
Efficient Performance Estimation
for General Real-Time Task Systems

Hongchao (Stephanie) Liu� Xiaobo (Sharon) Hu�

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
fhliu, shug@cse.nd.edu

Abstract
The paper presents a novel approach to compute tight upper bounds on
the processor utilization independent of the implementation for general
real-time systems where tasks are composed of subtasks and precedence
constraints may exist among subtasks of the same task. We formulate
the problem as a set of linear programming (LP) problems. Observations
are made to reduce the number of LP problem instances required to be
solved, which greatly improves the computation time of the utilization
bounds. Furthermore, additional constraints are allowed to be included
under certain circumstances to improve the quality of the bounds.

1. INTRODUCTION

System-level design exploration is becoming indispensable as the time-
to-market pressure ever increases and system-on-a-chip technology ma-
tures. One of the great challenges in system-level design exploration is
rapid timing performance estimation since such estimation must be per-
formed for a large number of design alternatives. Fast prediction of sys-
tem timing behavior is essential to the success of any design exploration
tool. For real-time systems which must respond to external events under
given timing constraints , analyzing the timing performance is particularly
critical because fail to respond to events on time may seriously degrade
system performance or even result in a catastrophe.

One effective approach to rapidly estimating real-time system perfor-
mance is to use processor utilization bounds. If a tight utilization bound
exists, given a system implementation (such as a particular processor),
the processor utilization can be readily computed and compared with the
bound to determine whether all timing requirements can be satisfied. Uti-
lization bounds depend on many parameters, e.g., the system architecture
and scheduling policy. In this paper, we are interested in real-time systems
employing a fixed-priority, preemptive scheduling policy. This schedul-
ing policy is adopted by most real-time systems of practical interest due
to its low overhead and predictability [11].

The best known utilization bound is the work by Liu and Layland in [10].
This bound is applicable to a single processor system with periodic tasks.
The tasks are not allowed to have precedence constraints and a task dead-
line must equal its period. The authors in [4] derived an improved bound.
Park,et:al:, presented a linear programming (LP) based method to com-
pute the utilization bounds [12, 13], which produces much tighter bounds
than the previous one. A further improvement to the results in [12, 13] is
proposed in [9]. Besides being tighter, the utilization bounds derived by
the LP-based methods can also be applied to the case where task deadlines

�This research was supported in part by the National Science Foundation
under Grant MIP-9701416 and MIP-9796162.

are less than their periods. However,all the above approaches has a seri-
ous drawback. They can only deal with systems composed ofindependent
tasks, i.e., tasks with no precedence constraints. This greatly hinders the
use of these approaches in many real-world real-time system designs.

In this paper, we present a technique to compute the processor utiliza-
tion bounds for more general real-time systems. We consider systems
containing periodic tasks with precedence constraints. All tasks are as-
sumed to be executed on a single processor according to a fix-priority
preemptive scheduling scheme. This assumption, although not universal,
is true for many embedded systems in practice, particularly for low-cost,
high-volume consumer products [2, 6]. Note that such a model could
also be used to capture those system architectural alternatives containing
multiple processors and dedicated hardware components, provided that
the tasks are assigned statically to the processors and the communication
among the processors is achieved via shared memory.

A number of papers have been published that study the problem of per-
formance prediction for real-time tasks with precedence constraints, e.g.,
[1, 7, 15, 16]. These papers all focus on providing sophisticated algo-
rithms to check if a given implementation can satisfy the timing require-
ment. Unfortunately, such algorithms are generally quite time consuming
especially when used repeatly during the early design exploration process.

Our approach aims at computing tight upper bounds on processor uti-
lization. For a given system specification, the processor utilization bounds
are obtained independent of the implementation (such as choices of pro-
cessors). Then, the bound can be used in the design exploration process
to rapidly determine if an implementation of the system satisfies the tim-
ing constraints. By carefully analyzing the relationship among tasks, we
formulate the problem of finding the tightest upper bound as a set of LP
problems. Furthermore, we have made a number of observations to sim-
plify the LP formulations, which greatly reduces the time needed to solve
the LPs. Our LP model allows additional constraints to be included to
capture some known characteristics of the system (e.g., the relative sizes
of task execution times). Adding such constraints judiciously improves
the quality of the bounds. However, care must be taken when adding such
constraints in order to guarantee the bounds to be valid. We present guide-
lines based on linear algebra principles to help the designer determine the
right combination of constraints to add. We demonstrate the effectiveness
of our approach through a number of experimental results. To our best
knowledge, this work is the first in finding utilization bounds for periodic
task systems with precedence constraints.

2. PRELIMINARIES

We adopt the task graph model [16] to describe a real-time system con-
taining periodic tasks with precedence constraints. In particular, given a
system withn tasks, we usen directed acyclic graphs (DAG) to model the
system, where each DAG corresponds to a task. The vertices in a

1

DAG represent the subtasks while the edges represent the precedence con-
straints among them. See Figure 1 for an example. A subtask is only
ready to be executed when all of its predecessors are completed.

1τ1

τ1 τ4

1τ4

1

τ2 τ3

2

2

2

2

2

3 3

3

3 3

3τ

1τ

2τ

3τ

5τ

4τ

1τ 2τ

3τ

4τ 5τ

12τ

Figure 1: The task graph representation of a periodic task system
containing four tasks.

The tasks are denoted byτ1;τ2; : : :τN, and the subtasks ofτi are de-
noted byτi;1, τi;2, ..., τi;mi , wheremi is the total number of subtasks in
taskτi . Let N andM be the total number of tasks and total number of
subtasks, respectively. Given that the tasks must be executed periodically,
we refer to thekth instance of taskτi as thekth job ofτi . Each task and
subtask is associated with the following timing parameters:

� Ti : the interval between the release times of two consecutive jobs of
τi , referred to astask period.

� Di : the maximum time allowed from the release to the completion
of aτi ’s job, referred to astask deadline. In general,Di � Ti .

� di; j : the maximum time allowed from the release of aτi ’s job to the
completion ofτi; j , referred to assubtask deadline, anddi; j � Di .

� ci; j : the maximum time needed to completeτi; j without any inter-
ruption, referred to assubtask execution time.

� Ci : the maximum time needed to completeτi without any interrup-
tion, referred to astask execution time, andCi = ∑mi

j=1 ci; j .

� pi; j : the priority level statically assigned toτi; j , referred to assub-
task priority. We say thatτi; j has a higher priority thanτh;k if
pi; j > ph;k.

The tasks are assumed to be executed on a single processor and the
overheads due to preemption and context switching are assumed to be
negligible.

During the design exploration process, task periods, task and subtask
deadlines as well as subtask priorities are usually given while the execu-
tion times are not known and are dependent on the implementation. For
a given implementation, the subtask execution times become known and
the processor utilization due to executing the firstn tasks is computed by

Un =
n

∑
i=1

Ci

Ti
=

n

∑
i=1

∑mi
j=1 ci; j

Ti
(1)

The problem we intend to solve is formulated as follows:

DEFINITION 1. Given the task periods, deadlines, as well as subtask
priorities of a periodic task system, find utilization bounds Bn such that an
implementation of the system is guaranteed to be schedulable if Un < Bn
for all 1� n� N.

As discussed in Introduction, several previous papers have studied the
utilization bound problem in depth [10, 4, 12, 13, 9] . We briefly review
the results in [12] since our method bears similarities to it. In [12], Park,
et:al: presented an LP-based approach to compute utilization bounds for
a set of independent tasks. The key idea is to find the minimum processor
utilization for executingn tasks under the requirement that there should

not be any idle time before the first job ofτn is finished. To compute
this minimum utilization, the authors formulate an LP problem instance
as follows [12]:

Minimize: Bn =
n

∑
i=1

Ci

Ti

Subject To:
n

∑
i=1

Cid
qTk

Ti
e � qTk

q= 1;2; � � � ;bTn=Tkc
k= 1;2; � � � ;n�1:

n

∑
i=1

Cid
Dn

Ti
e � Dn

(2)

The tasks are assumed to be in the decreasing order of their priorities.
The constraints in the above LP are formulated as such that the processor
is kept busy by executingτn and tasks with higher priorities. Why the
solution yields a valid bound? Let us assume that in an implementation,
the processor utilization due to executing the firstn tasks isUn. If Un <Bn,
according to the nature of LP problems, the given task execution times
must have violated at least one of the constraints in (2). That is, the first
job of τn as well as higher priority tasksis guaranteed to completebefore
either one of theqTk’s or Dn. Since the first job ofτn has the longest
response time [10], the implementation is definitely schedulable for the
first n tasks.

One serious drawback of the existing approaches for computing utiliza-
tion bounds is that they only deal with systems composed ofindependent
tasks. Since for independent tasks, when all tasks request at the same
time, a task can be preempted by any higher priority task. Thus the total
time required to finish the first job ofτn is the longest among all it’s jobs
and can be written as the left hand side of the inequalities in (2). However,
for tasks with precedence constraints, this is no longer true. For example,
consider a simple case in which taskτn contains only one subtaskτn;1
and taskτq contains two subtasksτq;1 andτq;2. Assume the execution of
τq;1 must proceedτq;2, and pq;1 < pn;1 < pq;2. Suppose a job ofτn;1 is
released before the completion of a job ofτq;1. Then,τq;2 cannot preempt
τn;1 sinceτq;1 preventsτq;2 from starting duringτn;1’s execution. How-
ever, if τq;1 is finished immediately prior to the release ofτn;1, τq;2 will
delay the start ofτn;1. The existing approaches are not capable of handling
such complex cases.

For the general task graph model, the effect of one subtask on the ex-
ecution of another subtask need to be carefully characterized. Harbour,
Klein and Lehoczky analyzed such inter-subtask effects for a special task
graph model in [7], where each periodic task is assumed to contain a se-
quential list of subtasks with a predefined execution order within the se-
quence. Furthermore, the subtask execution times as well as task periods
and deadlines are given. The aim is to estimate the worst-case execution
time. To achieve this, a task is converted to a particular form while the
other tasks are grouped with respect to this task into five different groups.
The worst-case phasingof τn due to the existence of other tasks repre-
sent the particular release times of the other tasks that create the longest
response time forτn. The complexity of the algorithms in [7] is quite
high (O(MN2L=(1�U)), whereM is the total number of subtasks,N is
the number of tasks,L = maxTi=Tj andU is the processor utilization).
If this algorithm is used during design space exploration, it must be ap-
plied to each implementation under consideration, which can be very time
consuming.

Since the technique in [7] requires all subtask execution times be known,
it cannot be readily used during design space exploration. However, some
useful concepts in [7] can be extended to our general task model. These
will be discussed in detail in the following section.

3. BOUND COMPUTATION

In this section, we present our approach to determining the utilization
bounds of periodic task systems with precedence constraints. Our idea is
to formulate LP problem instances similar to [12]. However, we are

2

facing a number of challenges. Recall (from the last section) that for in-
dependent task sets, the first job of a task has the worst case phasing [10].
That is, if the first job can be finished by its deadline, all other jobs of the
same task can meet their deadlines as well. For tasks with precedence con-
straints, what is the worst case phasing for a task or subtask? Furthermore,
each constraint in (2) corresponds to one integer multiple of the period of
a higher priority task. In the task graph model, the subtasks in one task
does not necessarily have uniformly higher or lower priorities than the
subtasks in another task. How should such constraints be formulated? We
will describe our ideas to tackle these and other challenges.

To simplify our exposition, we first assume that the deadlines of the
subtasks are the same as the deadlines of their corresponding tasks, i.e.,
dn;1 = dn;2 = � � � = dn;mn = Dn. Removing this constraint only requires
a minor modification to our approach, we will explain at the end of this
section.

3.1 Analyzing worst-case phasings
We first determine the worst-case phasing between a task, sayτn, and

other tasks. The importance of the worst-case phasing is thatτn suffers
the longest response time if the other tasks happen to release jobs at the
worst-case phasing. In this process, we borrow some terminology intro-
duced in [7]. However, our classification is simpler.

At first glance, it may seem that analyzing the effects of the subtasks
in other tasks on the execution ofτn require the consideration of each
individual subtask in taskτn. Actually, if the deadlines of subtasks of
τn are assumed to be the same as the deadlines ofτn, analyzing such
effects only need to focus on the lowest priority subtask inτn. This is a
generalization of some observations presented in [7].

The observations in [7] are applicable to tasks each of which contains
a list of subtasks to be executed in a sequential order. In our case, the
subtasks in a task are modeled as a DAG rather than a one-dimensional
sequential list. However, the following lemma shows that a DAG-based
task model can be readily converted to a list-based model when scheduled
on a single processor.

LEMMA 1. Given a set of periodic tasks each of which consists of
subtasks modeled by a DAG, the subtasks in each DAG can be converted to
a one-dimensional list by Topological-Sort with priority assignment. The
resulting task list has exactly the same execution schedule as the original
DAG-based model when scheduled on a single processor.

From now on, we will assume that the subtasks in each DAG are in-
dexed by the order in the corresponding one-dimensional list specified in
Lemma 1. We identify three different ways that other tasks/subtasks may
impact the response time of taskτn. Let the lowest priority among all
the subtask priorities inτn be Pn. Our characterizations are somewhat
similar to the ones in [7] but are defined differently so as to simplify our
subsequent analysis.

DEFINITION 2. If the priority of every subtask in taskτi is higher
than Pn, τi is called amultiple-preemptiontask forτn, and the set of all
such tasks are denoted asM P (n).

It is easy to see thatτi can preempt (or interrupt the execution of)τn
more than once ifTi < Tn andTi 2 M P (n).

DEFINITION 3. If the priorities of a set of subtasks,fτi;1;τi;2; � � � ;τi;kg,
1� k< mi, are all higher than Pn while the priority ofτi;k+1 is lower than
Pn, this set of subtasks is called asingle-preemptionsubtask set forτn,
and is denoted as sp(n; i). The set of all such sets are denoted asSP (n).

Note that even ifTi < Tn, sp(i) can only preemptτn once since the
lower priority subtaskτi;k+1 in τi prevents it to be completed beforeτn
is completed.

DEFINITION 4. If the priorities of a set of subtasksfτi;h;τi;h+1; � � � ;τi;kg
(where h and k are two integers such that1< h� k� mi) are all higher
than Pn while the priority ofτi;h�1 andτi;k+1 (if k <mi) are lower than Pn,
this set of subtasks is called ablockingsubtask set forτn and is denoted
as bk(n; i; j). The set of all such subtask sets are denoted asBK (n).

1τ1

2τ1

3τ1

1τ
1τ2 2τ2

5τ2

3τ2

4τ2

62τ

7τ2

τ2

i=1

i=2

p
i1

p
i2

p
i3

p
i4

p
i5

p
i6

p
i7 Ti

6 3 8

6 8 5

49 7 10 120

70

Figure 2: Examples of task/subtask characterizations: τ1 is a
multiple-preemptiontask for τ2, fτ2;1, τ2;2g is asingle-preemptionsub-
task set forτ1, fτ2;4, τ2;5g and fτ2;7g are blocking subtask sets forτ1.

In Figure 2, we provide examples of the above classifications using two
tasks.

Multiple-preemption tasks forτn have the same effect on the execu-
tion of τn as that of higher priority independent tasks on a lower priority
one. Single-preemption and blocking subtask sets, on the other hand, have
some unique properties. They are described in the following two lemmas.

LEMMA 2. Consider taskτn and taskτi which contains both asingle-
preemptionsubtask set, sp(n; i), and multipleblockingsubtask sets, bk(n; i; j)
(for j = 1;2; � � �). If sp(n; i) preemptsτn, none of bk(n; i; j)’s can block
τn. If one of bk(n; i; j)’s blockτn, sp(n; i) cannot preemptτn unless this
blocking subtask set containsτi;mi .

LEMMA 3. Taskτn can be blocked no more than once during the time
that the processor is busy executing the subtasks ofτn and other higher
priority subtasks.

Lemma 3 is a generalization of a lemma given in [7] where the lemma
is already proved. Proofs for Lemma 2 and Lemma 3 are quite straight
forward and are omitted.

If a taskτi is not a multiple-preemption task toτn and contains neither
a single-preemption subtask set nor blocking subtask sets, the priority of
every subtask inτi must be lower thanPn. If a job ofτn is released during
the execution ofτi , τn can immediately preempt it. Hence,τi will not
have any impact on the response time ofτn (under the assumption that
preemption overhead is negligible). To ensure that the above definitions
capture the worst-case phasing, whenever the priority of another subtask
is equal toPn, we assumePn is lower . This is a pessimistic assumption
but guarantees to result in valid bounds.

We are now ready to determine the worst-case phasings forτn. The
main difference between our observations and those in [7] is that in [7] the
execution times of subtasks are knowna priori and hence the worst-case
phasing of another task forτn can be uniquely determined. In our case,
the subtask execution times are unknown. To overcome this difficulty,
we let the worst-case phasings be associated with either tasks or subtasks
instead of with tasks alone as in [7]. We summarize the conclusions in
three lemmas and omit the proofs.

3

LEMMA 4. The worst-case phasing ofτn with existence of amultiple-
preemptiontaskτi occurs when the first subtask ofτi is released at the
same time as the first subtask ofτn. The number of preemptions byτi is
equal todTn=Tie.

LEMMA 5. The worst-case phasing ofτn with existence of asingle-
preemptionsubtask set sp(n; i) occurs when the first subtask of sp(n; i) is
released at the same time as the first subtask ofτn.

LEMMA 6. The worst-case phasing ofτn with existence of ablocking
subtask set bk(n; i; j) for τn occurs when the first subtask of bk(n; i; j) is
released at the same time as the first subtask ofτn.

Based on these lemmas, we are ready to formulate LP instances for com-
puting the utilization bounds.

3.2 Computing utilization bounds

LP(n; i; j):

Minimize:

U(n; i; j) = ∑
τk2M P (n)

Ck

Tk
+ ∑

τk;h2SP i(n)

ck;h

Tk
+ ∑

τi;k2bk0(n;i; j)

ci;k

Ti
+

Cn

Tn

Subject To:

∑
τk2M P (n)

Ckd
qTl

Tk
e+ ∑

τk;h2SP i(n)

ck;h+ ∑
τi;k2bk0(n;i; j)

ci;k+Cn � qTl

q= 1;2; � � � ;bTn=Tl c;

where τl 2 M P (n) and Tl < Tn

∑
τk2M P (n)

Ckd
Dn

Tk
e+ ∑

τk;h2SP i(n)

ck;h+ ∑
τi;k2bk0(n;i; j)

ci;k+Cn � Dn

whereSP i(n) = SP (n)nsp(n; i) and

bk0(n; i; j) =

�
bk(n; i; j) if τi;mi =2 bk(n; i; j)
bk(n; i; j)\sp(n; i) otherwise

(3)

An LP-based approach such as the one in [12] has been shown to be
very effective for computing utilization bounds for tasks without prece-
dence constraints. We will present new LP formulations for computing
utilization bounds of tasks with precedence constraints. Recall that a valid
utilization bound must ensure that an implementation with a given com-
bination of subtask execution times is schedulable if the corresponding
processor utilization is less than or equal to the bound. The idea behind
the LP-based approach is to find the minimum processor utilization given
when the processor is kept busy.

The objective function of the LP is simply to minimize the processor
utilization by the set of tasks/subtasks under consideration. The main
challenge in constructing an LP instance is in building the constraints. In
order to guarantee that the utilization bound is a valid one, the constraints
in the LP must satisfy the following conditions:

1. The constraints must capture the longest possible response time for
the task under consideration.

2. Satisfying the constraints means that the processor is kept busy.

The longest response time of taskτn depends on the worst-case phas-
ings ofτn. Since the execution times of subtasks are unknown, there are
a number of possible worst-case phasings that may cause a job ofτn to
have the longest response time. These worst-case phasings are defined in
Lemma 4�6. Note that during the execution of a job ofτn, the job can

be preempted by many multiple-preemption tasks and single-preemption
subtask sets. However, it can only be blocked once by a blocking sub-
task set (see Lemma 3). Thus, in the construction of the LP problem, we
must formulate multiple LP instances in order to consider the effects of
different blocking subtask sets.

To guarantee that the processor is kept busy at any time instant before
completingτn, we only need to make sure that the processor is busy at
time instantt for everyt satisfying (i) t < Dn andt = qTi , whereτi is a
multiple-preemptiontask forτn andq is an integer, or (ii) t = Dn. Such
time instants are referred to as thescheduling pointsof τn. The above
conclusion can be readily drawn by noticing that these time instants are
the only ones when new execution requests may occur.

Based on the above observations, we formulate the LP instance,LP(n; i; j),
to compute the utilization bound for taskτn whenbk(n; i; j) blocksτn.
According to Lemma 3, ifbk(n; i; j) blocksτn, all other blocking subtask
sets have no impact on the execution ofτn. Furthermore, ifbk(n; i; j)
does not contain the last subtask ofτi (τi;mi), sp(n; i) cannot preemptτn.
The LP formulation is given in (3).

The readers can easily verify that the constraints above indeed guaran-
tee that the processor is kept busy during the execution ofτn.

For each taskτn, the number of LP instances needed to determine the
utilization bound for satisfyingτn’s deadlines is equal to the number of
blocking subtask sets inBK (n). After solving these LPs, the utilization
bound forτn is obtained by

Bn = min
i; j

fminU(n; i; j)g (4)

Given a specific implementation, i.e., a combination of subtask execution
times, the following procedure can be used to determine the schedulability
of the implementation.

Step 1: For taskτn, determine the effects of the other tasks/subtasks
(multiple-preemption, single-preemption, or blocking).

Step 2: Find maxj
∑τi;k2bk0(n;i; j) ci;k

Ti
for the given subtask execution times,

wherebk0(n; i; j) is as defined in (3).

Step 3: ComputeU(n; i; jmax) as defined in (3) for the given subtask
execution times.

Step 4: IfU(n; i; jmax)< Bn, thenτn is definitely schedulable.

Repeating the above procedure for each task will determine whether the
implementation is definitely schedulable. Notice thatU(n; i; j), instead
of the total processor utilization, is compared withBn. The LP instances
need to be solved only once for a given system specification. A straight-
forward implementation of checking the schedulability of each implemen-
tation takes O(MN2) comparisons, which is much more efficient than the
algorithm in [7].

3.3 Improving Utilization Bound Computation
Our LP-based approach discussed above can successfully produce a

utilization bound for satisfying the deadline of each task. However, the
number of LPs to be solved is relatively large. Though they only need to
be solved once, it is still beneficial to reduce this number. Furthermore, it
is important to study the quality of the bounds. In this subsection, we will
present our observations related to these issues.

In the worst case, the total number of LP instances introduced in Section
3.2 is equal toN(N�1)M=2. These LPs are the results of a straightfor-
ward realization of the observations that we have made. The lemma and
theorem introduced below can readily reduce the number of LP instances
to N without sacrificing any bound quality.

LEMMA 7. To compute the utilization bound for taskτn, only one LP
instance, denoted asLP(n; i), is needed for each taskτi that contains one
or more blocking subtask sets with respect toτn.

4

Lemma 7 immediately reduces the worst-case total number of LP in-
stances toN(N�1). The proof of it is relatively simple and is omitted
due to the page limit. By employing more sophisticated observations, we
can reduce the total number of LPs toN, which is the same as the case of
independent tasks. This result is summarized in the following theorem.

THEOREM 1. To compute the utilization bound for taskτn, only one
LP instance needs to be solved. This LP, denoted asLP(n), corresponds
to the original LP that considers the blocking effect by the task having the
longest period among all the tasks containing blocking subtask sets.

Proof: Consider two LP instances,LP(n; i) and
LP(n; j) for computing boundBn. They are written as

LP(n; i):

Minimize:

U(n; i) = ∑
τk2M P (n)

Ck

Tk
+ ∑

τk;h2SP i j (n)

ck;h

Tk
+ ∑

τ j ;k2sp(n; j)

cj;k

Tj

+ ∑
τi;k2bk0(n;i)

ci;k

Ti
+

Cn

Tn

Subject To:

∑
τk2M P (n)

Ckd
t
Tk
e+ ∑

τk;h2SP i j (n)

ck;h+ ∑
τ j ;k2sp(n; j)

cj;k

+ ∑
τi;k2bk0(n;i)

ci;k+Cn � t

for all t equal to the scheduling points in[0;Dn];

(5)

LP(n; j):

Minimize:

U(n; j) = ∑
τk2M P (n)

Ck

Tk
+ ∑

τk;h2SP i j (n)

ck;h

Tk
+ ∑

τi;k2sp(n;i)

ci;k

Ti

+ ∑
τ j ;k2bk0(n; j)

cj;k

Tj
+

Cn

Tn

Subject To:

∑
τk2M P (n)

Ckd
t
Tk
e+ ∑

τk;h2SP i j (n)

ck;h+ ∑
τi;k2sp(n;i)

ci;k

+ ∑
τ j ;k2bk0(n; j)

cj;k+Cn � t

for all t equal to the scheduling points in[0;Dn];

(6)

whereSP i j (n) is the set of the single preemption subtask sets not includ-
ing sp(n; i) andsp(n; j). If we could show that minU(n; i) � minU(n; j)
for Ti � Tj , then onlyLP(n; i) needs to be solved in the computation of
Bn. Thus, the theorem holds.

To compareLP(n; i) andLP(n; j), let us assume thatTi � Tj . From (5)
and (6), one can see that the first two summation terms in both objective
functions are the same, and so is the case for both constraint sets. We will
focus on the remaining two summation terms. There are three cases to be
considered.
Case 1:Neithersp(n; i) nor sp(n; j) are empty. If we apply the following
substitutions:C0 = ∑τi;k2bk0(n;i) ci;k andC00 = ∑τ j ;k 2sp(n; j)cj;k in LP(n; i),
andC0 = ∑τi;k2sp(n;i)ci;k andC00= ∑τ j ;k2bk0(n; j) cj;k in LP(n; j), it becomes
clear thatLP(n; i) andLP(n; j) are in fact equivalent. Thus, minU(n; i) =
minU(n; j). (Note that the above substitutions are acceptable since the
two LPs are two separate problems and only the objective function values
are of interest to us.)
Case 2: Both sp(n; i) and sp(n; j) are empty. Applying the following
substitutions:C0 = ∑τi;k2bk0(n;i) ci;k in LP(n; i), andC0 = ∑τ j ;k2bk0(n; j) cj;k

in LP(n; j), we conclude thatLP(n; i) andLP(n; j) have exactly the same
constraints. However, the two objective functions are different. In fact,
we have

U(n; i)�U(n; j) =
C0

Ti
�

C0

Tj
� 0 (7)

Case 3: One of the single-preemption subtask sets is empty. Assume
sp(n; i) = /0. (The other case can be proved similarly.) We apply the
following substitutions:C0 = ∑τi;k2bk0(n;i) ci;k+∑τ j ;k2sp(n; j) cj;k andC00 =

∑τ j ;k2sp(n; j) cj;k in LP(n; i), andC0 = ∑τ j ;k2bk0(n; j) cj;k in LP(n; j). The
constraint sets of the two LPs become the same, and the objective func-
tions satisfy the following:

U(n; i)�U(n; j) =
C0�C00

Ti
+

C00

Tj
�

C0

Tj
� 0 (8)

Therefore, in all three cases, we have minU(n; i) � minU(n; j). Note
that the cases corresponding to empty blocking subtask sets do not need
to be considered as they do not introduce LP instances. 2

The time needed to solve one LP is dependent on the number of vari-
ables and the number of constraints. A positive side effect of the reduc-
tions discussed above is that the substitutions decrease the number of vari-
ables. The number of constraints in the LP for taskτn is equal to the
number of scheduling points ofτn. The techniques to reduce the number
of constraints in the LPs for the independent tasks [9] are also applicable
to the LPs here. Therefore, the number of constraints can be reduced by
at least one half without sacrificing any bound quality.

The quality of the utilization bounds obtained by the LP-based ap-
proach measures the tightness of the bounds. The bounds are in fact
the tightest since one can always find at least one system implementa-
tion whose utilizations are equal to the bounds but which is not schedu-
lable. However, such a system implementation may not be realistic for a
particular system. The reason is that task/subtask execution times are usu-
ally non-arbitrary, non-negative numbers. In many cases, these execution
times have lower and/or upper bounds, and there exist some relationships
among the subtask execution times (e.g.,ci; j � 2ch;k). Including such
information as additional constraints in the LPs can further improve the
quality of the bounds. We will refer to the LPs discussed previously as
theoriginal LPs and refer to the LPs with the additional constraints as the
extendedLPs.

It may seem tempting to add as many additional constraints onci; j ’s
or Ci ’s as those that are known. However, care must be taken in intro-
ducing these additional constraints into the original LPs. According to
the LP theory, an optimal solution to an LP must be one of the extreme
points in the feasible region [14]. Thus, the solution to the original LP
must have some of the constraints be satisfied as an equality. This guaran-
tees thatτn is completed at or before its deadline if the utilization of the
implementation under consideration is less than the bound. When adding
extra constraints, one must make sure that the solution to the extended LP
also has at least one of the constraints in the original LP be satisfied as an
equality. Otherwise, the bound would no longer be valid.

To ensure that a bound computed by an extended LP is valid, we bor-
row therank concept from linear algebra [8], where the rank of a matrix
is equal to the number of linearly independent columns in the matrix. If
we treat the coefficients in the additional constraints as a matrix, we can
determine its rank easily. Only when this rank is less than the number of
variables in the LP instance, these additional constraints cannot uniquely
define a solution point for the LP instance. Thus, at least one of the orig-
inal constraints is guaranteed to be satisfied as an equality. As we stated
above, this guarantees that the bound is valid. Variables that do not ap-
pear in the objective function will not effect the bound value. Therefore,
constraints containing these variables can be simplified by removing these
variables through inequality manipulations.

We would like to point out that the LP reductions by Lemma 7 and
Theorem 1 may no longer be valid when additional constraints are intro-

5

duced. Depending on the forms of the additional constraints, the objective
function values of different LP instances may be increased by different
amounts. How to generalize the reduction rules is left for our future work.

At the beginning of this section, we made the assumption thatdn;1 =
dn;2 = � � � = dn;mn = Dn. We now discuss the more general case where
subtask deadlines can be different from the corresponding task deadline.
In this case, instead of analyzing the effects of the subtasks in other tasks
on taskτn, we only need to categorize such effects on asubtask setof
τn. Consider a particular subtask ofτn, sayτni, wheredn;i < Dn. It is
not difficult to see that subtasksτn; j (i < j � mn) have no impact on the
worst-case response time ofτn;i (assuming that all tasks are finished by

their deadlines). If we replaceτn by τi
n whereτi

n=f τn;1, τn;2, � � � , τn;ig,
we can simply apply the same technique as discussed above to analyze
the effects of other subtasks onτi

n and to construct an LP to compute the
utilization bound for satisfying the deadline ofτi

n. Therefore, for each
subtask whose deadline is less than the corresponding task deadline, we
need to construct a separate LP to get the utilization bound.

4. EXPERIMENTAL RESULTS

In this section, we first use an example from [7] to illustrate how to
perform a schedulability analysis by using the method described in the
previous section. Then we present and compare some timing data col-
lected from applying our algorithm, both before optimizing and after, to
groups of randomly generated tasks.

4.1 A real-world example
The example is a real-time robot control system [7]. The system con-

tains five tasks whose parameters are given in Table 1. To conduct schedu-
lability analysis based on the utilization bound approach, one needs to
consider each task. We will use taskτ3 to illustrate the procedure step by
step.

Ti Di pi;1 pi;2 pi;3τ1 40 40 10 7 —
τ2 100 100 4 8 4
τ3 50 50 5 8 —
τ4 200 200 9 2 3
τ5 400 400 3 1 6

Table 1: Specification of an example task set.

Step 1 : Classify the rest of the tasks according to the priority level of the
lowest priority subtask inτ3, i.e.,τ3;1. We haveM P (3) = fτ1g,
SP (3)= fsp(3;4)g= ffτ4;1gg, andBK (3)= fbk(3;2);bk(3;5)g=
ffτ2;2g;fτ5;3gg. The scheduling points that need to be considered
during bound computation aret = T1 = 40 andt = D3 = 50.

Step 2 : Construct the LP instance. The blocking subtask sets ofτ3 are
from taskτ2 andτ5. Given thatT5 > T2, we only need to consider
LP(3;5;1), which is shown below.

Minimize:

U(3;5;1) = c1;1+c1;2
T1

+
c4;1
T4

+
c5;3
T5

+
c3;1+c3;2

T3

Subject To:

c1;1+c1;2+c4;1+c5;3+c3;1+c3;2 >= 40

2c1;1+2c1;2+c4;1+c5;3+c3;1+c3;2 >= 50

Solving the above LP instance, we have
Bn = minU(3;5;1) = 0:125.

If each blocking subtask set is used to construct an LP instance, the reader
can easily verify that minU(3;2;1) > minU(3;5;3).

One may notice that the boundB3 = 0:125 is rather small, and may feel
that it is too pessimistic. However, we should emphasize thatB3 is not
the bound on the total processor utilization. It only bounds the processor
utilization due to themultiple-preemptiontasks,single-preemptionand
blockingsubtask sets with respect toτ3.

In Section 3.3, we explained that a bound can be improved if add ad-
ditional constraints according to known relationships among subtask ex-
ecution times. To see the effectiveness of this approach, let us assume
that we havec3;2 � c4;1 in the above example. The new utilization bound
obtained from the extended LP increases toB3 = minU(3;5;1) = 0:46.

4.2 Randomly generated task sets
We have shown in Section 3.2 that testing the schedulability of different

implementations of a system becomes very efficient once the bounds are
obtained by our LP-based approach. Computing the bounds requires solv-
ing a number of LPs. However, each LP only need to be solved once while
the resulting bounds can be used numerous times. Furthermore, the time
which it takes to solve the LPs are not excessive at all. To demonstrate
this, we have conducted a number of experiments based on randomly gen-
erated periodic task sets.

The randomly generated task sets may contain anywhere from 10 to 70
tasks and each task may contain anywhere from 1 to 20 subtasks. The
subtasks are assumed to have the same deadline as their corresponding
task deadlines. Task deadlines, periods, and subtask priorities are ran-
domly generated numbers. Since the ratio of the longest task period and
the shortest one can have a significant impact on the number of constraints
in an LP, we limit this ratio to 100. The task graphs are generated by using
the software package TGFF [5]. We applied our LP-based approach, both
original and optimized, to these task graphs to compute the processor uti-
lization bounds. The LPs are solved by a software packagelp_solve [3].
The programs (including constructing and solving all the LPs) are exe-
cuted on a Sun SPARC ULTRA 30. We summarize in Table 2 the CPU
time usage by the programs. Clearly, the bound computations are quite
efficient.

Num of tasks/subtasks CPU times
before optimizing (m)after optimizing (s)

10/70 1.07 0.65
20/127 20.35 0.664
30/195 58.14 0.9344
40/274 - 3.0121
50/322 - 4.919
60/382 - 7.4903
70/468 - 11.0252

Table 2: CPU times needed to compute the bounds of randomly
generated task sets before and after LP instance reductions. ’-’

represents a time over an hour and is already impractical.

5. CONCLUSION

In this paper, we introduced an LP-based approach to determine the
processor utilization bounds for periodic task sets with precedence con-
straints. By carefully analyzing the effects of other subtasks on the ex-
ecution of a task under consideration, we have constructed LP instances
to compute the bounds. Based on several observations, we have greatly
reduced the number of LPs needed for computing each bound. Further-
more, we have presented guidelines for adding additional constraints to
the LPs in order to obtain tighter bounds. Experimental results show that
our approach is indeed effective and efficient.

To our best knowledge, this is the first attempt to analyze the schedu-
lability of periodic task sets with precedence constraints through the uti-
lization bounds. This approach will obtain processor utilization bounds
independent of the implementation. The bound can be further used in in

6

the design exploration process to rapidly determine if an implementation
of the system is applicable and satisfies all timing requirements. What’s
more, for hard-to-determine priorities of some subtasks in a particular sys-
tem, our analysis will help determine a better priority assignment in order
to achieve a better system performance. Such characteristic sure meets the
challenge of a rapid system timing performance estimation. Our future ex-
tensions to this work will include generalizing the reduction rules when
additional constraints are added, allowing task deadlines to be greater than
their periods, and considering multiple processor systems.

6. REFERENCES

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell and A.J. Wellings,
“Applying new scheduling theory to static priority preemptive
scheduling,”Software Engineering Journal, vol. 8, no. 5,
pp. 284-292, 1993.

[2] F. Balarin and A. Sangiovanni-Vincentelli, “Schedule validation for
embedded reactive real-time systems,”Proceedings of Design
Automation Conference, pp. 52-57, 1997.

[3] M. Berkelaar,ftp://ftp.es.ele.tue.ne/pub/epsolve.
[4] A. Burchard, J.Liebeherr, Y. Oh and S.H. Son, “New strategies for

assigning real-time tasks to multiprocessor systems,”IEEE
Transactions on Computers, vol. 44, no. 12, pp. 1429-1442,
December, 1995.

[5] R.P. Dick, D.L. Rhodes and W. Wolf, “TGFF Task Graphs for
Free,”Proceedings of the Sixth International Workshop on
Hardware/Software Codesign (CODES/CASHE’98), pp. 97-101,
1998.

[6] W.A. Halang and A.D. Stoyenko, “Next generation of real-time
operating systems: industrial perspective,”Proceedings of the
NATO Advanced Study Institute on Real Time Computing,
pp. 595-596, 1994.

[7] M.G. Harbour, M.H.Klein and J.P. Lehoczky, “Timing analysis for
fixed-priority scheduling of hard real-time systems,”IEEE
Transactions on Software Engineering, vol. 20, no. 1, pp. 13-28,
January, 1994.

[8] M.T. Heath,Scientific Computing: An Introductory Survey,
McGraw-hill Companies, Inc., 1997.

[9] X. Hu and G. Quan, “Fast Performance Prediction for Periodic Task
Systems,”Proceedings of the Eighth International Workshop on
Hardware/Software Codesign (CODES’00), pp. 72-76, 2000.

[10] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,”Journal of the
ACM, vol. 20, no. 1, pp. 46-61, 1973.

[11] J.W.S. Liu,Real-Time Systems, Prentice Hall, NJ, 2000.
[12] D. Park, S. Natarajan, A. Kanevsky and M.J. Kim, “A generalized

utilization bound test for fixed-priority real-time scheduling,”
Proceedings of the Second International Workshop on Real-Time
Computing Systems and Applications, pp. 73-76, Oct. 1995.

[13] D. Park, S. Natarajan and A. Kanevsky, “Fixed-priority scheduling
of real-time systems using utilization bounds,”Journal of Systems
Software, vol. 33, pp. 57-63, 1996.

[14] G.V. Shenoy,Linear Programming Methods and Applications, John
Wiley & Sons, Inc, NY, 1989.

[15] Silva-de-Oliveira-R and da-Silva-Fraga-J, “Fixed priority
scheduling of tasks with arbitrary precedence constraints in
distributed hard real-time systems,”Journal of Systems
Architecture, vol. 46, no. 11, pp. 991-1004, Sept. 2000.

[16] T.-Y. Yen and W. Wolf, “Performance estimation for real-time
distributed embedded systems,”IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 11, pp. 1125-1136, Nov. 1998.

7

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

