Bus Encoding to Prevent Crosdalk Delay

Bret Victor and Kurt Keutzer
Department of Eledrical Engineering and Computer Sciences
University of California, Berkeley

{bret,

Abstract— The propagation delay acrosslong on-chip buses
is increasingly becoming a limiting factor in high-sped
designs. Crosstalk between adjacent wires on the bus may
create a significant portion of this delay. Placing a shield
wire between each signal wire alleviates the crosdalk
problem but doubles the area used by the bus, an
unacceptable mnsequence when the bus is routed using
scarce top-level metal resources. Instead, we propose to
employ data encoding to eliminate crosdalk delay within a
bus. This paper presents a rigorous analysis of the theory
behind “sdf-shielding codes’, and gives the fundamental
theoretical limits on the performance of codes with and
without memory. Spedfically, we find that a 32-bit bus can
be encoded with 40 wires using a code with memory or 46
wireswith a memoryless code, in comparison to the 63 wires
required with smple shielding.

1. Introduction

As device geometries drink, chip sizes increase, and
clock speels get faster, interconnect delay is becoming
incressingly significant. In particular, the propagation delay
through long cross-chip busesis arealy proving to be alimiting
fador in the spead of some designs, and this trend will only get
worse. It has been shown that the delay through a long bus is
strongly a function of the mupling cgpadtance between the
wires. Espedally detrimental to the delay is the Miller-like
effect when adjacent wires smultaneously transition in oppaite
diredions. When the qoss-coupling cgpadtance is comparable
to or exceals the loading cgpadtance on the wires, the delay of
such a transition may be twice or more that of a wire
transitioning rext to a steady signal. We cal this delay penalty
the “crosdalk delay”.

In some high-speed designs where aosdalk delay
would have limited the dock speed, the technique of shielding
was used. Thisinvolves putting a grounded wire between every
signal wire on the bus. Althoudh this certainly is effedive in
preventing crosstalk within the bus, it has the effect of doubling
thewiringarea Cross-chip buses often must be routed in higher
metal layers, which are scded more dowly than the rest of the
geometry in order to prevent an unacceptable increase in
resistance Thus, routing resources are scace d these levels,
and it can be difficult to justify doubling the bus width.

However, if we astrad the concept of shielding and
just look at the signals on the wires of a shielded bus, we can

keut zer} @ecs. ber kel ey. edu

think of it as a very ssimple bus encoding. Two wires are used
for every data bit. A data bit of “0” is encoded as a“00" signal
on the wires, and a“1” is encoded as “10". The purpose of this
“encoding’ is to prevent adjacent wires from transitioning in
oppdasite diredions, and this particular encoding achieves that
goal by forcing every other wire to a steady value. But the
question arises: Are there other possible encodings that can
achieve the same goal, but with fewer wires? Such encodings
may require extra logic or memory elements, but as the speed of
logic goes up and the relative aea onsumed by logic goes
down, such atradeoff seemsincreasingly valid.

Indeed, such encodings exist. We will refer to them as
“self-shielding” or “crosgalk-immune” codes. In this paper, we
will approach this subjed from a rigorous theoreticd standpant.
Rather than gving ad-hoc designs and heuristic methods, or
prematurely attempting to design for efficient implementation,
we will instead develop the theory behind crosgalk-immune
coding, describe the fundamental cgpabiliti es and limitations that
the theory implies, and give methods for generating optimal sets
of codewords. Such an analysisis always necessry before good
codes can be designed and implemented.

2. Background

We ca model the chain of communication as shown in
Figure 1. Adopting some terminology from coding theory, we
say that the data words to be encoded are represented by
symbols. The mapping between symbols and adual data words
is an implementation step and will not be discussed here. The
values placal on the channel by the eicoder are cdled
codewords, and the mapping between symbals and codewords is
cdled a codebook. If the codebodk changes with time, then the
encodingis sid to have memory.

Spedfic to crosgak-immune @ding is the notion of
which codewords can follow which. The fundamenta rule is

| Sender |7b4>| Encoder |ﬁL>| Decoder |7b4>| Receiver

channel
Figure 1: Model of Communication Chain

codeword at time 1: 0010 0000 0100 0100
! | | !

codeword at time 2: 0110 1111 0001 0010

valid valid valid invalid

Figure 2: Examplesof valid and invalid transitions

that, given a particular value arrently on the channel, the next
value cannot cause any adjacet wires to transition in oppasite
diredions. We say that a cdeword is conreded to another
codeword if it isvalid to transition from one to the other. Figure
2 presents ome examples of valid and invalid transitions. In
order to import some terminology from graph theory, we can
form a graph with the amdewords as vertices and the mnnedions
as edges. This graph is undireded because the @nnedion
relation is symmetric. We can then say that the neighba set of a
codeword is the set of codewords that it is connected to, and its
degreeisthe sizeof this st. Notethat it isvalid for a codeword
to transition to itself, and thus every codeword has itself as a
neighbor.

3. Unpruned Code with Memory

All of the mdes we discuss will transmit one full data
word on ead clock cycle. If the data word is b bits wide and all
data words are dlowed, then at all times there must be & least 2°
symbols that can be expressed, and thus at least 2° codewords in
the mdebodk. If our code has memory, however, these do not
have to be the same codewords at all times. The cdebook could
be awy subset of the neighbor set of the cmdeword currently on
the channel. That is, for every codeword, a mapping is defined
between the symbal set and some subset of the codeword's
neighbor set. This mapping is known by baoth the encoder and
deaoder, and thus when the dhannel transitions to a particular
neighbor, it represents a particular symbal and information is
transmitted.

For our first code, the “unpruned code with memory”,
we will make no restrictions on which values are dlowed to be
in the mdebodk. That is, we will assume that any possible n-bit
value oould be a @deword and thus could be on the channel.
The maximum number of expressble symbals is limited by the
least conneded value, or the mdeword with the smallest degree
The first step, then, is to derive aformula for cdculating the
degree of a @mdeword. We ca then find and prove which
codeword has the minimum degree for a given width n. This
degree will represent the maximum performance avail able from
this type of code.

Definition: A class1 codeword isa amdeword with alternating O
and 1 bits. For example, 01010 and 10101 are 5-hit class 1
codewords.

Definition: d, is the degreeof an n-bit class1 codeword.

d, log(dy
2 1.00
3 1.58
5 2.32
8 3.00

13 3.70

21 4.39

34 5.09

55 5.78

89 6.48

O©COoO~NOOOOITPA~WNRIS

Table 1: Degrees of Some Class 1 Codewords

Theorem 1. d, are Fibonacd numbers. Spedfically:
dn = Fn—2 (1)

where F,, isthe dasdcal Fibonacd sequence{1,1,2,3,5,8,13,...}.
Proof: Consider, without lossof generality, a dass 1 codeword
of n bits that begins with a0 hit. Thisfirst bit can either stay or
rise. If it stays, the second hit is freeto fall or stay, and thus d,, ;
transitions can be redized. If the first bit rises, the second hit is
forced to stay, because it cannot fall next to arising bit. The
third bit is then freeto rise or stay, and d, transitions can be
redized. The total number of possible transitions is the sum of
the two cases:

dn = dn—l+ dn-2 (2)
This is the same recurrence relation obeyed by the Fibonacad
sequence. In order to show that d, are in fad Fibonacd
numbers, we nedl to establish two initial conditions. A one-bit
class1 codeword is“0”. It can transition to two codewords: “0”
and “1". A two-bit class 1 codeword is“01”. It centransition to
“00",“01", or “11", but not “10°. We seethatd; =2 and d, = 3.
These ae in fad Fibonacd numbers, F; and F, respedively.
Therefore, d, = Fn..0

Corallary:
d, = f% B () 5 g= Gl €)
Ekpfy cosh((n+2)In(g)), odd n
T 7E 2 (e in) @
sinh{(n n(y)), evenn
0% Yo
Proof: These expressions can be derived by solving the

difference eguation (2) and applying the initial conditions in the
above proof. O

Some values of d, are given in Table 1. Now that we
have an expression for the degree of a class 1 codeword, we will
proceed to derive the degree of any arbitrary codeword.

Definition: An independent boundary in a codeword occurs
between two adjacent bits of the same value. A dependent
boundary in a codeword occurs between two adjacent bits of
different values. For example, the codeword 0011 has three
boundaries, and they are independent, dependent, and
independent respectively.

Definition: A section of a codeword is one of the pieces that
would result if the codeword were split at its independent
boundaries. For example, the codeword 10110100 has three
sections: 101, 1010, and 0. Notice that each section , if isolated,
would be considered a class 1 codeword.

Definition: The class of a codeword is equal to the number of
sections. Thisisalso the number of independent boundaries plus
one.

Definition: d{nl,nz’___,nc} , Where c is the class, denotes the

degree of a codeword with sections of width ny, n,, etc.

Theorem 2: The degree of any codeword is equal to
d{nl,n2 ,,,,, n.} = !:!dn‘ (5)

where c is the codeword class and n; is the number of bitsin the
ith section.

Proof: Two adjacent sedions, by definition, are separated by an
independent boundary. The two hits aaossthis boundary are the
same value, and thus it isimpossible for one to rise and the other
fall. Because the fundamental rule on bit transitions cannot be
violated aaoss an independent boundary, the set of transitions
allowed for one sedion is not affeced by the transitions chosen
for other sedions. Thus, we can determine the number of
trangitions for ead sedion independently, and multiply the
results from each sedion to oltain the total number of transitions
allowed. By definition, each sedion is in isolation a dass 1
codeword. Thus, the total number of transitionsis the product of
dy, , wheren; isthe width of ead sedion. O

We now know how to cdculate the degree of any
codeword. In the next theorem, we will find that the codewords
with the smallest degreg which determine the performance of
our code, are none other than the dass1 codewords.

Theorem 3: For a given codeword width n, the degree of any
codeword of classc > 1 isgreater than d,.
Proof: We start by provingthisfor ¢ = 2. Using Theorem 2, the
proposition can be stated mathematically as:

Chey < 0 (6)
Restating this in terms of (3) and applying agebraic
transformations (as well asusing thefad that ¢f' = ¢"* + ¢") we
can reducethe inequality to:

b -o~)p -o)>0 (7)
When x> 0andy > 0, thisinequality istrue. Thus, for agivenn,
a dass2 codeword has a higher degreethan a dass1 codeword.
The expresson can be gplied iteratively for higher classes:
dx+y+z < dx+y dz < dx dy dz (8)
and so on. Thus any codeword with classc > 1 has a higher
degreethan a dass1 codeword. O

We have found that the minimum codebodk size occurs
when a dass1 codeword is on the channel, and at that point, the
number of symbals that can be expressd is given by (3). Given

40
32
une’\coded/,,‘ coded shielded 1oa §
. o
@
116
18
8 16 24 32 40 48 56 64
wires used

Figure 3: Performance of Unpruned Code

thisinformation, we can now state the maximum performance of
a self-shielding code when any possble value is alowed as a
codeword on the channel. If n is the dhannel width, then the
maximum number of information bitsislogy(d,). Thisis plotted
in Figure 3. Asymptoticdly, increasing n by 1 multiplies the
number of symbols by ¢ or 1.62. So, adding a physicd wire
alows for about log,(1.62), or 0.69, more bits of information.
We seethat a 32-bit bus could be implemented with 46 wires.
This compares very favorably to a simple shielding scheme
which would require 63 wires. We can conceptually consider
(n-b) / b to be the inflation in wire usage due to eliminating
crosdalk delay. With shielding, this wiring overheal is 97%,
whereas with coding, it is only 44%. However, we can do even
better than this.

4. Pruned Codewith Memory

The previous result was limited by the degree of the
class 1 codeword. However, if we ensure that the mde never
transitions to a dass 1 codeword, then we know it will never
nedl to transition from one. If we throw the dass 1 codewords
out of the mdebodk, we ae no longer limited by their poar
performance, although the degrees of the cdewords in the
discarded codes neighbor sets will deaease. Extending this
idealeads to the codebook pruning algorithm:

Algorithm 1:
Whil e there ae valid codewords | ft:
Find the set of valid codewords with the lowest degree
For eat codeword W in the set:
Remove W from the set of valid codewords.
Deaement the degreeof each of W s neighbors.

As the dgorithm progresses, the limiting degree will increase,
hit a maximum, and then deaease & the wdebodk gets
depleted. We choose, of course, the set of codewords that was
adive when the limiting degree was at its maximum. This
agorithm is guaranteed to find the best possible set of
codewords because & ead step, if anything other than the
limiting codewords were removed, the limiting degree ould
only deaease or stay constant. It could never improve.

To visualizethe pruning process we can make aplot of
the limiting degree versus codewords pruned as the dgorithm
runs. Figure 4 shows these “pruning curves’ for a few values of
n. The expeded shape can be observed. By locaing the pe&k of
ead curve, we find the maximum performance obtainable by a
self-shielding code of the given width.

Unfortunately, pruning as described by the &ove
algorithm is a purely experimental procedure. It is extremely
computationally intensive for large n (we could only run the
algorithm up to n = 23), and worseg, it is not amenable to the
rigorous mathematicd analysis that we seek. However, there is
a sub-optimal pruning agorithm that is a fairly close
approximation to the optimal one ad alows analytic
expressonsto be derived.

Examination of the optima pruning process reveds
that, espedally for small n, the cmdewords are pruned roughly in
classorder. That is, most of agiven classc is pruned before any
codeword in classc + 1 istouched. This observation isless true

limiting degree

(not to relative scale)

! L ! ! L ! ! 1

codewords pruned

Figure4: Pruning Curves

for large n (e.g., n > 16), but the dependence on class is till
strongly visible. In fact, the spikes that are visible in the pruning
curves usually occur after an entire class of codewords is fully
pruned.

This observation leads to the idea of pruning entire
codeword classes at once. The revised pruning algorithm can be
written as follows:

Algorithm 2:
For eachcfromlton;
Remove class ¢ codewords from the set of valid codewords.
Recalculate the degrees of the rest of the codewords.

Again, the limiting degree will rise, hit a maximum, and fall.
There is no guarantee of optimality with this algorithm.
However, we find that its results match exactly with the optimal
for n < 10, and the error stays below 10%, or 0.15 bits, for at
least n < 23, which was the highest we could check. Thus, the
approximation is fairly good. Furthermore, because it is sub-
optimal, the results are always achievable.

Again, the primary motivation behind this algorithm,
other than the simplicity of having logarithmicaly less data
points to deal with, was that it can be subjected to mathematical
analysis. This is possible through the use of the class
distribution polynomial. For a given codeword, a polynomial
D(x) can be generated where the number of class ¢ codewordsin
the neighbor set is equal to the coefficient of the x°* term.
Thus, this polynomial describes the class distribution of the
neighbor set, and can be used to calculate the effects of pruning
various code classes. Specificaly:

c 1
Din, ... nC}(x)=xi+1 [1 1]§1Mn‘ (X DHE ®)

where

! Note that Dy(1) = dy. Thus, this can be seen as a generdization of the
previous theorems.

O xP, P,+x°P_, O

M,(x) = B:,n +(x2 +1)Pn—l xP, + XPn—lB

(9)

ﬂEXZj =PL()+X*P (¥ (10)

with Po= 0 and P.=1

The derivation of these expressions, as well as a
discussion of the many interesting results that they imply, is
beyond the scope of this paper. We will simply state that it is
possible to find which codeword is the limiting one in each
class, and the determination of its degree after pruning isatrivial
matter of generating the class distribution polynomia and
summing the coefficients of the x* terms for a > c-1.

With the experimental results from the optimal pruning
algorithm, it is fair to say that we have determined the
fundamental limits on the performance of self-shielding codes
up to n = 23. For larger n, we can use the class pruning
algorithm in lieu of the optima one, for an apparently close
approximation to the fundamental limit. Notice that, unlike the
unpruned code where the code design was left completely
arbitrary, these algorithms provide a specific set of codewords to
use. The extra performance over the unpruned code comes from
restricting ourselves to this set.

Figure 5 plots the maximum performance of the pruned
code with memory, using the analytic algorithm. The data from
the optimal agorithm would visibly coincide with the plotted
line for n < 23, so it is not plotted separately. We see that a 32
bit bus could be implemented with only 40 wires. In this case,
the wiring overhead as defined earlier is only 25%, which
compares extremely favorably to 44% with unpruned coding and
97% with ssimple shielding.

5. Memoryless Code

The previous codes required the encoder and decoder to
hold state, because the codebook was dependent on the previous
value on the channel. Now, we ask what kind of performance is
possible with a memoryless code. Such a code would have a
single, unchanging codebook. Thus, every codeword in the
book would have to be able to transition to every other
codeword. We want to find the largest such codebook.

In graph theory, a clique in an undirected graph is

40
~ . 32
A B C D
124 &
Q@
=
@
116
A: unencoded
B: pruned code 3
C: unpruned or memoryless |
D: shielded
8 16 24 32 40 48 56 64
wires used

Figure5: Performance of Code Types

defined as a subgraph where every pair of nodes is conneded
with an edge. If we represent the valid transitions of the
codewords as edges on a graph, then the problem of finding the
largest memoryless codebodk beammes the problem of finding
the largest clique. Interestingly, evaluating this clique problem
leads to results identicd to Table 1. The size of the largest
cliqueisawaysd,.

In the next two theorems, we will show that for a given
n, there ae two identicaly-sized largest cliques, eah consisting
of the entire neighbor set of one of the two class 1 codewords.
Theorem 4 will prove that the neighbor set of a dass1 codeword
is a dique, and Theorem 5 will prove that there is no larger
clique.

Theorem 4: The entire neighbor set of a codeword is a clique if
andonly if the amdeword is class1.

Proof: (“if” case): A class1 codeword has only dependent
boundaries, so the pair of bits adossany boundary is either 01 a
10. Consider aboundary between a01 pair. All neighbors of the
codeword will have d@ther a 00, 01, or 11 aadossthat boundary.
Notice that all three posshiliti es can transition to one another.
Therefore, every neighbor can transition to every other neighbor
without violating the bit transition rule acoss that boundary.
Consider now a boundary between a10 pair. All neighbors have
either 00, 10, or 11 acossthis boundary, and again, these three
pairs can al transition to ead other. This argument holds for
every bowundary in the mdeword. The bit transition rule annot
be violated acoss any boundary when any neighbor transitions
to any other neighbor, so the neighbor set of a dass1 codeword
isa dique

(“onlyif” case): A codeword in classc > 1 has, by definition, at
least one independent boundary. Consider the pair of bits acoss
an independent boundary, either 00 a 11. There ae neighbors
of this codeword with 00, 01, 10, and 11 hit pairs aaoss this
boundary. However, the neighbors with 01 aaossthe boundary
cannot transition to the neighbors with 10 aaossthe boundary.
Thus, the neighbor set of a mdeword in class ¢ > 1 is not a
clique. O

Definition: A cliqueis sid to be prime if there is no codeword
that can be alded to the set with the set remaining a dique. (It
does not imply that it isthe largest clique; it simply means that it
has no room to grow.)

Theorem 5: Thereisnocliquelarger than d,.

Proof: (sketch) First, we will enumerate dl possble prime
cliques. It can be shown that every bit boundary in a prime
cliqueiseither “01-type” or “10-type”. To say aboundary is 01-
type implies that in the dique, there ae mdewords with 00, 01,
and 11 acossthat boundary, but no codewords with 10 acoss
the boundary. Similarly, acossa 10-type boundary, codewords
in the dique may have 00, 10, and 11, but not 01. Since eah of
the n-1 baundaries in a prime dique @n be one of two types,
there ae 2™ prime diques. It can be shown that the number of
codewords in a given prime dique an be cdculated using the
following a gorithm:

Algorithm 3;
x=y=1
For eat boundary, from1ton - 1:
If theboundary isO1-type, y=x+y
If the boundary is 10-type, x=x+y
Prime diquesize=x+y

We wish to construct a dique to maximizex + y at the end of the
algorithm. It can be seen that the optimal dedsion at ead step
of the dgorithm, in order to maximize the running total of x and
y, isto pace a0l-type when x <y and a 10-type when x > .
The coice of the first pair type is arbitrary, becaise & that
point, x = y. Theredter, the optimal choice dternates between
the two types, and thus the largest clique mnsists of alternating
01-type, 10-type boundaries. We seethat a dass1 codeword is
a member of this clique (with the polarity of the dass 1
codeword determined by the choice of the initial boundary). By
Theorem 4, the sizeof thislargest cliqueisd,. O

We have now determined the maximum performance of
amemoryless slf-shielding code: log,(d,) bits per wire. Notice
that this code, like the pruned code with memory, comes with a
spedfic set of codewords to use. The sets found by the pruning
algorithms provide aditional performance beyond d,, whereas
the set found in this ®dion (the neighbor set of a dass 1
codeword) gives no additional performance, but instead provides
a ade property that may considerably ease implementation.

Because the maximum performance of a memoryless
code is the same as that of an unpruned code with memory, the
results can be viewed in Figure 5. Again, adding a physicd wire
alows for 0.69 more information bits, and a 32-bit bus would
require 46 wires. But the encoder and decoder could be purely
combinational, and there would be asingle, fixed codeboak.

6. Implementation Issues

Although the primary thrust of this paper is theoreticd,
we will now take a brief look at some issues related to the

encoder decoder

senderﬁbL> c | n c |b
channel » L A~ receiver

[; il

Figure6a: Unpipelined Circuit M odel for Code with M emory

encoder decoder

b
n n b
snder 4y D > CL < receiver

Figure 6b: Pipelined Circuit Model for Code with Memory

encoder decoder

n n

Figure 7a: Unpipelined Circuit M odel for Memoryless Code

b c b
sender—A4< | 7L < receiver

decoder
/_)%

n n

b b
sender -2 G A D D b4l € 4w recdver

Figure 7b: Pipelined Circuit Model for Memoryless Code

logicd and physical implementation of self-shielding codes.

Encoder and Decoder Circuit M odels

Figure 6a shows a block diagram of an encoder and
deaoder that can implement a self-shielding code with memory.
It is essy to remgnize the encoder as a simple finite state
madine (a Medy machine), and the deader is a function only
of the current and immediately previous input, with no feedbadk
at al. However, with this architedure, a combinational path
exists from the input of the encoder to the output of the deaoder,
which adds the logic delay to the delay of the channel. A
pipelined circuit model, shown in Figure 6b, gives the data
amost the full clock cycle to travel aadoss the channel, in
exchange for two extra dock cycles of latency. The encoder is
now a Moore machine, and the decder uses two memory
elements.

Figures 7a axd 7b show unpipelined and pipelined
circuit models respedively for a memorylesscoder. Becaise a
memoryless code depends only on the arrent input, these
models are dmost trivially simple.

Partial Coding
The results in the previous dions give the theoreticd
maximum performance for a wde of a given width. However, it
may be infeasible to design a drcuit to encode 32 or more bhits of
data & once In such a @se, the bus can be broken into sub-
buses of small er width which could be encoded individually onto
sub-channels. Eacdh sub-channel would then have to be shielded
from its neighbor with a dedicated ground wire. But it should be
noted that, in pradice, such a wire might be needed anyway
64

T T T T T T T
62f T

60|
58|
56|
54}
52
50
48

: memoryless
46}

total wiresrequired

44
42
40

381 ! ! ! ! L ! !

1 4 8 12 16 20 24 28 32
max data bits encoded together

Figure 8: WiresRequired with Partial Coding

X1
XziliQ_I " dataword codeword
v % 000 0111
Xo —0 ys 001 0001
010 1111
f:g|:>_y2 Yo 011 0000
2 100 0101
Yoo) —% 101 0100
X v 110 1101
Yo —0 Xo 111 1100
Yo Y2—o0

X1

Figure9: Example 4-Bit to 3-Wire Coder

simply as a aurrent return path.

Figure 8 shows the number of wires required, including
shield wires, for encoding a 32-bit bus when the individual sub-
buses are no wider than a given number of bits. Note that the
number of wires required drops off sharply even when the sub-
buses are small. For example, a very simple 3-bit to 4-wire
memoryless code requires a dhannel width of only 53 wires. A
code with memory using one 4-bit and four 7-bit sub-buses
requires only 46 wires.

Design Example

Figure 9 gives gate-level schematic diagrams of a
sample encoder and decder that implement a 3-bit to 4-wire
memoryless code. The mapping between data words and
codewords is diown as well. Notice that, indeed, the set of
codewords used is the neighbor set of a dass1 codeword. Using
the partial coding technique described above, an array of ten of
these simple @ders could be used to implement a aosdalk-
immune 32-bit bus with 53 wires. When compared to a 63-wire
shielded channel, this amounts to cutting ten wires from the
channel for the st of a handful of gates.

7. Comparison to Other Techniques

In the literature, there ae anumber of other techniques
designed for combating crosgalk. Many of them, such as those
described in [1], [2] and [3], employ credive routing strategies
in order to minimize cosdak delay within a datapath or logic
block. Our technique. on the other hand, is intended for use with
long, straight buses, and thus these routing schemes are not
applicable to our domain of interest. [4] and [5] mention some
techniques that are more relevant, such as skewing the timing of
signals on adjacent wires, interleaving mutually exclusive buses,
and precharging the bus. However, skewing requires careful,
technology-dependent circuit design and brings up tricky timing
issues, whereas our technique is technology-independent and
fully synchronous, with the aosdalk immunity “corred by
construction.” Interleaving is a useful technique, but it cannot
be used with buses that are dlowed to transition on any and
every clock cycle. Precharging along bus can incur detrimental
power costs, and is usually not an option.

Probably the most common technique is simply using
large repeders to driive the Miller cgpadtance through brute
force[6]. A quantitative comparison between our technique and
optimally-sized repeders is technology- and implementation-

dependent, and will not be given. However, conceptually, using
large repeders is a power-hungry technique, and shielding is an
areahungry technique. Crosstalk-immune bus encoding avoids
crosgalk delay with a modest impact on either areaor power.

8. Conclusion

In this paper, we have introduced the concept of using
data encoding to mitigate aosdak delay on buses, and we
presented a theoreticd framework for understanding crosgalk-
immune @ding. We determined the fundamental limits on
performance, in terms of required channel width versus data bits,
for codes with and without memory, and found them to be very
satisfadory. Future work will i nclude designing codes such that
the c@ding circuitry can be implemented efficiently and
exploring hybrid code designs. The latter would involve ades
that eliminate dosdak delay as well as reduce average power
consumption, perform error detedion or corredion, or
acomplish some other task that is well suited to bus encoding.

References

[1] A. Vitta and M. Marek-Sadowska, “Crosgalk Reduction for
VLSI,” IEEE Trans. Computer-Aided Design, vol. 16, no. 3, 1997.

[2] T. Gao and C. L. Liu, “Minimum Crosgak Channel Routing,”
IEEE Trans. Computer-Aided Design, vol. 15, no. 5, pp. 465-74,
1996.

[3] T. Xue, E. Kuh, and D. Wang, “Post Global Routing Crosdalk
Synthesis,” IEEE Trans. Computer-Aided Design, vol. 16, no. 12,
pp. 1418-30, 1997.

[4 J Yim and C. Kyung, “Reducing CrossCoupling among
Interconned Wires in Deg-Submicron Datapath Design,”
Proceedings. 1999 Design Automation Conference, pp. 485-90.
1999

[5] K. Hirose and H. Yasuura, “A Bus Delay Reduction Technique
Considering Crosdak,” Proceedings. Design, Automation and
Test in Europe Conference and Exhibition 2000, pp. 441-5. 2000.

[6] D.Li, A. Pua, P. Srivastava, and U. Ko, “A Repeaer Optimizaion
Methodology for Deg Sub-Micron, High-Performance
Processors,” Proceedings. International Conference on Computer
Design, VLS in Computers and Processors. pp. 726-31. 1997

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

