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Abstract
In this paper, we propose an efficient table-based model for
frequency-dependent on-chip inductance, and apply it to com-
pute mutual inductance between random wires and loop induc-
tance for cascade wires, respectively. Our inductance computa-
tion achieves around 5% error when compared to the numerical
solution, and matches frequency-dependent impact very well.
We also apply the inductance model to generate RLC circuit
models for on-chip interconnects, and present a complexity-
efficient normalized RLC circuit model for multiple parallel wires.
These results are extremely efficient, and can be effectively used
during iterative design procedure. Further, the table-based in-
ductance model has been implemented as a Web-based tool to
generate inductance matrix for given random wires.

1. INTRODUCTION
The inductance for on-chip interconnects shows growing impor-
tance as we move towards multi-gigahertz designs [14, 3, 9]. In
order to better simulate and optimize on-chip interconnects, the
inductance of on-chip interconnects need to be extracted from
the interconnect geometry. This extraction must be accurate
as a correlation with “final” verification engines, and is needed
for design convergence. The extraction must also be efficient,
because it may be performed dozens of times on the full-chip
level and thousands of times on critical nets. Clearly, numer-
ical extraction [16, 10, 17] is hard to support during iterative
procedures of simulation and optimization. In [7], an efficient
table-based inductance model was proposed using the partial
element equivalent circuit (PEEC) model for coplanar parallel
bus structures. The method is able to consider the impact of
frequency, and has been used in the state-of-the-art processor
design. Later on, more general interconnect structures were
considered in [15, 5], using formulae under the PEEC model.
However, methods in [15, 5] are not able to consider the impact
of frequency.

In this paper, we study RLC modeling for on-chip general in-
terconnect structures (herein referred to as random wires). Our
primary contribution is an efficient table-based model for frequency-
dependent inductance. It is applicable to random wires, and has
around 5% error when compared to the numerical solver. We

also apply this model to compute the loop inductance and to
generate RLC circuit models for random nets, and achieve sat-
isfied results in an efficient way.

In the rest of the paper, we present our inductance model and
compare it to the numerical solver in Section 2, and apply the
model to generate RLC circuit models for random wires in Sec-
tion 3. Particularly, a complexity-reduced RLC circuit model is
described in Section 3. We conclude in Section 4.

2. INDUCTANCE MODEL
In this section, we first present the inductance extraction so-
lution to the twin coplanar wires, then solve random wires in
multiple layers based on the solution for the twin coplanar wires.
We finally compare our approach with the numerical field solver.

2.1 Twin coplanar wires and random wires
The twin coplanar wires are special cases of the aligned coplanar
wires. If multiple parallel wires are located in the same layer, all
have the same length and thickness, and all starting (as well as
ending) points are aligned, we call these wires aligned coplanar
wires. An example of two aligned coplanar wires is given in
Figure 1. When the two wires have the same width, we call
them twin coplanar wires.
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Figure 1: An example of two aligned coplanar wires.

The two wires are located in the same layer and are

aligned. They have the same length l, same thickness

t, but different widths w1 and w2. The center-to-center

space between them is s.

We call any parallel wires as random wires. Differing from
aligned coplanar wires, random wires may be located in differ-
ent layers, have different widths, lengths and thicknesses. An
example of two random wires is shown in Figure 2. In addi-
tion to widths w1 and w2, thicknesses t1 and t2, and lengths



l1 and l2, the two random wires are characterized also by the
horizontal space s, the vertical space v, and the displacement
of the starting ends d. Obviously, the twin coplanar wires is a
special case of two random wires. Note that both aligned copla-
nar wires and random wires are defined for parallel wires. The
definitions will be justified in Section 2.3.
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Figure 2: An example of two random wires in differ-

ent layers (layer M3 and layer M1): (a) 3D view, (b)

Cross-section view, and (c) Top view. The two wires

have lengths (l1, l2), widths (w1, w2), thicknesses (t1 , t2),

as well as horizontal and vertical spaces (s, v). The dis-

placement of the starting ends of the two wires is d.

2.2 Inductance model for twin coplanar wires
Based on the PEEC (partial element equivalent circuit) model
[17], the following Observations were made in [7]:

Observation 1. Self partial inductance of a wire is solely
decided by the wire itself.

Observation 2. Mutual partial inductance between two wires
is solely decided by the two wires themselves.

A table based method can be developed for the twin coplanar
wires using Observations 1 and 2. The self inductance can be
pre-computed and stored in a four-dimensional table, and mu-
tual inductance in a five-dimensional table. Specifically, the self
inductance Ls can be represented by

Ls = Ls(l, w, t, f), (1)

and the mutual inductance Lt
m for the twin coplanar wires can

be represented by

Lt
m = Lt

m(l, w, t, s, f), (2)

where l, w, t are the length, width and thickness of the twin
coplanar wires, respectively, s is the space between the twin
coplanar wires, and f is the extraction frequency. 1

2.3 Inductance model for random wires
Solving inductance extraction for random wires will lead to the
inductance extraction solution for all wires at the full chip level.
Observations 1 and 2 were proved without using the assumption
of aligned coplanar wires [7]. Therefore Observations 1 and 2
still hold for random wires, and the self inductance for any wire

1The frequency for inductance computation is not clock
frequency, but is decided by the signal rising time tr. The
knee frequency can be defined as Fknee = 0.5/tr and be
used as the frequency to compute inductance, as “the be-
havior of a circuit at frequencies above Fknee hardly affects
digital performance” [8]. A similar conclusion was drawn
in [12] using the concept of “significant frequency”.

can still be pre-computed and stored in a four-dimensional table
Ls(l, w, t, f).

In addition to Observations 1 and 2, there is another well-
accepted Observation:

Observation 3. The mutual inductance between any two
orthogonal wires is negligible.

Therefore, the mutual inductance extraction problems for the
full chip can be reduced to two separated subproblems, one is
to solve the mutual inductance for random wires parallel to x-
axis, and the other is to solve the mutual inductance for random
wires parallel to y-axis. Observations 2 and 3 justify why we
define both aligned coplanar wires and random wires only for
parallel wires.

If we simply use Observation 2, the mutual inductance between
two random wires need to be pre-computed and stored in a
ten-dimensional table Lr

m(l1, l2, w1, w2, t1, t2, s, v, d, f), where
variables from l1 to d are defined in Figure 2, and f is the
extraction frequency. To avoid building and looking-up such a
huge table, we propose that the mutual inductance Lr

m between
two random wires can be computed as:

Lr
m =

L1 + L2 − L3 − L4

2
(3)

where

L1 =
Lt

m(l1 + l2 − σ, w1, t1,
√

s2 + v2)

2

+
Lt

m(l1 + l2 − σ, w2, t2,
√

s2 + v2)

2

L2 =
Lt

m(σ, w1, t1 ,
√

s2 + v2)

2

+
Lt

m(σ, w2, t2 ,
√

s2 + v2)

2

L3 =
Lt

m(l1 − σ, w1, t1,
√

s2 + v2)

2

+
Lt

m(l1 − σ, w2, t2,
√

s2 + v2)

2

L4 =
Lt

m(l2 − σ, w1, t1,
√

s2 + v2)

2

+
Lt

m(l2 − σ, w2, t2,
√

s2 + v2)

2

and

σ =

{

(l1 − d) l1 ≤ d + l2
l2 l1 > d + l2

Note that L1, L2, L3 and L4 are calculated by equation (2) that
can be either a formula or a table as in this paper.

In order to catch the frequency-dependence, a wire is often di-
vided into filaments (see Figure 3), where the current is assumed
to be uniform within filaments. In [6], analytical formulae were
given for inductance between filaments. For two non-overlap
filaments shown in figure 4, equation (4) was proposed:

2M = (Ml+m+σ + Mσ)− (Ml+σ + Mm+σ) (4)

and (5) was proposed for partial-overlap2 filaments:

2M = (Ml+m−σ + Mσ)− (Ml−σ + Mm−σ) (5)

2Partial-overlap is contrast to the total-overlap. For
partial-overlap, σ is defined as the overlapped length.
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Figure 3: A wire is divided into 3× 5 filaments.
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Figure 4: Two non-overlap filaments.

where M is the mutual inductance and Ml+m+σ,Mσ ,Ml+σ,Mm+σ

are mutual inductance between two equal and parallel filaments
with the length of the subscript.

Equation (3) extends (4) and (5) from a pair of filaments to a
pair of random wires that may have different widths and thick-
nesses, and is able to consider non-overlap, partial-overlap and
total-overlap3 cases. The frequency dependency of current dis-
tribution among filaments within a wire is caught during table
building via numerical inductance computation. Note that in
[7], a proof was given for Observations 1 and 2, based on the re-
lationship between inductance for filaments and that for wires.
A similar scheme can be used to illustrate the rational behind
Equation (3) in this paper.

In the next subsection, we will compare the inductance values
given by equation (3) with those obtained by the numerical field
solver FastHenry [10].

2.4 Experimental results
We have implemented the above table-based model for frequency-
dependent inductance, and proceed to compare the inductance
given our model with the numerical solution by FastHenry. We
consider first the mutual inductance between two random wires,
and then the loop inductance of a cascade interconnect struc-
ture.

2.4.1 Mutual inductance
In our experiment, we first build a mutual inductance table by
using FastHenry and the following parameters:

1. Wire length: from 0.1µm to 10000µm, with 60 data points.

2. Wire width: from 0.5µm to 50µm, with 10 data points.

3. Wire spacing: from 0µm to 50µm, with 10 data points.

4. Frequency: from 1GHz to 100GHz, with 4 data points.

5. All data points are uniformly distributed.

3Total-overlap means one of the wire is totally overlapped
with another.

We then choose 400 random cases for two random wires based
on the following ranges of parameters:

100µm < l1, l2 < 5000µm
0µm < d < 5000µm

0.5µm < w1, w2, t1, t2 < 50µm
0µm < s, v < 50µm

We finally solve each random case by FastHenry and table lookup
using equation (3), respectively, and present all inductance val-
ues in Figure 5. As one can see that the formula approximates
the mutual inductance of two random wires very well. We also
give the error distribution in Figure 6. Most results of the 400
random cases have error within ±5%. Those rare cases with er-
ror as large as 20% only occur when the inductances are fairly
small and therefore can be ignored as pointed out in [3].
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Figure 5: Mutual inductances of random wires. The

x-axis is mutual inductance computed by FastHenry,

and the y-axis is mutual inductance computed by table

lookup and equation (3).
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Figure 6: Error distribution of the approximated in-

ductance. Most of the points are lie in ±5% error range.

Larger error tends to happen when mutual inductance

is relatively small.

2.4.2 Loop inductance
Our inductance model can also be used to compute loop induc-
tance for cascade interconnect structures such as that in Figure
7. The loop inductance without consideration of mutual induc-
tance between different wire segments is

Lloop = Led + Ldc + Lcb + Lba; (6)
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Figure 7: A cascade interconnect structure, with

length shown for each segment.

where Led, Ldc, Lcb and Lba are self inductance for segments ed,
dc, cb and ba. It was shown in [1] that (6) leads to satisfied loop
inductance value when there are coplanar shields. However, in
general, the loop inductance should be computed with consid-
eration of mutual inductance between different wire segments
as

Lloop = Led + Ldc + Lcb + Lba − 2 · Led,cb + 2 · Ldc,ba(7)

where Led,cb and Ldc,ba are mutual inductance between wire
segments ed and cb, and dc and ba, respectively.

In Table 1, we compute loop inductance using the above two for-
mulae based on self and mutual inductance given by our model,
and compare it with inductance given by FastHenry. We con-
sider frequencies from 100MHz to 100GHz, and consider wire
width of 1.2µm and 12µm, respectively. The wire thickness is
1.0µm and 2.0µm, respectively. As shown in this table, com-
pared to FastHenry, the loop inductance without consideration
of mutual inductance has error from 23.5% to 37.2%, and the
loop inductance considering mutual inductance has an error less
than 5%. Further, the loop inductance considering mutual in-
ductance based on our inductance model catches the frequency
variation very well. The frequency variation is 2.1% for 1.2µm
wire width, and is 6.4% for 12µm wire width.

3. RLC CIRCUIT MODELS
In this section, we present two RLC circuit models: the full
model and the normalized model. In general, the full model is
applicable to random wires, whereas the normalized model is ap-
plicable only to aligned coplanar wires. Because the normalized
model has a much reduced complexity, but achieves waveforms
comparable to those given by the full model, the normalized
model is a natural choice for aligned coplanar wires when com-
pared to the full model and model order reduction techniques
such as [13, 4].

3.1 Full and normalized models
For the simplicity of presentation, we consider in this section
that there are m aligned coplanar wires (or simply, wires), each
uniformly divided into n segments. The two circuit models have
identical elements for resistance and capacitance. Each wire
segment has a resistance given by a simple formula, and has
ground capacitance and floating coupling capacitance connected
to adjacent wire segments. All capacitance values are computed
by using the 2 1

2
D capacitance extraction method [2].

The two circuit models have different inductance elements. In
the full model, a self inductance element is built for every wire

segment, and a mutual inductance element is built for every
pair of wire segments. Both values are computed according to
the approach presented in Section 2. For m wires, each with n
segments, the full model has m×n elements for self inductance,
and C2

m×n elements for mutual inductance as there is mutual
inductance between any two wire segments, no matter the two
segments belong to the same wire, or different wires.

Figure 8(I) shows a full RLC model for the twin coplanar wires
that have two segments each wire. We label the two wires as
wire a and wire b, and there are four segments a1, a2, b1 and b2.
The full RLC circuit totally has 2 × 2 = 4 self inductors, and
C2

4
= 6 mutual inductors. Given length l, width w, thickness t

and spacing s, the self inductance values of La1, La2, Lb1 and
Lb2 are computed by Ls(l/2, w, t, f) under frequency f . Mutual
inductance is represented by inductive coupling k1 ∼ k6, as an

example, inductive coupling k1 is given by k1 =
Lm a1,b1√
La1×Lb1

,

where La1 and Lb1 are self inductance of segments a1 and b1,
Lm a1,b1 = Lt

m(l/2, w, t, s, f) is the mutual inductance between
these two segments.
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Figure 8: RLC models for two wires, each has two

segments: (I) full model, and (II) normalized model.

In the normalized model, mutual inductance only exists between
aligned segments. For the same twin coplanar wires (see Figure
8(II)), the normalized circuit has 2 × 2 = 4 self inductors, and
(2− 1)× 2 = 2 mutual inductors. Let Ls be the self inductance
of one wire of the twin coplanar wires, i.e., Ls = Ls(l, w, t, f),
each wire segment in this two-segment model has self inductance
Ls/2. If there are n segments for a wire with self inductance
Ls, then each wire segment has self inductance Ls/n. In the
meantime, the inductive coupling kab between wire segments
does not change with respect to the wire segmenting, and is

given by kab =
Lm a,b√
La×Lb

, where La and Lb are self inductance

of wires a and b, repsectively, Lm a,b = Lt
m(l, w, t, s, f) is the

mutual inductance between the two wires.

As compared with the full model, the total number of self in-
ductors in the normalized model is still m× n, where m is still
the number of wires, n the number of segments. However, the
total number of mutual inductors of this model is drastically



width=1.2µm, thickness=1µm

Frequency 100M 1G 10 G 100G
FastHenry 1.569nH (0.0%) 1.569nH (0.0%) 1.567nH (0.0%) 1.536nH (0.0%)

loop inductance w/o mutual 1.938nH (23.53%) 1.938nH (23.53%) 1.936nH (23.55%) 1.905nH (24.02%)
loop inductance w mutual 1.519nH (-3.2%) 1.498nH (-4.5%) 1.580nH (0.8%) 1.501nH (-2.3%)

width=12µm, thickness=2µm

Frequency 100M 1G 10 G 100G
FastHenry 1.078nH (0.0%) 1.070nH (0.0%) 1.034nH (0.0%) 1.013nH (0.0%)

loop inductance w/o mutual 1.451nH (34.59%) 1.443nH (34.91%) 1.410nH (36.33%) 1.390nH (37.16%)
loop inductance w mutual 1.064nH (-1.3%) 1.026nH (-4.1%) 0.999nH (-3.4%) 1.029nH (1.6%)

Table 1: Comparison between loop inductance for the cascade interconnect structure in Figure 5. Per-

centages of errors are computed with respect to inductance given by FastHenry.

reduced from C2
m×n to C2

m × n. So the normalized model has
a much reduced complexity.

Note that the inductance is not linearly scalable. In general,

Ls(l/n, w, t, f) · n 6= Ls(l, w, t, f)

Lt
m(l/n, w, t, s, f) · n 6= Lt

m(l, w, t, s, f)

Therefore, the full model and normalized model will have dif-
ferent inductance values for the same wire segment.

3.2 Comparison between full and normal-
ized models

We use two coupled wires in 100nm NTRS technology [18] to
illustrate the difference between the full model and the normal-
ized model. Both wires are 1000µm long, 3µm wide and 2µm
thick. The center-to-center space between them is 6µm, and
each wire is divided into 32 segments. The drivers are 200x of
the minimum inverter, and the receivers 40x of the minimum
inverter. The loading capacitance after each receiver is 0.05pf,
and the input rising time for each driver is 28.6ps. We assume
that both inputs switch at the same time but in opposite direc-
tions.

We employed HSPICE simulations to obtain the waveform at
the far-end of the wires (the input nodes of receivers), and show
far-end waveforms under both models in Figure 9. As one can
see that the difference between using the full and normalized
models is negligible.

We have run experiments for a large number of coupled wires
for different number of wires and segments, different wire widths
and spaces. All experimental results support the following ob-
servation:

Observation 4. The difference in terms of wavefrom be-
tween full model and normalized model is negligible for aligned
coplanar wires.

The running time of full model circuit is significantly longer than
that of normalized model circuit. Our illustration example took
the full model 99.0 seconds, and took the normalized model only
9.1 seconds on the same computer. Therefore, the normalized
model should be always used for aligned coplanar wires.

Note that the normalized model has been used in practice for
aligned wires, but without theoretical explanation or experi-
mental verification presented in [7]. However, it is worthwhile
to point out that this model is in general not applicable to non-
aligned wires.

V
ol

ta
ge

s 
(li

n)

−200m

0

200m

400m

600m

800m

1

1.2

Time (lin) (TIME)
11.6n 11.7n 11.8n

11.9n

Normallized model

Full model

Full model VS. Normallized model (32 segments)

Figure 9: Far-end waveforms under the full and nor-

malized models.

4. CONCLUSIONS
We have presented an efficient table-based model for frequency-
dependent on-chip inductance, and have applied it to compute
mutual inductance between random wires and loop inductance
for cascade wires, respectively. Our inductance computation
achieves around 5% error when compared to the numerical so-
lution, and matches frequency-dependent impact very well. We
have also applied the inductance model to generate RLC cir-
cuit models for on-chip interconnects, and have presented a
complexity-efficient normalized RLC circuit model for multiple
parallel wires. These results are extremely efficient, and can be
effectively used during iterative design procedure. The table-
based inductance model has been implemented as a Web-based
tool to generate inductance matrix for given random wires. The
tool can be accessed at http://eda.ece.wisc.edu/WebHenry. We
have applied the RLC circuit models presented in this paper to
several RLC interconnect analysis and synthesis works, includ-
ing [19] and [11].
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