets belonged entirely to a tile in the
division made by the global router.

6 Conclusion

A new local search heuristic based on Guided Local Search
(GLS) has been presented for the final placement problem.
The GLS heuristic differs from previous local search heuris-
tics based on simulated annealing by having a greedy nature
which makes it possible to quickly improve on existing so-
lutions. By using Fast Local Search (FLS) it is possible to
shadow parts of the solution space, thus quickly performing
local improvements.

The computational comparison with the industrial codes
TW and XQ showed promising results. The GLS algorithm
was able to handle circuits with as many as 160,000 mod-
ules and 600,000 pins, obtaining total netlength reductions of

Figure 3: Displacements made by GLS on the PU circuit after 12 hours. At
the top are shown the displacements from 0% to 2% of the maximum displace-
ment. In the middle the displacements from 2% to 6% and at the bottom the
displacements which are longer than 6%.

up to 20 percent. TW and XQ are both advanced placement
programs — specialized for standard cell problems — which
have been developed over many years. The success of the GLS
heuristic should be measured from its ability to produce good
results for general cell circuits, and for the capability of im-
proving on placements produced by TW and XQ.

From a theoretical point of view the presented results are in-
teresting as they indicate that solutions constructed by current
techniques still are quite far from optimum (Figure 4). As we
do not have any tight lower bounds for the placement problem
it is difficult to assess the quality of the solutions proposed.
High-quality solutions, obtained through local search (even at
the expense of unreasonable solution times), can be used for
this purpose.

5e+07

5.2e+07

5.4e+07

5.6e+07

5.8e+07

6e+07

6.2e+07

6.4e+07

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

B
B

Time in seconds

PU

Figure 4: BB netlength as a function of time for the PU circuit.

The framework for evaluating the neighborhood in polyno-
mial time as described in Section 4 is to our knowledge new,
when applied to the placement problem. The fast evaluation of
the neighborhood means that FLS terminates faster, and thus
GLS can perform more iterations within the same time limit.

The GLS algorithm is still in an initial phase of develop-
ment. Trimming of the parameters involved, and experiment-
ing with other strategies for the duration of penalties may lead
to additional improvements in solution quality. Also, exper-
iments with increased solution time should be performed as
the results for, e.g., the PU circuit indicate that the algorithm
could improve the solution further if given additional time.

The general nature of the proposed method makes it easy
to incorporate other goals, such as routability and timing con-
straints, into the objective function. The greatest potential of
the algorithm might turn out to be its easy handling of addi-
tional objectives.

Acknowledgments

The authors would like to thank Ulrich Brenner, Karsten Muuss, Jürgen Schietke

and Jens Vygen at the Research Institute for Discrete Mathematics, University

of Bonn, for valuable help and fruitful discussions. Also, we would like to thank

Jürgen Koehl at the IBM Research Center in Böblingen for providing industrial

benchmarks circuits. The work was partially supported by SNF grant number

9701414 entitled “Experimental Algorithmics”.

References

[1] U. Brenner. Plazierung im VLSI-design. Master’s thesis, Research Insti-
tute for Discrete Mathematics, University of Bonn, 2000.

[2] O. Faroe. Placement of modules in VLSI layout. Master’s thesis, Dept.
of Computer Science, University of Copenhagen, 2000.

[3] O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the
three-dimensional bin packing problem. Technical Report 99-13, Dept.
of Computer Science, University of Copenhagen, 1999.

[4] Gigascale Silicon Research Center. http://www.gigascale.org.

[5] P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-Tree representation
of non-slicing floorplan and its applications. In Proceedings of the 36th
Design Automation Conference, pages 268–273, 1999.

[6] D. Jepsen and C. Gelatt, Jr. Macro placement by monte carlo annealing.
Proc. IEEE Intl. Conference on Computer Design, pages 495–498, 1983.

[7] A. Kennings. Cell Placement Using Constructive and Iterative Improve-
ment Methods. PhD thesis, University of Waterloo, 1997.

[8] P. Kilby, P. Prosser, and P. Shaw. Guided local search for the vehicle
routing problem. In 2nd International Conference on Metaheuristics -
MIC97, 1997.

[9] P. Madden, 2000. Personal communication.

[10] S. Mallela and L. K. Grover. Clustering based simulated annealing for
standard cell placement. In Proceedings of the 25th ACM/IEEE Design
Automation Conference, pages 312–317, 1988.

[11] C. Sechen. VLSI Placement and Global Routing Using Simulated An-
nealing. Kluwer Academic Publishers, Boston, 1988.

[12] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf place-
ment and routing package. IEEE Journal of Solid-State Circuits, SC-
20(2):510–522, 1985.

[13] W.-J. Sun and C. Sechen. Efficient and effective placement for very large
circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14(3):349–359, 1995.

[14] W. Swartz and C. Sechen. New algorithms for the placement and routing
of macro cells. Proc. 27th Design Automation Conference, pages 336–
339, 1990.

[15] TimberWolf v.1.2. http://www.internetcad.com.

[16] C. Voudouris. Guided Local Search for Combinatorial Optimization
Problems. PhD thesis, Dept. of Computer Science, University of Essex,
Colchester, UK, 1997.

[17] C. Voudouris and E. Tsang. Partial constraint satisfaction problems and
guided local search. In Proceedings of Practical Application of Con-
straint Technology (PACT96), pages 337–356, 1996.

[18] C. Voudouris and E. Tsang. Fast local search and guided local search
and their application to British Telecom’s workforce scheduling problem.
Operations Research Letters, 20(3):119–127, 1997.

[19] C. Voudouris and E. Tsang. Guided local search and its application to the
traveling salesman problem. European Journal of Operational Research,
113:469–499, 1999.

[20] J. Vygen. Algorithms for large-scale flat placement. Proceedings of the
34th Design Automation Conference, pages 746–751, 1997.

[21] D. Wong, H. Leong, and C. Liu. Simulated Annealing for VLSI Design.

Kluwer Academic Publishers, 1988.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

