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Abstract are less than their periods. Howevalt, the above approaches has a seri-

The paper presents a novel approach to compute tight upper boundsCf drawback. They can only deal with systems composeulependent
Paper p bp P gt ubp s, i.e., tasks with no precedence constraints. This greatly hinders the

the processor utilization independent of the implementation for gener"éﬁS th hes i | Id reali desi

real-time systems where tasks are composed of subtasks and preced&ife® these approaches in many real-world real-time system designs.
constraints may exist among subtasks of the same task. We formulat(l,'n this paper, we present a technlgue to compute the processor utiliza-
the problem as a set of linear programming (LP) problems. Observatioli2" b_Ol_mdS fqr more gene_ral real-time: systems. _We consider systems
are made to reduce the number of LP problem instances required to§9&1taining periodic tasks with precedence constraints. All tasks are as-
solved, which greatly improves the computation time of the utilizatiorfiMed to be executed on a single processor according to a fix-priority

bounds. Furthermore, additional constraints are allowed to be indudgaeemp’uve scheduling scheme. Th's'_ assum_ptlon, al_though not universal,
under certain circumstances to improve the quality of the bounds. IS true for many embedded systems in practice, particularly for low-cost,
high-volume consumer products [2, 6]. Note that such a model could

also be used to capture those system architectural alternatives containing
1. INTRODUCTION multiple processors and dedicated hardware components, provided that
the tasks are assigned statically to the processors and the communication

System-level design exploration is becoming indispensable as the tirrg@nong the processors is achieved via shared memory.
to-market pressure ever increases and system-on-a-chip technology mas number of papers have been published that study the problem of per-
tures. One of the great challenges in system-level design explorationfigmance prediction for real-time tasks with precedence constraints, e.g.,
rapid timing performance estimation since such estimation must be Pel; 7, 15, 16]. These papers all focus on providing sophisticated algo-
formed for a Iarge number of design alternatives. Fast prediction of SY8thms to check if a given imp|emen’[a’[i0n can satisfy the t|m|ng require_
tem timing behavior is essential to the success of any design exploratigfent. Unfortunately, such algorithms are generally quite time consuming
tool. For real-time systems which must respond to external events un@&jpecially when used repeatly during the early design exploration process.
given timing constraints , analyzing the timing performance is particularly gyr approach aims at computing tight upper bounds on processor uti-
critical because fail to respond to events on time may seriously degragigstion. For a given system specification, the processor utilization bounds
system performance or even result in a catastrophe. are obtained independent of the implementation (such as choices of pro-

One effective approach to rapidly estimating real-time system perfogessors). Then, the bound can be used in the design exploration process
mance is to use processor utilization bounds. If a tight utilization boung rapidly determine if an implementation of the system satisfies the tim-
exists, given a system implementation (such as a particular processgilyy constraints. By carefully analyzing the relationship among tasks, we
the processor utilization can be readily computed and compared with th¢mulate the problem of finding the tightest upper bound as a set of LP
bound to determine whether all t|m|ng requirements can be satisfied. Uﬁ-rob|ems_ Furthermore‘ we have made a number of observations to sim-
lization bounds depend on many parameters, e.g., the system architecyli§ the LP formulations, which greatly reduces the time needed to solve
and scheduling policy. In this paper, we are interested in real-time systegg LPs. Our LP model allows additional constraints to be included to
employing a fixed-priority, preemptive scheduling policy. This schedulcapture some known characteristics of the system (e.g., the relative sizes
ing policy is adopted by most real-time systems of practical interest dyg task execution times). Adding such constraints judiciously improves
to its low overhead and predictability [11]. the quality of the bounds. However, care must be taken when adding such

The best known utilization bound is the work by Liu and Layland in [10konstraints in order to guarantee the bounds to be valid. We present guide-
This bound is applicable to a single processor system with periodic taskges based on linear algebra principles to help the designer determine the
The tasks are not allowed to have precedence constraints and a task dejgft combination of constraints to add. We demonstrate the effectiveness
line must equal its period. The authors in [4] derived an improved boungf our approach through a number of experimental results. To our best
Park,et.al., presented a linear programming (LP) based method to comnowledge, this work is the first in finding utilization bounds for periodic
pute the utilization bounds [12, 13], which produces much tighter boundgsk systems with precedence constraints.
than the previous one. A further improvement to the results in [12, 13] is
proposed in [9]. Besides being tighter, the utilization bounds derived
the LP-based methods can also be applied to the case where task deadlifies PRELIMINARIES

*This research was supported in part by the National Science FoundationVe adopt the task graph model [16] to describe a real-time system con-

under Grant MIP-9701416 and MIP-9796162. taining periodic tasks with precedence constraints. In particular, given a
system withn tasks, we usa directed acyclic graphs (DAG) to model the
system, where each DAG corresponds to a task. The vertices in a



DAG represent the subtasks while the edges represent the precedence nohbe any idle time before the first job &, is finished. To compute
straints among them. See Figure 1 for an example. A subtask is orthis minimum utilization, the authors formulate an LP problem instance
ready to be executed when all of its predecessors are completed. as follows [12]:
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The tasks are assumed to be in the decreasing order of their priorities.
. . . The constraints in the above LP are formulated as such that the processor
Figure 1: The task graph representation of a periodic task system
containing four tasks.

T, T,

is kept busy by executind,, and tasks with higher priorities. Why the
solution yields a valid bound? Let us assume that in an implementation,
The tasks are denoted Ay, T5,... Ty, and the subtasks df; are de-  the processor utilization due to executing the firgtsks idJn. If Un <Bp,
noted byTi 1, Ti2, ..., Tim, Whereny is the total number of subtasks in according to the nature of LP problems, the given task execution times
taskT;. Let N andM be the total number of tasks and total number ofnust have violated at least one of the constraints in (2). That is, the first
subtasks, respectively. Given that the tasks must be executed periodicaf, of Un as well as higher priority tasks guaranteed to completeefore
we refer to thekth instance of tasi; as thekth job of Tj. Each task and €ither one of thegTi's or Dn. Since the first job ofl, has the longest
subtask is associated with the following timing parameters: response time [10], the implementation is definitely schedulable for the
first n tasks.
e T;: the interval between the release times of two consecutive jobs of One serious drawback of the existing approaches for computing utiliza-
T;, referred to asask period tion bounds is that they only deal with systems composeddgpendent
tasks. Since for independent tasks, when all tasks request at the same
lﬂme, a task can be preempted by any higher priority task. Thus the total
time required to finish the first job df,, is the longest among all it's jobs
e d; j: the maximum time allowed from the release dfi% job to the and can be written as the left hand side of the inequalities in (2). However,
completion oft; j, referred to asubtask deadlineandd; ; < D;. for tasks with precedence constraints, this is no longer true. For example,
' ' consider a simple case in which talk contains only one subtasi 1
e ¢,j: the maximum time needed to completg without any inter-  and tasklq contains two subtasks, 1 andty . Assume the execution of
ruption, referred to asubtask execution time Tq,1 Must proceedq2, andpg1 < Pn1 < Pg,2. SUppose a job afp ;1 is
released before the completion of a jolxgfi. Then,1q> cannot preempt
Tp1 Sincetq preventsiq, from starting duringry 1's execution. How-
ever, if1q is finished immediately prior to the releasetfy, 1q, will
delay the start of, 1. The existing approaches are not capable of handling
such complex cases.

e Dj: the maximum time allowed from the release to the completio
of aTj’s job, referred to asask deadlineln generalD; < T;.

e C;: the maximum time needed to compldigwithout any interrup-
tion, referred to agask execution timendC; = Z?ll Cij-

e pjj: the priority level statically assigned j, referred to asub-

Es_ks;:gty We say thatti,j has a higher priority thainc if Fo_r the general task graph model, the effect of one subt_ask on the ex-
J ’ ecution of another subtask need to be carefully characterized. Harbour,
The tasks are assumed to be executed on a single processor andkieén and Lehoczky analyzed such inter-subtask effects for a special task
overheads due to preemption and context switching are assumed todsaph model in [7], where each periodic task is assumed to contain a se-
negligible. quential list of subtasks with a predefined execution order within the se-
During the design exploration process, task periods, task and subtaglence. Furthermore, the subtask execution times as well as task periods
deadlines as well as subtask priorities are usually given while the exec@nd deadlines are given. The aim is to estimate the worst-case execution
tion times are not known and are dependent on the implementation. Rime. To achieve this, a task is converted to a particular form while the
a given implementation, the subtask execution times become known agither tasks are grouped with respect to this task into five different groups.
the processor utilization due to executing the firsasks is computed by The worst-case phasingf T, due to the existence of other tasks repre-
N noem sent the particular release times of the other tasks that create the longest
U = G _ 2j=16] (1) response time folln. The complexity of the algorithms in [7] is quite
G T i; Ti high (O(MN2L/(1—U)), whereM is the total number of subtask, is
the number of taskd, = maxT;/T; andU is the processor utilization).
If this algorithm is used during design space exploration, it must be ap-
DEFINITION 1. Given the task periods, deadlines, as well as subtagRlied to each implementation under consideration, which can be very time

priorities of a periodic task system, find utilization boungssBch thatan ~ €ONSUMIng.

implementation of the system is guaranteed to be schedulabje<if&h Since the technique in [7] requires all subtask execution times be known,
forall 1< n<N. it cannot be readily used during design space exploration. However, some

useful concepts in [7] can be extended to our general task model. These
As discussed in Introduction, several previous papers have studied thi¢l be discussed in detail in the following section.
utilization bound problem in depth [10, 4, 12, 13, 9] . We briefly review
the results in [12] since our method bears similarities to it. In [12], Park3. BOUND COMPUTATION
et.al. presented an LP-based approach to compute utilization bounds for
a set of independent tasks. The key idea is to find the minimum processoyy, thjs section, we present our approach to determining the utilization

utilization for executingn tasks under the requirement that there shoulgoyngs of periodic task systems with precedence constraints. Our idea is
to formulate LP problem instances similar to [12]. However, we are

The problem we intend to solve is formulated as follows:



DEFINITION 4. Ifthe priorities of a set of subtasks; n, Tj ht1,- -, Tik}
facing a number of challenges. Recall (from the last section) that for iffwhere h and k are two integers such tat h < k < my) are all higher
dependent task sets, the first job of a task has the worst case phasing [t@n R, while the priority oftj h_1 andT; k41 (ifk < ny) are lower than R,
That is, if the first job can be finished by its deadline, all other jobs of ththis set of subtasks is calledoocking subtask set foll , and is denoted
same task can meet their deadlines as well. For tasks with precedence ambKn,i, j). The set of all such subtask sets are denoteB I4gn).
straints, what is the worst case phasing for a task or subtask? Furthermore,
each constraint in (2) corresponds to one integer multiple of the period of 1, 1,

a higher priority task. In the task graph model, the subtasks in one task

does not necessarily have uniformly higher or lower priorities than the @ (2

subtasks in another task. How should such constraints be formulated? We

will describe our ideas to tackle these and other challenges. /@
To simplify our exposition, we first assume that the deadlines of the @)

subtasks are the same as the deadlines of their corresponding tasks, i.e.,

dn1 =dn2 =--- = dm, = Dn. Removing this constraint only requires @

a minor modification to our approach, we will explain at the end of this @) ‘

section.

3.1 Analyzing worst-case phasings

We first determine the worst-case phasing between a task sand P p p P p p pPlT
other tasks. The importance of the worst-case phasing idlthatiffers = = ® T
the longest response time if the other tasks happen to release jobs at the i=1{6 8 5 70
worst-case phasing. In this process, we borrow some terminology intro-
duced in [7]. However, our classification is simpler. i=2/9 6 3 8 7 4 10|120

At first glance, it may seem that analyzing the effects of the subtasks
in other tasks on the execution &f, require the consideration of each
individual subtask in tasl,,. Actually, if the deadlines of subtasks of
T, are assumed to be the same as the deadlinds, 0analyzing such
effects only need to focus on the lowest priority subtasl jin This is a
generalization of some observations presented in [7]. In Figure 2, we provide examples of the above classifications using two

The observations in [7] are applicable to tasks each of which contaitesks.

a list of subtasks to be executed in a sequential order. In our case, théultiple-preemption tasks fol, have the same effect on the execu-
subtasks in a task are modeled as a DAG rather than a one-dimensidi@ of Ty, as that of higher priority independent tasks on a lower priority
sequential list. However, the following lemma shows that a DAG-baseahe. Single-preemption and blocking subtask sets, on the other hand, have
task model can be readily converted to a list-based model when scheduseaine unique properties. They are described in the following two lemmas.
on a single processor.

Figure 2: Examples of task/subtask characterizations: T, is a
multiple-preemptiortask for Ty, {121, 122} is asingle-preemptiorsub-
task setfor T4, {124, 125} and {127} are blocking subtask sets forl 4.

LEMMA 2. Consider tasl  and taskl; which contains both aingle-
LEMMA 1. Given a set of periodic tasks each of which consists gfreemptiorsubtask set, §p, i), and multipleblockingsubtask sets, Ik, i, j)
subtasks modeled by a DAG, the subtasks in each DAG can be convertefiflar j = 1,2,--- ). If sp(n,i) preemptsl,,, none of bkn,i, j)'s can block
a one-dimensional list by Topological-Sort with priority assignment. Th& . If one of bKn, i, j)'s block Tp, sp(n,i) cannot preempl , unless this
resulting task list has exactly the same execution schedule as the origitéhcking subtask set contaimsm, .

DAG-based model when scheduled on a single processor. . )
LemMMA 3. TaskT,, can be blocked no more than once during the time

From now on, we will assume that the subtasks in each DAG are ithat the processor is busy executing the subtasks,aind other higher
dexed by the order in the corresponding one-dimensional list specifiedpniority subtasks.

Lemma 1. We identify three different ways that other tasks/subtasks may . o . .
impact the response time of tafk. Let the lowest priority among all -e€mma 3 is a generalization of a lemma given in [7] where the lemma

the subtask priorities il be P,. Our characterizations are somewhat!S @lready proved. Proofs for Lemma 2 and Lemma 3 are quite straight

similar to the ones in [7] but are defined differently so as to simplify ouforward and are omitted. _ . )
subsequent analysis. If a taskT; is not a multiple-preemption task o, and contains neither

a single-preemption subtask set nor blocking subtask sets, the priority of
DEFINITION 2. If the priority of every subtask in task; is higher every subtask ifl; must be lower thaR. If a job of T, is released during
than R, T; is called amultiple-preemptiortask forT,, and the set of all the execution ofl;, Tn can immediately preempt it. HencE; will not
such tasks are denoted B&P (n). have any impact on the response timelgf (under the assumption that
preemption overhead is negligible). To ensure that the above definitions
It is easy to see thak; can preempt (or interrupt the execution dfy  capture the worst-case phasing, whenever the priority of another subtask

more than once if; < Ty andT; € M P (n). is equal toP,, we assume, is lower . This is a pessimistic assumption
but guarantees to result in valid bounds.
DEFINITION 3. Ifthe priorities of a set of subtaskti 1,Ti 2, -, Ti k} We are now ready to determine the worst-case phasing§ forThe

1 <k < mj, are all higher than Rwhile the priority oft; \., 1 is lowerthan  main difference between our observations and those in [7] is that in [7] the
Pn, this set of subtasks is calledsingle-preemptiorsubtask set foll,,  execution times of subtasks are knoapriori and hence the worst-case
and is denoted as $p,i). The set of all such sets are denoteds&y(n). phasing of another task fdr, can be uniquely determined. In our case,
the subtask execution times are unknown. To overcome this difficulty,
Note that even ifT; < T,, sp(i) can only preempl, once since the we let the worst-case phasings be associated with either tasks or subtasks
lower priority subtask; ;1 in Tj prevents it to be completed befole,  instead of with tasks alone as in [7]. We summarize the conclusions in
is completed. three lemmas and omit the proofs.



LEMMA 4. The worst-case phasing bf, with existence of enultiple-  be preempted by many multiple-preemption tasks and single-preemption
preemptiortask Tj occurs when the first subtask Bf is released at the subtask sets. However, it can only be blocked once by a blocking sub-
same time as the first subtasklaf. The number of preemptions Byis  task set (see Lemma 3). Thus, in the construction of the LP problem, we

equal to[Th/Ti]. must formulate multiple LP instances in order to consider the effects of
different blocking subtask sets.
LEMMA 5. The worst-case phasing &f, with existence of gingle- To guarantee that the processor is kept busy at any time instant before
preemptiorsubtask set g, i) occurs when the first subtask of(sd) is  completingT,,, we only need to make sure that the processor is busy at
released at the same time as the first subtask,of time instantt for everyt satisfying () t < D, andt = gT;, whereT; is a

multiple-preemptiortask for T, andq is an integer, ori{) t = D,. Such
LEMMA 6. The worst-case phasing &f, with existence of Blocking  time instants are referred to as theheduling point®f L. The above
subtask set Hn,i, j) for Tn occurs when the first subtask of(bl, j) is  conclusion can be readily drawn by noticing that these time instants are
released at the same time as the first subtaskof the only ones when new execution requests may occur.
. Based on the above observations, we formulate the LP instaR¢e, i, j),
Ba;ed on th_e_se I_emmas, we are ready to formulate LP instances for CQU‘tompute the utilization bound for tadk, whenbk(n,i, j) blocks Tn.
puting the utilization bounds. According to Lemma 3, ibk(n,i, j) blocks Ty, all other blocking subtask
sets have no impact on the executionlgf. Furthermore, ifok(n, i, j)

3.2 Computing utilization bounds does not contain the last subtaskgf(ti ), sp(n,i) cannot preempt .
The LP formulation is given in (3).
LP(n,i, j): The readers can easily verify that the constraints above indeed guaran-
. tee that the processor is kept busy during the executidrm, of
Minimize: For each tasl ,, the number of LP instances needed to determine the
unip=_% = + Zp Ch + Gk + En utilization bound for se_ltisfyind'n’s deadlines is equal to the number of
eMP(n) Tk TneSPin) 'K 1 ebking,j) T Th blocking subtask sets iIBK (n). After solving these LPs, the utilization
bound forT, is obtained by
Subject To: Bn= rri1i]_n{minU (ni, )} )
Ck[q?-r'] + ZP Ckh+ z Cik+Cn>dT Given a specific implementation, i.e., a combination of subtask execution
TieMP(n) K 1neSPi(n) TikebK(n,i,j) times, the following procedure can be used to determine the schedulability
a=1,2,---,|Tn/Ti], of the implementation.

Step 1: For taskl,, determine the effects of the other tasks/subtasks

where Ty ¢ MP (n) and T <T, (multiple-preemptiopsingle-preemptionor blocking).

D
S Gl=1+ ZP Cih+ Cik+Cn>Dn
Tkh€E i(n) Ti k€D (n,i,j)

Ty T ni,j) Y. . . .
TieMP(n) k Step 2: Find maq(z'-k#i””Qk for the given subtask execution times,
whereSP;(n) = SP(n)\sp(n,i) and wherebK (n,i, j) is as defined in (3).
(i D) = bk(n,i, j) if Ti.m ¢ bk(n,i, j) Step 3: Co_mpu_téJ(n,i,jmax) as defined in (3) for the given subtask
(M) =1 bkn.i,j)nspn,i) otherwise execution times.

(3)  Step4: IfU(n,i, jmax) < Bn, thenTy, is definitely schedulable.

An LP-based approach such as the one in [12] has been shown tofgpeating the above procedure for each task will determine whether the
very effective for computing utilization bounds for tasks without precejmplementation is definitely schedulable. Notice then, i, j), instead
dence constraints. We will present new LP formulations for Computlngf the total processor utilization7 is Compared V\Blh The LP instances
utilization bound must ensure that an implementation with a given confprward implementation of checking the schedulability of each implemen-

bination of subtask execution times is schedulable if the correspondifgtion takes QYIN2) comparisons, which is much more efficient than the
processor utilization is less than or equal to the bound. The idea behigghorithm in [7].

the LP-based approach is to find the minimum processor utilization given
when the processor is kept busy. 3.3 Improving Utilization Bound Computation
The objective function of the LP is simply to minimize the processor )
utilization by the set of tasks/subtasks under consideration. The main@ur LP-based approach discussed above can successfully produce a
challenge in constructing an LP instance is in building the constraints. ffilization bound for satisfying the deadline of each task. However, the

order to guarantee that the utilization bound is a valid one, the constraiffdmPer of LPs to be solved is relatively large. Though they only need to
in the LP must satisfy the following conditions: be solved once, it is still beneficial to reduce this number. Furthermore, it

is important to study the quality of the bounds. In this subsection, we will
1. The constraints must capture the longest possible response timeRgpSent our observations related to these issues. _ _
the task under consideration. In the worst case, the total number of LP instances introduced in Section
3.2 is equal taN(N — 1)M/2. These LPs are the results of a straightfor-
2. Satisfying the constraints means that the processor is kept busy. ward realization of the observations that we have made. The lemma and

theorem introduced below can readily reduce the number of LP instances
The longest response time of tabk depends on the worst-case phas+to N without sacrificing any bound quality.

ings of Tp. Since the execution times of subtasks are unknown, there are

a number of possible worst-case phasings that may cause a Joptof LEMMA 7. To compute the utilization bound for tafk, only one LP
have the longest response time. These worst-case phasings are definédsitance, denoted dsP(n, i), is needed for each tadk that contains one
Lemma 4-6. Note that during the execution of a job Bf, the job can or more blocking subtask sets with respeciltp



Lemma 7 immediately reduces the worst-case total number of LP im LP(n, j), we conclude thatP(n,i) andLP(n, j) have exactly the same
stances toN(N — 1). The proof of it is relatively simple and is omitted constraints. However, the two objective functions are different. In fact,
due to the page limit. By employing more sophisticated observations, wee have
can reduce the total number of LPsNpwhich is the same as the case of 1o
independent tasks. This result is summarized in the following theorem. U(n,i)—U(n,j) = T <0 (7

i j

THEOREM 1. To compute the utilization bound for tadk, only one Case 3 One of the sinale-preemption subtask sets is emptv. Assume
LP instance needs to be solved. This LP, denotedR(®), corresponds N gie-p p o Pty
sen(n,l) = 0. (The other case can be proved similarly.) We apply the

to the original LP that considers the blocking effect by the task having t / L . N o o
longest period among all the tasks containing blocking subtask sets. %IIOWlng substl.tutlonsC. - Z“-kib"(”*') Gk 21 esp(n ) Cik ar.1dC —
Y1, xespn,j) Cjk IN LP(n,i), andC’ = 1, ebk(n,j) Cjk N LP(n,j). The

Proof: Consider two LP instancesP(n,i) and constraint sets of the two LPs become the same, and the objective func-
LP(n, j) for computing boundy,. They are written as tions satisfy the following:
U U U U
LP(n,i): U(n,i)fU(n,j):cjrC +%f$go (8)
Minimize: ' ! !
Un,i) = G " Ckh n Cjk Therefore, in all three cases, we have bh{im,i) < minU(n, j). Note
T Z ; Tk _ o T that the cases corresponding to empty blocking subtask sets do not need
TieMP(n) Tk‘“ec_ i (n)c TikESPnD) to be considered as they do not introduce LP instances. o
+ Z 2k + N The time needed to solve one LP is dependent on the number of vari-
Ti kebK (n,i) T T ables and the number of constraints. A positive side effect of the reduc-
Subject To: tions discussed above is that the substitutions decrease the number of vari-
(5 ables. The number of constraints in the LP for tdskis equal to the
(L] + Ceh+ Cik number of scheduling points df,,. The techniques to reduce the number
TeeMP(n) Tk Tkhe;”(m ' TSP )) ' of constraints in the LPs for the independent tasks [9] are also applicable

to the LPs here. Therefore, the number of constraints can be reduced by
at least one half without sacrificing any bound quality.

The quality of the utilization bounds obtained by the LP-based ap-
proach measures the tightness of the bounds. The bounds are in fact
the tightest since one can always find at least one system implementa-
LP(n,j): tion whose utilizations are equal to the bounds but which is not schedu-
lable. However, such a system implementation may not be realistic for a

+ Z Cik+Cn >t
TikebK (n,i)
for all t equal to the scheduling points i@, Dp],

Minimize: C " particular system. The reason is that task/subtask execution times are usu-
un,j)= z T—k + g g + _'Tk ally non-arbitrary, non-negative numbers. In many cases, these execution
TieMP(n) K 1,eSPin) 'K tyespni) times have lower and/or upper bounds, and there exist some relationships
Cik Cn among the subtask execution times (eq,, > 2cyx). Including such
+ Z o T Tn information as additional constraints in the LPs can further improve the
Subject To: TEBK(n.j) quality of the bounds. We will refer to the LPs discussed previously as
: (6) theoriginal LPs and refer to the LPs with the additional constraints as the
t extended.Ps.
CIJ?1 + ; Ck,h+ z Cik It may seem tempting to add as many additional constraints g8
TieMP(n) K 1neSPyn) TikESA(N,i) or Ci’s as those that are known. However, care must be taken in intro-
+ z Cjk+Cnh>t ducing these additional constraints into the original LPs. According to
Tj k€DK (n,j) the LP theory, an optimal solution to an LP must be one of the extreme
for all t equal to the scheduling points i@, Dp], points in the feasible region [14]. Thus, the solution to the original LP

must have some of the constraints be satisfied as an equality. This guaran-
. . ) _ tees thail , is completed at or before its deadline if the utilization of the
whereSPij () is the set of the single preemption subtask sets not includq pjementation under consideration is less than the bound. When adding
ing sp(n, i) andsp(n, ). If we could show that mil (n,i) <minU(n, j)  ayira constraints, one must make sure that the solution to the extended LP
for Ti > Tj, then onlyLP(n,i) needs to be solved in the computation ofyi5q has at least one of the constraints in the original LP be satisfied as an
Bn. Thus, the theorem holds. equality. Otherwise, the bound would no longer be valid.

To compareLP(n,i) andLP(n, j), let us assume thd > Tj. From (5) T4 ensure that a bound computed by an extended LP is valid, we bor-
and (6), one can see that the first two summation terms in both objectiys,, therank concept from linear algebra [8], where the rank of a matrix
functions are the same, and sois the case for both constraint sets. We Y§”’equa| to the number of linearly independent columns in the matrix. If
focus on the remaining two summation terms. There are three cases tQR€reat the coefficients in the additional constraints as a matrix, we can
considered. ] _ _ determine its rank easily. Only when this rank is less than the number of
Case_l:Nelthe’rsp(n,l) norsp(n, j) are Smpty. If we apply the following \ariaples in the LP instance, these additional constraints cannot uniquely
substitutionsC’ = 3¢, bk (n,) Cik @NAC" = 3¢, espn,j) Cik INLP(N0),  gefine a solution point for the LP instance. Thus, at least one of the orig-
andC' = . espini) Gk andC” = Y. cbi(n,j) Cjk IN LP(n, ), itbecomes  inal constraints is guaranteed to be satisfied as an equality. As we stated
clear that.P(n,i) andLP(n, j) are in fact equivalent. Thus, min(n,i) =  above, this guarantees that the bound is valid. Variables that do not ap-
minU (n, j). (Note that the above substitutions are acceptable since tpear in the objective function will not effect the bound value. Therefore,
two LPs are two separate problems and only the objective function valuesnstraints containing these variables can be simplified by removing these
are of interest to us.) variables through inequality manipulations.

Case 2: Both sp(n,i) andsp(n, j) are empty. Applying the following We would like to point out that the LP reductions by Lemma 7 and
substitutions:C' = Stiebk(nyi) Gik IN LP (i), andC' = Y1,.ebk(n,j)Cik  Theorem 1 may no longer be valid when additional constraints are intro-



duced. Depending on the forms of the additional constraints, the objectiveOne may notice that the bould = 0.125 is rather small, and may feel

function values of different LP instances may be increased by differetttat it is too pessimistic. However, we should emphasize Bgas not

amounts. How to generalize the reduction rules is left for our future workhe bound on the total processor utilization. It only bounds the processor
At the beginning of this section, we made the assumptiondhat= utilization due to themultiple-preemptiortasks, single-preemptiorand

On2 = --- = dnm, = Dn. We now discuss the more general case wherblockingsubtask sets with respectta.

subtask deadlines can be different from the corresponding task deadlineln Section 3.3, we explained that a bound can be improved if add ad-

In this case, instead of analyzing the effects of the subtasks in other tagkBonal constraints according to known relationships among subtask ex-

ontask Ty, we only need to categorize such effects osuaitask sebf  ecution times. To see the effectiveness of this approach, let us assume

T,. Consider a particular subtask ©f, sayTy;, whered,j < Dp. Itis  that we havees; > ¢4 1 in the above example. The new utilization bound

not difficult to see that subtasks,j (i < j < my) have no impact on the obtained from the extended LP increaseB3e= minU (3,5,1) = 0.46.

worst-case response time of;j (assuming that all tasks are finished by

their deadlines). If we replack, by Tj, whereT,={ th1, Tn2, -, Tnj}, 4.2 Randomly generated task sets

we can simply apply the same technique as discussed above to analyzgye have shown in Section 3.2 that testing the schedulability of different

the effects of other subtasks @i and to construct an LP to compute thejmplementations of a system becomes very efficient once the bounds are

utilization bound for satisfying the deadline ]if]. Therefore, for each obtained by our LP-based approach. Computing the bounds requires solv-
subtask whose deadline is less than the corresponding task deadlinenmgea number of LPs. However, each LP only need to be solved once while

need to construct a separate LP to get the utilization bound. the resulting bounds can be used numerous times. Furthermore, the time
which it takes to solve the LPs are not excessive at all. To demonstrate
4. EXPERIMENTAL RESULTS this, we have conducted a number of experiments based on randomly gen-

erated periodic task sets.
The randomly generated task sets may contain anywhere from 10 to 70

In this section, we first use an example from [7] to illustrate how to K d h task ; h f 1 to 20 subtasks. Th
perform a schedulability analysis by using the method described in th@sks and each task may contain anywhere from 1 to 20 subtasks. The
previous section. Then we present and compare some timing data C%Lil_btaSkS are assumed to have the same deadline as their corresponding

lected from applying our algorithm, both before optimizing and after, t%askldeadlines.dTask t;:leadlig_es, pﬁriods_, ar;dhsulbtask prioriliies "?“g rar:j—
groups of randomly generated tasks. omly generated numbers. Since the ratio of the longest task period an

the shortest one can have a significant impact on the number of constraints

in an LP, we limit this ratio to 100. The task graphs are generated by using

41 A real-yvorld e_XampIe the software package TGFF [5]. We applied our LP-based approach, both
The example is a real-time robot control system [7]. The system co@riginal and optimized, to these task graphs to compute the processor uti-

tains five tasks whose parameters are given in Table 1. To conduct schegitition bounds. The LPs are solved by a software packageolve [3].

lability analysis based on the utilization bound approach, one needs T@e programs (including constructing and solving all the LPs) are exe-

consider each task. We will use taBk to illustrate the procedure step by cuted on a Sun SPARC ULTRA 30. We summarize in Table 2 the CPU

step. time usage by the programs. Clearly, the bound computations are quite
efficient.
T D |pia] Piz] P
' ' Bt | P2 | Pi3 Num of tasks/subtasks CPU times
T,]40 [40 [ 10 |7 —
before optimizing (m) after optimizing (s)
T, | 100 100 | 4 8 4
T,150 [50 |5 ) — 10/70 1.07 0.65
20/127 20.35 0.664
T,]200] 2009 2 3
T5 [ 400 | 400 | 3 1 6 30/195 58.14 0.9344
40/274 - 3.0121
Table 1: Specification of an example task set. 50/322 - 4.919
Step 1 : Classify the rest of the tasks according to the priority level of th 607382 - 7.4903
: 70/468 - 11.0252
lowest priority subtask i, i.e.,131. We haveM P (3) = {T},
SP(3)={sp3,4)} ={{141}}, andBK (3) = {bk(3,2),bk(3,5)} = Taple 2: CPU times needed to compute the bounds of randomly
{{r22},{t53}}. The scheduling points that need to be considered generated task sets before and after LP instance reductions. *-’
during bound computation ate= T; = 40 andt = D3 = 50. represents a time over an hour and is already impractical.

Step 2 : Construct the LP instance. The blocking subtask seiksddre
from taskT, andTs. Given thatTs > T, we only need to consider 5. CONCLUSION
LP(3,5,1), which is shown below.
In this paper, we introduced an LP-based approach to determine the

Minimize:
1) GatCie | G | Gss , CartGe processor utilization bounds for periodic task sets with precedence con-
UB51) = T TS T straints. By carefully analyzing the effects of other subtasks on the ex-
Subject To: ecution of a task under consideration, we have constructed LP instances

to compute the bounds. Based on several observations, we have greatly

C11+C12+C41+C53+C31+C32 >=40 -
L1THL2 T TSI T 82 reduced the number of LPs needed for computing each bound. Further-

2011 +2C12+C41+C53+ €31 +C32 >= 50 more, we have presented guidelines for adding additional constraints to
the LPs in order to obtain tighter bounds. Experimental results show that

Solving the above LP instance, we have our approach is indeed effective and efficient.
Bn=minU(3,5,1) = 0.125. To our best knowledge, this is the first attempt to analyze the schedu-

lability of periodic task sets with precedence constraints through the uti-
If each blocking subtask set is used to construct an LP instance, the realifation bounds. This approach will obtain processor utilization bounds
can easily verify that mib (3,2,1) > minU (3,5, 3). independent of the implementation. The bound can be further used in in



the design exploration process to rapidly determine if an implementation
of the system is applicable and satisfies all timing requirements. What'’s
more, for hard-to-determine priorities of some subtasks in a particular sys-
tem, our analysis will help determine a better priority assignment in order
to achieve a better system performance. Such characteristic sure meets the
challenge of a rapid system timing performance estimation. Our future ex-
tensions to this work will include generalizing the reduction rules when
additional constraints are added, allowing task deadlines to be greater than
their periods, and considering multiple processor systems.
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