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ABSTRACT
The ability to tolerate defects in semiconductor devices has
the potential for both increasing yields of devices being man-
ufactured and making it economically feasible to manufac-
ture even larger devices. While FPGA devices appear to be
well suited to providing defect tolerance, practical applica-
tion of existing research and techniques has been somewhat
elusive. One barrier to acceptance is that existing defect
tolerance techniques for FPGAs have tended to rely on ei-
ther modifications to device architectures or modifications
to design tools. We describe a software-based technique for
providing defect tolerance which requires neither changes
to device hardware or software tools. This approach uses
the Xilinx JBits(tm) toolkit and operates at the core library
level. Addressing defect tolerance locally using core library
elements rather than taking a global approach helps provide
direct support for run-time reconfiguration. Circuits may
be configured and reconfigured rapidly in the presence of
these defects. This rapid configuration also provides a path
for practical use in more traditional manufacturing environ-
ments.
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1. INTRODUCTION
As with most semiconductor devices, the size of FPGAs

are limited by the quality of their manufacturing process.
Because there are typically a relatively fixed number of flaws
distributed across a silicon wafer, the larger the device, the
fewer the number of working parts per wafer. The largest
devices typically have very small manufacturing yields and
are the most expensive. While defect density is a limiting
factor in the size of semiconductor devices, improvements
in manufacturing processes have led to a steady increase in
device sizes. Table 1 shows the recent growth in density of
the largest available FPGA devices from Xilinx [15].
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Table 1: FPGA device density.

Device Family System Gates Date Introduced

XC4000XLA (tm) 500K Sept. 1998

Virtex(tm) 1,124K Oct. 1998
Virtex-E 4,047K Sept. 1999
Virtex2 10,000K (approx) May 2000

While advances in manufacturing technology have made
impressive gains, other techniques to improve the number
of working devices, or yield of a manufacturing process are
possible. In this paper, we describe a software-based tech-
nique for providing defect tolerance. This is done by im-
plementing defect tolerance at the Run-Time Parameteriz-
able (RTP) Core [6] level. These cores designed using JBits
software tool kit [7] selectively skip the defective circuit ele-
ments and functions correctly even in the presence of defec-
tive configurable logic blocks and interconnect wires. This
also provides the core designer control over the layout of the
design in the presence of defects. A defect tolerant constant
multiplier RTP core was designed using this technique and
was implemented on a Xilinx Virtex device and the results
were verified.
The paper is outlined as follows: Section 2 discusses the

related work. Section 3 provides an overview of JBits inter-
face and RTPCores. Section 4 describes the RTPCore based
defect tolerance approach. In Section 5 design of a defect
tolerant constant multiplier and the implementation results
are provided. Section 6 discusses the technique to tolerate
defective interconnect wires. In Section 7 conclusions and
the future work are discussed.

2. RELATED WORK
One popular technique for Defect Tolerance in semicon-

ductor devices relies on the use of redundant circuitry [9].
These redundant circuitry techniques are generally based
on making available “spare parts” on the device die which
may be swapped in to replace other defective elements. This
permits otherwise faulty devices to function correctly. These
defect tolerance techniques not only have the ability to in-
crease yields, but also to make larger devices economically
feasible.
While these defect tolerance techniques have long been of

theoretical interest, they have only found practical applica-
tion in a small range of device types. The limiting factor for
these redundant logic techniques is providing the redundant
components efficiently. In the worst case, providing redun-
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dant circuitry for the entire device could easily double the
die size. This would in all likelihood eliminate any gains
made by increasing the yield of functional devices.
One area where defect tolerance has been used success-

fully is in memory arrays. Memory devices are somewhat
unique in that they contain a large, regular array of rela-
tively independent cells. Providing a high level of defect
tolerance typically requires only a spare column of memory
cells which can be used to replace a column containing a
defective cell. This spare column is swapped in using a vari-
ety of techniques in the final stage of manufacturing. In the
case of memories, the relatively low overhead of providing a
spare column of memory cell makes this technique economi-
cally feasible. FPGAs represent a similar, but more complex
cellular array than memories. In simple programmable logic
devices, it may be possible to employ similar redundancy
techniques to improve manufacturing yields.
Using programmable cellular arrays for defect tolerance

has been explored as far back as Minnick [14]. Redundant
cells or columns of cells can be made available and swapped
in much in the same way spare columns of memory cells are
reassigned. Unlike simple memory arrays, the high level of
interconnect between cells and the timing issues involved in
programmable logic devices make hardware approaches such
as this infeasible except for the simplest architectures.
Research that suggests special architectures and modifi-

cations to hardware that would result in defect tolerance
is also being pursued [3] [10]. While special purpose archi-
tectures and manufacturing process enhancements may be
used to provide defect tolerance in FPGA devices, another
approach is to use design software to map circuits around
defective portions of the device. Such software-based defect
tolerance does not require any redundant circuitry or any
changes to the existing device architecture or manufactur-
ing processes.
Much of the work in defect tolerance for FPGAs has re-

volved around the idea of mapping circuits around known
faults at the device, wafer and even system level [1] [2] [4]
[8] [13]. The general approach is to perform off-line test-
ing of the device and mark defective portions of the device,
which can later be bypassed by the design mapping tools.
The drawback of this approach is the necessity to re-run
the design mapping tools to produce a unique circuit con-
figuration for each device. Such tools are typically compute
intensive and require time on the order of hours on a rela-
tively powerful system to produce a result. This is usually
not acceptable in a large-scale manufacturing environment.
In addition, because these techniques typically require either
special tools or modifications to existing tools, very little of
this work has been demonstrated on commercially available
devices.
By contrast, the work of Emmert et al. [5] operates on a

commercially available FPGA device and operates on-line,
that is, at run-time. This approach combines a technique
for automatically detecting faults in an operating FPGA
circuit and reconfiguring the circuit around any detected
defects. This approach solves the problem of long tool run-
times by bypassing the design tools altogether. Circuits are
re-mapped incrementally at the device level.
The system we have implemented combines the techniques

of on-line and off-line approaches to defect tolerance. The
assumption is that devices are tested and defects detected
off-line during the manufacturing process are logged in a

defect database. This database contains the location of de-
fective Configurable Logic Blocks (CLBs) and interconnect
wires. Using this defect database circuits may then be con-
figured and reconfigured on-line at run-time, continuing to
operate in the presence of these defects. The use of JBits
run-time reconfiguration tool suite [7] provides the speed
and flexibility necessary to produce new configurations in
the presence of defects.

3. RUN-TIME RECONFIGURATION
USING JBITS

The JBits tool suite is a collection of Java Application Pro-
gram Interfaces (APIs) and associated tools used to build,
test and debug Run-Time Reconfigurable (RTR) systems.
At the lowest level, JBits gives direct read and write ac-
cess to all configurable elements of the FPGA device. This
permits both the logic in Look-Up Tables (LUTs) and the
routing to be quickly and directly modified in-system at run-
time.
Currently JBits is being used primarily as a development

tool for run-time reconfigurable systems. Circuits are speci-
fied in terms of logic and routing and grouped into Java ob-
jects in the form of cores. The JBits model views an FPGA
device as a two dimensional array of CLBs. These CLBs are
indexed with a row and column parameter. Partitioning the
device this way permits small sections of the device to be
programmed. Loops or conditional statements can be used
to replicate the programming. This forms the basis of de-
signing RTP Cores. Along with this, JRoute, [11] a router
based on the JBits API is used to route the interconnects.
Unlike the traditional static circuits of existing schematic

capture or HDL Cores, JBits Cores are not fixed data ob-
jects. JBits Cores are instead code sequences describing how
to construct circuits. This permits a high degree of flexibil-
ity in how circuits are instantiated. In particular, circuit
parameters such as bit width can be specified as late as at
run-time. These Run-Time Parameterizable (RTP) Cores
not only simplify library design and provide a wider range
of choices for designers, but allow circuits to be modified and
configured in-system at run-time, perhaps based on user in-
put or sensor data.
RTP Cores are the basic building block for JBits designs.

By defining the functionality of groups of CLBs, they pro-
vide a useful framework not only for hierarchical design, but
also for run-time reconfiguration. It is within this framework
that support for defect tolerance is provided.

4. RTP CORE-BASED DEFECT
TOLERANCE

One concern with the existing approaches to software-
based FPGA defect tolerance is that they tend to operate
at the device level. The software to support defect toler-
ance in this manner also takes a global view of resources
and operates more or less autonomously. This necessarily
inserts a layer between the application software and the im-
plementation which not only interferes with direct control of
resources, but complicates attempts to do run-time recon-
figuration.
Because the RTP Core model is run-time reconfiguration

friendly, it is desirable to extend this model in some way to
provide defect tolerance. The most direct way to accomplish
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Figure 1: Defect Tolerant RTP Core Scheme

this is to require the RTP Core to produce a correctly op-
erating circuit, even in the presence of defects. RTP Cores
would be specifically constructed to bypass faulty logic and
interconnect dynamically at run-time. This technique does
not attempt to correct the faults but rather avoids the usage
of defective CLBs and interconnects in the circuit being im-
plemented. Thus irrespective of the nature of defect present
in CLBs and interconnects this technique would produce de-
fect tolerant RTP Cores. This approach may require that
RTP Cores use more resources in the presence of defects,
but that correctly functioning circuits are produced. The
elements involved in the implementation of a Defect Toler-
ant RTPCore is shown in Figure 1.

Figure 2: Skip CLB Mode

Because RTP Cores operate at the CLB level, defect tol-
erance using RTP Cores also necessarily operates at the
CLB level. When a defective component (LUT, Mux etc)
is detected in a CLB, the entire CLB is marked as unus-
able. While this approach makes less efficient use of re-
sources than identifying individual defective components of
the CLB, other smaller grained approaches could have been
pursued. It was decided, however, that CLB level granu-
larity was appropriate, given that it resulted in simplified
software. The list to track defective components would only
be a list of defective CLBs, rather than a more complicated
list of heterogeneous resources.
One advantage of the RTP Core approach is that a single

Figure 3: Skip Row Mode

Figure 4: Skip Column Mode

overall scheme to provide defect tolerance is not required.
Each RTP Core can use the most appropriate technique for
its circuit or mode of operation. Three basic modes (Skip
CLB, Skip Row, Skip Column) of constructing an RTP Core
in the presence of a defective CLB are shown in Figures 2, 3
and 4. The mode is usually specified by an input parameter
to the RTP core. In case of a defect in the Skip CLB mode,
an entire CLB can be ignored and marked off as defective,
with logic and routing flowing into the next CLB. Addition-
ally, an entire row or column of CLBs may be marked off
and treated as defective, in the Skip Row and Skip Column
modes. These modes are used only to avoid defective CLBs
and are not applicable to interconnect defects. The reasons
for inapplicability of the mode while tolerating the defective
wires is discussed in Section 6.
Each of these modes have different advantages which are

typically dependent on the type of circuit being implemented.
For example, if the circuit’s output needs to be aligned in
contiguous CLB locations in the output column, then Skip
Column mode would be effective. On the other hand, if
the circuit’s CLB usage needs to be as minimum as possi-
ble, then Skip CLB mode would be useful. In general, these
modes provides the desginer with various options to layout
the design in the presence of defects and its up to designer’s
discretion to choose the mode of implementation based on
the design constraints.
While RTP Cores may be constructed of other RTP Cores

in a heirarchical fashion, these higher level cores do not have
to be concerned with defects. Only the lowest level RTP
Cores which are built from arrays of CLBs must be made to
produce defect-tolerant circuits. While this approach may at
first seem ad-hoc -with different, perhaps complex, schemes
used to produce each defect tolerant RTP Core- this was
not the case in practice. Nearly all RTP Cores are con-
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structed by iteratively programming logic and interconnec-
tions in some parameter-based loop. For instance, a sim-
ple shift register is built by programming a chain of some
number of linearly interconnected flip-flops. The number of
stages in the shift register is typically a run-time parameter
to the core, enabling shift registers of arbitrary sizes to be
constructed on the fly.
If a faulty CLB is encountered while constructing such a

shift register, for instance, all that is required is that the
faulty cell be skipped and interconnection be performed to
the next CLB. In this case, the additional software overhead
of providing defect tolerance is a test for a defect and con-
ditional statement for modifying a CLB index. However,
the routing defects are tolerated by marking off the defec-
tive interconnects even before performing the routes for a
RTPCore. In general, alongwith the marking of bad in-
terconnects, the overhead of making an RTP Core defect
tolerant is typically a test of the list of marked CLBs and a
conditional incrementing of an index. The flow diagram in
Figure 5 describes how the Skip CLB mode is implemented;
Skip Column and Skip Row modes can also be implemented
similarly.

Figure 5: The Defect Tolerant RTP Core design
flow.

Logic for a particular CLB is specified using JBits API
while routing the interconnects is performed using JRoute.
JRoute, a run-time routing API, is available in the JBits
toolkit. Built on JBits, the JRoute API provides access to
routing resources in a FPGA device. JRoute provides point
to point routing at run time between RTP Cores and has
various levels of routing control. This ranges from turning
on or off a single connection to auto-routing between various
sources and sinks. In this work, auto-routing is extensively
used to route the defect tolerant RTP Core. The technique
outlined in Figure 5 is based on assuring that both source
and destination of all routes is established before intercon-
nections are routed using the JRoute API.

5. A DEFECT TOLERANT CONSTANT
MULTIPLIER RTP CORE

One RTP core that is especially common in RTR systems
is a constant coefficient multiplier. Unlike a standard two
input multiplier, one input is tied to a constant value in a
constant coefficient multiplier. The multiplier folds the con-
stant value into the circuit, producing a smaller, faster and
more power efficient implementation. As a trivial example,
a constant multiplication by a factor of two can be reduced
to a simple shift operation. Other constant values can be
reduced to similar combinations of shifts and additions.
A defect tolerant constant multiplier was designed adopt-

ing the flow described in Figure 5 for all the three modes of
defect tolerance. The multiplier in this example is an eight
bit input, sixteen bit output constant coefficient multiplier
with a constant value of 75. This RTP Core was verified
with other test inputs, but the diagrams in the remainder
of this section uses a test input of 255 (0xFF), producing a
final result of 19,125 (0x4AB5).
Although the Virtex device that was used in these exper-

iment to verify the functionality of the multiplier did not
contain any defective CLBs and wires, certain CLBs and
wires were marked as bad in the defect database. Thus
these defective CLBs were ignored in the configuration data
and the multiplier was placed and routed around these de-
fects. The functionality of the multiplier was verfied using
the Boardscope debug tool which is available in the JBits
tool kit.

Figure 6: Boardscope core and state views for the
SKIP CLB mode.

Figure 6 shows an implementation using the Skip CLB
method of avoiding defects. This figure is derived from ac-
tual screen output from the BoardScope debug tool operat-
ing on a Virtex XCV800 device [12]. In BoardScope a FPGA
device is represented as an array of CLBs with index (0,0)
at the bottom left corner of the array. BoardScope has both
a Core as well as a State View. While the Core View shows
cores present in a design, the State View shows the state
of all the flip-flops in a device. Each of the four flip-flops
present in one Virtex CLB is represented by a quadrant of
a CLB space in the BoardScope State View with state zero
and one represented in blue and green color respectively.
In this example, a constant value RTP Core with a value

of 255 is placed in the lower left corner of the CLB array at
CLB(0,0). This value drives the Defect Tolerant Constant
Coefficient Multiplier RTP Core placed just to the right at
location CLB(0,1). Defective CLBs are marked at six lo-
cations, including CLB(0,6), CLB(1,1) and CLB(3,2). The
Core View to the left in Figure 6 clearly shows the defective
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CLBs. On the right, perhaps less clear than the Core View,
the BoardScope State View shows the state of all flip flops
in the device, with the unused “defective” CLBs containing
flip-flops with all states set to zero. In addition, the output
can be determined to be correct value of 19,125(0x4AB5).
The output value of the multiplier can be interpreted from
the state of lower right quadrant flip-flop value of each CLB
present in the last column of the multiplier design.

Figure 7: Boardscope core and state views for the
skip row mode.

Figure 8: Boardscope core and state views for the
skip column mode.

Similar to the Skip CLB mode, Figure 7 demonstrates
the Skip Row mode while Figure 8 demonstrates the Skip
Column mode. Here, defective CLBs result in an entire row
or column of CLBs being ignored. These modes are useful in
producing cores that may have more desirable geometries.
Aligning all RTP Core outputs in a single column, even in
the presence of faults may be desirable for layout purposes.

6. MARKING DEFECTIVE WIRES
While the model based on marking off defective CLBs is

sufficient, there are often cases where ownership of a resource
to a particular CLB is not obvious. For instance, single
length lines that connect adjacent CLBs are not clearly part
of either CLB. By convention, all wires can be assigned to
a particular CLB, but this is not necessary in JBits.
Because a JBits RTP core uses the JRoute run-time rout-

ing API, a simple marking scheme for defective wires is al-
ready available. The JRoute API used to arbitrarily inter-
connect inputs and outputs in the device must keep track of
the interconnect resources that are in use. In the existing
implementation, JRoute begins by assuming that all routng
resources in the device are free. As connections are made,
JRoute updates the interconnection database. To mark off

individual wires as defective in JRoute is fairly straight for-
ward. The JRoute resource database is pre-loaded to make
the defective wires appear to be already in use before rout-
ing the defect tolerant RTPCore. Thus these wires will not
be included in the routing produced for a RTP core by the
JRoute API.
This technique of marking off the defective wires require

the availability of sufficient defect-free wires that can be used
to route the design. Present FPGA architectures provide
abundance of routing resources. For example, Virtex routing
architecture has 24 single-length and 72 buffered Hex lines
in each of the four directions per CLB. Direct and Long lines
are also available to route the signals[15]. Thus even in the
presence of few defective wires in a CLB, the router would
have sufficient wires to route the signals.
Because a very large percentage of the device and a large

percentage of the resources in present commercial FPGAs
such as Virtex are interconnect resources, this pre-loading
of the JRoute resource usage database is expected to ad-
dress a large number of defects. This eliminates the need for
marking off entire CLBs and large blocks of routing when
only a single wire may be defective. Because this should
greatly decrease the number of wires marked as faulty, rout-
ing around defects should be simplified. In the presence of
interconnect defects only, the logic and other good routing
resources can still be used without marking off the entire
CLB as defective. It is for these reasons that the modes of
skipping a defective CLB are irrelevant when tolerating the
defective interconnect resources.

7. CONCLUSIONS AND FUTURE WORK
A technique has been demonstrated for providing defect

tolerance in FPGA devices at the RTP Core level. This
requires that the defect tolerance scheme used is explicitly
specified by the RTP Core implementation. This approach
has the advantage that no other additional software or mod-
ifications to device architectures are required. In addition,
the software overhead of providing such defect tolerance is
minimal and need only be provided for the lowest level cores
in a heirarchical design. This technique is also unique in that
it provides direct support for run-time reconfiguration. Cir-
cuits may be configured and re-configured transparently in
the presence of defects.
While this approach is currently viable, there are still

many new directions to be explored. We are currently ac-
tively exploring on-line run-time defect detection and iso-
lation. This will permit defects to be found and logged at
run-time. The combination of these techniques will permit
systems to continue to operate in the presence of device
faults, even very late in the lifetime of the system. This has
advantages for various remote applications where physical
repair or replacement of faulty components may be difficult
or impossible.
Presently JRoute does not provide support for timing con-

straints but work is also being done on a static timing an-
alyzer. This can be used to verify that timing constraints
have not been violated by the presence of defects in a cir-
cuit. This tool will also work on-line and should complement
the on-line techniques being explored. Finally, new Defect
Tolerant RTP Cores are being built to further explore ap-
plication level defect tolerance.
The techniques described in the paper permit FPGA de-

vices to be configured and reconfigured in the presence of de-
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fects. In addition to supporting run-time reconfiguration in
the presence of defects, this JBits-based approach may also
be used to configure devices in a more traditional static en-
vironment. Without re-compilation or any interaction with
design tools, large numbers of defective FPGA devices can
be rapidly configured. This provides a practical path for
making use of defective devices in a traditional manufac-
turing environment. In addition to raising device manufac-
turing yields, this approach should also permit much larger
FPGA devices to be produced and programmed. The largest
practical device which could be produced and programmed
by these techniques may in fact be limited only by the size
of the silicon wafers used in the manufacturing process.
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