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ABSTRACT 
In this paper an array architecture for computation of Complex 
Discrete Wavelet Transform has been proposed. The wavelet 
filter coefficients are realized using multiplier less pipelined 
CORDIC algorithm. The choice of pipelined CORDIC algorithm 
over the conventional one for realizing the filter coefficient of 
CDWT is hardware effective and also effects in high frequency 
operation. The controller unit clusters input samples into even 
and odd samples coming in proper sequence at each clock cycles. 
This clustering provides a good amount of parallelism for faster 
operation of the filter compared to direct filter realization. The 
8-tap filter bank is implemented using array architecture, 
effecting in high throughput. The algorithm developed is 
implemented on FPGA using the Virtex XCV100 series.   

Categories and Subject Descriptors  
Architectures and Cache  

Keywords 
Complex Discrete Wavelet Transform, Image Padding, FIR filter, 
CORDIC, FPGA. 

1. INTRODUCTION 
Image analysis in transform domain has gained considerable 

importance in the recent years. Wavelet Transform [1],[2] have 
come a long way as an important tool for image analysis. The 
multiresolution property of this transform has proved to have 
immense application in reliable loss less image compression and  

 

 

 

 

 

 

 

 

 

 
 
 
reconstruction. Though the Discrete Wavelet has extensive 
application  in  motion vector  estimation   but  the  real  wavelet 
transforms, e.g. Daubechies, Haar etc., suffer from the lack of 
rotation and shift invariance property. The Complex Discrete 
Wavelet Transform (CDWT) [3], [4], [5], [6] a phase-based 
method is a solution to these problems and is very effective in 
motion estimation and stereo image matching. For real-time 
application, hardware implementation of the transform is of 
immense importance.  

An array architecture [7], for realizing CDWT is proposed, 
which uses pipelined Co-Ordinate Rotation DIgital Computer 
(CORDIC) [8] as the basic processing element (PE). As the 
CORDIC [9][10] element computes the trigonometric functions 
and does vectoring through shift and adds, avoiding any 
multiplication, the hardware overhead is drastically reduced and 
the speed is also enhanced. The algorithm developed through this 
paper separates the even and odd input samples to achieve a 
symmetric parallel architecture for the realization of the 
transform.  

Section 2 of this paper develops the theory of CDWT. This 
section also gives the arrangement of the input signal, the 
padding pattern, which effectively produces the symmetry of 
the architecture. Section 3 proposes the array architecture for 
realizing the transform. The realization of the filter coefficients 
and the data sequencing is also detailed in this section. Section 4 
shows the performance of the proposed architecture. 

 

2. COMPLEX DISCRETE WAVELET 
TRANSFORM 
Rational valued complex kernels realize the CDWT. These 

kernels can be modelled by even length FIR filter with 
approximate Gabor form, given by: 
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With n0 set to –0.5 to position the Gaussian window 
symmetrically in the interval [-D, D-1], where D is the window 
half-length, a0 and a1 are the magnitude, ω0 and ω1 are the 
modulation frequencies and σ0, σ1 are the window standard 
deviation. The modulation frequencies ω0 and ω1 should be 
complementary, i.e., 

ω0 + ω1 = π    (2) 

to cover the frequency range [0,π]. With the Gaussian window 
functions, the Fourier transforms of h and g have conjugate 
symmetry about the modulation frequencies ω0 and ω1 
respectively. Maximum coverage on frequency range [0, π] 
without significant gaps and with minimal overlap can be 
achieved by choosing filters with a spacing of π/6. The values of 
omega are π/6 and 5π/6 for low and high-pass filters respectively. 
Figure 1 illustrates the block level diagram for 2-d CDWT 

For an input sequence the starting and terminating points of 
the sequence is of importance since these regions are prone to 
noise. When images are considered the termination at the start of 
the sequence introduces high noise level in the transform domain, 
thus reducing the scope of perfect 

 
Fig 1. 2-level CDWT for images 

 
reconstruction. Zero padding also introduces good amount of 
noise. Mirror padding is in that respect preferred in most 
application compared to the other forms of padding. For these 
reason mirror padding has been adopted here with slight 
modification for sake of hardware reduction and better 
symmetry. 

The padding has been done in the following form 
 
aM aM-1 ..... a2 a1 | a0 a1 a2 ........ aN | aN-1 aN-2 .... aN-M 
 
Where sequence to the left of a0 and to the right of aN is the 
padding signal. The remarkable feature of this padding is that it 
is similar to mirror padding except the fact that the edge values 

(a0 and aN) are not repeated in the padding sequence. The 
advantage of this can be seen in the later part. 

The response can be verified for finite input sequence of 
length N. Let N is equal to 16.  The convolution product gives 
the transfer properties of a digital FIR filter in the time domain 
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Where N is the filter length, f (k) is the input signal, H (n) is the 
impulse response of the filter and y (n) is the output signal. The 
transform relation of the filters is given by: 
 
C0 = H0.a0 + H1.a1 + H2.a2 + H3.a3 + ... +... + H7.a7  
C1 = H0.a2 + H1.a1 + H2.a0 + H3.a1 + ... +... + H7.a5 
C2 = H0.a4 + H1.a3 + H2.a2 + H3.a1 + H4.a0 +.... + H7.a3 (3) 
...  ...  ... ... ............ ... ... ...  
C11 = H0.a8 + H1.a9 + H2.a10 + H3.a11 +...+…+ H7.a15  
  
From these equations it can be seen that the even and odd 
indexed filter coefficients are multiplied with the even and odd 
samples of the input sequence respectively. This has been 
achieved using the modified form of padding. This form of 
padding also has the same performance as the mirror padding as 
far as the noise level is concerned. 
 

3. ALGORITHM OF ARCHITECTURE 
This section describes the architectural design of CDWT 

filter using CORDIC as the basic processing element. The 
symmetry shown in equation (3) has been exploited in design of 
the architecture. Based on the symmetry of even and odd 
samples and filter coefficients the filter structure is divided into 
two sections.  

 
Fig 2. Scheme of architecture for 8-tap CDWT 

 
The basic block level scheme for the realization of CDWT 

is given in Fig. 2. h0, h1, h2, h3, h4, h5, h6, h7 are the filter 
coefficients of the 8-tap CDWT which are realized using 
CORDIC algorithm. The even filter coefficients take the even 



samples of the input, while the odd filter coefficients take odd-
indexed samples as input. 
The controller section generates address for the RAM, which 
stores the input data (ref. Fig. 2). Address generated by the 
controller section is of the form shown in table 1. 
 

Filter h0, h2, h4, h6 h1, h3, h5, h7 
Clock Even Samples Odd Samples 

1 a0, a2, a4, a6 a1, a3, a5, a7 
2 a2, a0, a2, a4, a1, a1, a3, a5 
3 a4, a2, a0, a2, a3, a1, a1, a3 
4 a6, a4, a2, a0, a5, a3, a1, a1 
…   
11 a10, a12, a14, a14, a11, a13, a15, a13 
12 a8, a10, a12, a14, a9, a11, a13, a15 

 
Table 1: Order in which input samples are multiplied with filter 

coefficients 
 

This separation of the input signal samples into even and 
odd sequence is done by the controller section. The output of 
the RAM is given to the filter stage, which performs the 
multiplication operation using CORDIC structure. 

As the first sample is given to the CORDIC input, (ref. Fig. 
3) the output is obtained after 24 clock cycles. Output of this 
stage is the product of input sample with the corresponding 
filter coefficient. This output is added to the product of the odd-
indexed filter coefficient and odd input sample and registered. In 
the next clock the registered output of Reg9 & Reg10, and Reg 
11 & Reg 12 are added and registered at Reg13 and Reg14 
respectively. In next clock the output of Reg13 and Reg14 are 
added to give the output of the filter. 

 

 
Fig 3. Array Architecture for CDWT filters (LPF section only) 

 
3.1 Filter Design 

The basic equations for CDWT (Equation.(1)) can be 
written in the following form: 

 
H (n) = A [cos((n-n0)ωi)+j sin((n-n0)ωi)]  (4) 

 
where i=0 for low pass filter and i=1 for high pass filter, and  
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However, the structure of both the equations are same, so 
equation (4) can be taken as the generalized form for both high 
and low-pass filters. The amplitude values a0 and a1 are taken to 
be equal and of magnitude 0.5. This has been done without any 
loss of generality. Thus multiplication with a0 and a1 can be 
achieved using shift operations only. The structure of the filter is 
shown in Fig. 4. 
 
The filters coefficients are given by: 
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By realizing 15o, 45o and 75o angles only, all the other 
orientations can also be covered. Here the tangent of the angles 
can be realized by using shift and add at five stages for both 15o 
and 75o, whereas for 45o it is a one stage process without any 
shift. The tangent of the angles are given as 
 
15o (in rad) = tan-1(2-2) + tan-1(2-6) + tan-1(2-10)+ tan-1(2-12)  
75o (in rad) = tan-1(20) + tan-1(2-1) + tan-1(2-4) - tan-1(2-9) –  

      tan-1(2-11)  
 
The input sequence can be real or complex. In this paper a 
complex input sequence is chosen for generalization of the 
derivations. 

 
Fig 4. Realization of a filter coefficient 

 
When a real signal is convolved with the complex filter 

response of the CDWT filters the output is a complex signal. Let 
the complex input sequence be described as: 
 
f =  fx + j fy 
 



Multiplication of a signal coefficient with a filter coefficient of 
the form A(cosθ + j sinθ) gives the output as: 
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where Fre is the real part of the output signal and Fim is the 
imaginary part of the signal. The above equation essentially 
represents a plane rotation operation, which can be efficiently 
computed by applying CORDIC algorithm. 
 

3.2 Circular CORDIC 
In CORDIC technique, the plane rotation through an angle 

α is achieved by decomposing the target angle into several 
elementary angles and carrying out rotations through each of 
these angles as follows [8],[10]: 
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with M being the word length and δi= ±1 

Since θI /2 < θI+1 < θi, any arbitrary angle can be expressed 
in terms of elementary angles θi with their signs properly 
chosen. An elementary plane rotation in two dimensions may be 
expressed as 
 
xi+1 = cos θi  (xi + δi  yi tan(θi))  
yi+1 = cos (θi) (-δi xi tan (θi) + yi)   (9)        
Where the value of δi decides the direction of rotation. This 
expression is identical to equation (7). For an 8-tap filter, the 
window half-length D is equal to 4. Thus the value of n ranges 
from -4 to 3. For low-pass filters the value of θ, i.e. the 
orientation of the filter, is given by ±15o, ±45o, ±75o, ±105o.  
 

3.3  Hyperbolic CORDIC 
Equation (1) can be broken down into three parts, which are 

dealt individually. The first part of the equation involves the 
amplitude coefficients a0 and a1. Amplitude is multiplied with a 
Gaussian distribution function and the product is again 
multiplied with e(j(n-n0)ω). The Gaussian function is expressed as: 
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where sigma is the standard deviation calculated from the 
frequency bandwidth and orientation bandwidth (ref. appendix 
A). 
Solution of the Gaussian expression can also be done using 
Hyperbolic CORDIC scheme. In this case the recursion equation 
is given by: 
 
xi+1 = xi + δi yi 2-i  
yi+1 = yi + δi xi 2-i     (10) 

zi+1 = zi - δi εi 
 
for i ≥ 1 where εi = tanh-1(2-i) 
Equation (10) can be realized by using shifters and adders. 
Structures for circular and hyperbolic CORDIC (equation (9) 
and (10) are given in Fig 5. 

 
Fig 5. Pipelined CORDIC Architecture 

 
 

4. PERFORMANCE ANALYSIS 
Architecture of CDWT is probably the first of this type so, 

no comparisons can be provided. Number of clock cycles needed 
for computation of the CDWT using the proposed architecture 
for a N-tap filter (N = 2x, x is an integer) is given by log2N. Thus 
the time is O(log2N). The pipelined CORDIC algorithm ensures 
reduction of hardware overhead and also enhances the speed 
performance. The latency of the system is 24 (16 for hyperbolic 
CORDIC + 5 for circular CORDIC + 3), while the throughput is 
1. Using pipeline CORDIC, the full parameter space with all 
possible rotation angles is reduced to five rotation stages for this 
particular application.  

For verification of the algorithm the performance of the 
architecture is tested for a 4-tap CDWT on FPGA using Xilinx 
XCV100 series. Figure 6  shows FPGA implementation of 4-tap 
CDWT. Figure 6(a) shows the schematic for the architecture for 
4 tap filter, figure 6(b) shows the circular CORDIC unit for 15o 
rotation, while scaling unit for the same is shown in figure 6(c). 
This architecture is found to operate at 27 MHz and gives 
accuracy up to 11th bit in the worst case. 
The 16-bit machine is used for 12-bit word length operation. A 
scheme of angle representation is done by choosing the weights 
as  -π, π/2, π/4, ....., π/2M-1 (M being the word length). The MSB 
and the last three LSB's are padded with zero for allowing the 
overflow and reducing the round-off error (0 k0 k1 .... k11 0 0 0. 
Because of non-availability of literature on architecture for 
CDWT, comparisons with other architectures cannot be 
provided. 



 
Fig. 6(a). Schematic of 4-tap CDWT filter implemented on 

Xilinx XCV100 series 
 

 
 

Fig. 6(b). Schematic of circular pipelined CORDIC for achieving 
15o 

 
The algorithm described in this paper exploits the 

symmetry of the relation between the input samples. This 
results in a regular and parallel structure of the filter architecture. 
Parallelism results in low power and high-speed operation. But 
the tree structure retains a high throughput rate (1/t0=frequency 
of the circuit) compared to the direct form of filter realization.  

 
Fig 6 (c ). Schematic of Scaling Unit for circular CORDIC of 

15o 

 
 

4 APPENDIX 

5.1 Standard Deviation 
Determination of the standard deviation is done from the 
frequency bandwidth Br and orientation bandwidth Bθ. 
The frequency bandwidth is expressed as: 
\begin{equation} 
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Frequency bandwidth, in octaves, from frequency f1 to 
frequency f2 is given by log2(f2/f1). Image array with a width of 
Nc pixels where Nc is a power of 2, the following values of radial 
frequency n0 are used:  
1√2, 2√2, 4√2, …. 
Taking the half-power consideration, for first octave Br is equal 
to 1. 
Thus  

0
2ln23

1
nu =σ     (A.2) 

The orientation bandwidth Bθ is given by 

0

2ln2)
2

tan(
n

B vσθ =  

It has already been seen that the frequency bandwidth Bθ = 30o. 
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