
Detailed Routing Architectures for Embedded

Programmable Logic IP Cores
Peter Hallschmid and Steven J.E. Wilton

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, BC, Canada

{peterh, stevew}@ece.ubc.ca

ABSTRACT
As the complexity of integrated circuits increases, the ability to
make post-fabrication changes to fixed ASIC chips will become
more and more attractive. This ability can be realized using
programmable logic cores. These cores are blocks of
programmable logic that can be embedded into a fixed-function
ASIC or a custom chip. Such cores differ from stand-alone
FPGAs in that they can take on a variety of shapes and sizes.
With this in mind, we investigate the detailed routing
characteristics of rectangular programmable logic cores. We
quantify the effects of having different x and y channel capacities,
and show that the optimum ratio between the x and y channel
widths for a rectangular core is between 1.2 and 1.5. We also
present a new switch block family optimized for rectangular cores.
Compared to a simple extension of an existing switch block, our
new architecture leads to an 8.7% improvement in density with
little effect on speed. Finally, we show that if the channel widths
and switch block are chosen carefully the penalty for using a
rectangular core (compared to a square core with the same logic
capacity) is small; for a core with an aspect ratio of 2:1, the area
penalty is 1.6% and the speed penalty is 1.1%.

Categories and Subject Descriptors
D.7.1 [Integrated Circuits]: Types and Design Styles – VLSI
(Very large scale integration)

General Terms
Design, Performance, Experimentation.

Keywords
Detailed Routing, Programmable Logic, FPGA, Embedded Cores,
SoC Design.

1. INTRODUCTION
Field-Programmable Gate Arrays have rapidly become the
implementation medium of choice for many digital circuits.
Recent years have seen a plethora of research aimed at improving

the speed and density of these devices. Unfortunately, despite
significant progress, for many applications FPGAs still do not
provide the required speed or density. For these applications,
designers can still enjoy the benefits of flexibility and
configurability by creating a custom chip or cell-based ASIC, and
incorporating a programmable logic IP (Intellectual Property)
core. A chip designed this way would contain both fixed logic
and programmable logic. Parts of the chip that are unlikely to
change can be implemented using the fixed ASIC circuitry or
fixed IP (Intellectual Property) cores, while functions that may
change can be implemented in the programmable logic core.

There are several scenarios in which incorporating a
programmable logic region within a fixed ASIC would be
advantageous:

1. Some design details can be left until late in the design cycle.

In a communications application, for example, the
development of the chip can proceed while standards are
being finalized. Once the standards are set, they can be
incorporated in the programmable portion of the chip. This
is important, since time-to-market is so critical in industry
today.

2. As products are upgraded, or as standards change, it may be
possible to incorporate these changes using the
programmable part of the chip, without fabricating an
entirely new device.

3. In many cases, it may be possible to fabricate a single chip
for an entire family of devices; the characteristics that
differentiate each member of the family can be implemented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA 2001, February 11-13, 2001, Monterey, California, USA.
Copyright 2001 ACM 1-58113-341-3/01/0002…$5.00.

I/O Ring and Interface Circuitry

I/O Ring and Interface Circuitry

Embedded
Processor

On-Chip
Memory

Fixed
IP

Block

Fixed
IP

Block

Programmable
Logic

Figure 1: Hypothetical System-on-Chip with Programmable
Logic IP Core.

69

using the programmable logic. This would, in effect,
amortize the cost of developing the ASIC over several
products. In a similar way, standard products can be
customized for different customers by implementing the parts
of the circuit specific to that customer in the programmable
logic portion of the chip.

4. Testing structures can be implemented using the
programmable logic. Consider a chip with a faulty
functional unit. To debug the functional unit (so changes can
be made in later spins of the chip), it may be very valuable to
construct a small circuit that can stimulate or analyze the
faulty functional unit. The nature of this circuit would be
unknown when the chip was initially designed, and thus
would be a natural candidate for the programmable logic
portion of the chip.

The use of programmable logic cores fits well with the emerging
system-on-chip (SoC) design methodology, in which third-party
cores are combined on a single chip. The chip in Figure 1 is a
hypothetical chip that follows this design style. As the figure
shows, the chip contains a processor core, some on-chip memory,
two fixed IP blocks, and a programmable logic core. In this case,
the programmable logic core is simply another core that the
system-on-a-chip designer can buy from a third party. Already,
several companies offer such cores [1][2].

The potential benefits of integrating fixed and programmable
logic described above are so compelling that we feel that the
ability to make post-fabrication changes in a fixed-function ASIC
will eventually become as important as design-for-testability is
today. In order for this to happen, however, there are a number of
challenges that must be overcome. Most programmable logic
architecture and CAD tool research has focused on stand-alone
FPGAs. Much of this will not carry over to embedded
programmable cores, which can take on many different shapes and
aspect ratios. A second issue is the integration of the FPGA CAD
flow into the existing ASIC design flow. Yet another challenge is
the pre-tape-out verification of an ASIC with a programmable
logic core; it is unclear how such a chip can be verified if the
circuit to be included within the programmable logic core is
unknown. Finding solutions to these problems is part of a larger
project at the University of British Columbia where we are
studying the system-on-chip design style, and the use of
programmable logic within that design style.

In this paper, we focus on just one of these problems: the
architecture of the programmable logic core, specifically the
detailed routing architecture. One of the most significant
differences between embedded cores and stand-alone FPGAs is
that embedded cores can take on a variety of shapes and sizes to
better mesh with the fixed ASIC circuitry. One SoC design may
need a relatively square programmable logic block, while another
may need a long narrow programmable logic block (perhaps
placed along an entire edge of the chip to provide a programmable
interface to the I/O ports). Yet another design may need several
small cores. The example in Figure 1 uses an L-shaped core.
Each of these sizes and shapes makes unique demands on the
detailed routing architecture. These demands and their
implications to the detailed routing architecture are the focus of
this paper. Specifically, this paper focuses on two aspects:

1. In [3], it was suggested that for a rectangular FPGA,

channels in the long direction should have more tracks than
channels in the narrow direction (as shown in Figure 2). On
average, signals will have to travel further in the long
direction of the FPGA so channels in this direction should
have a higher track capacity. This is quantified in [3];
however, [3] approaches the problem using global routing
only. However, due to the limited connectivity with
programmable logic routing, the detailed routing architecture
will have a significant effect on the optimum channel widths
for a given programmable logic core. In this paper, we
revisit this question, considering the detailed routing
architecture.

2. At each intersection between a horizontal and vertical
channel lies a switch block. Since switch blocks use up a
large portion of area and are a very significant part of the
routing flexibility, the design of a good switch block is of the
utmost importance. Thus, there has been considerable work
developing efficient switch block architectures [4][5][6][7].
All of the previous switch blocks are square; in other words,
they assume the same number of incident tracks for all sides.
In our environment, however, vertical and horizontal
channels will often have different widths. A second
contribution of the paper is the presentation of a new switch
block optimal for cores with different vertical and horizontal
channel widths.

Thus, the contribution to this paper is two-fold: we quantify the
effects of different channel widths in rectangular programmable
logic cores, and we propose a new switch block specifically for
programmable logic cores that are directionally biased.

2. ARCHITECTURAL FRAMEWORK
In this paper, we restrict our attention to rectangular island-style
programmable logic cores. Each core consists of nx*ny clusters,
each containing r logic elements (in the results of Section 4, we
fix r = 4). Each logic element consists of a 4-input lookup table
and a flip-flop. The logic clusters are surrounded by a grid of
routing channels; each vertical channel contains ty parallel tracks,
and each horizontal channel contains tx parallel tracks. In this
paper, we assume, without loss of generality, that ty > tx. We
assume a segmented architecture in which every track spans 4

Log ic B lock Sw itch B lock

Narrow C hannel W ide C hannel
Figure 2: An FPGA with unequal horizontal and vertical
channel capacities.

70

logic clusters. Tracks of the same channel are staggered relative
to each other [8]. At the intersection of each horizontal and
vertical channel is a switch block that comprises of 50% pass-
transistors and 50% tri-state buffers (see [9]). Connection-block
and switch-block populations are both 100% (see [10]).

3. RECTANGULAR SWITCH BLOCK
At the intersection of each horizontal channel and each vertical
channel lies a switch block. Each switch block provides for
programmable connections between tracks of the incident
channels. Switch blocks consume a large portion of the area of an
FPGA and their structure has a significant effect on the routability
and speed attainable by the device. Thus, optimizing the
architecure of the switch block structure is very important.

Previously proposed switch blocks such as the Disjoint [4],
Universal [5], and Wilton [6] have all been square; an equal
number of tracks enters each side of the block. In each of these
previous switch blocks, each incoming track can be connected to
one or more of three outgoing tracks (ie. Fs = 3). In [7], a switch
block was proposed for FPGAs with segmented routing. In such
an FPGA, each track spans s switch blocks, and the track start
points are staggered, so that at each switch block, 1/s of the tracks
end, while the remaining pass through. The switch block in [7]
distinguishes between these two types of tracks; tracks that ended
were connected using a Wilton pattern, while tracks that passed
straight through were connected using a Disjoint pattern. It was
shown that this scheme helped improve the routability of the
device significantly. Thus, we use the switch block from [7]
(which we will call the Imran block) as a building block in this
paper.

Since a programmable logic core can take on so many different
shapes and sizes, it makes sense to define a family of switch
blocks, where each family member is best for certain shapes and
sizes of the core. In the following subsection we describe a
baseline rectangular switch block and in Subsection 3.2 we show
how a family of switch blocks can be derived from this baseline.

3.1 Baseline Rectangular Switch Block
Our baseline rectangular switch block is a natural extension of a
square Imran switch block. As shown in Figure 3, our block is
composed of several subblocks. With tx tracks incident to the
switch block from the x-channel and ty tracks incident from the y-
channel, there are Ns = ceil(ty/tx) subblocks (called SSBn where
0≤n<Ns). The (Ns-1)th subblock will be a partial subblock if the
number of vertical channels is not evenly divisible by the number
of horizontal channels. The switch block can be represented by a
graph M(T,S) where each node in T represents a terminal (incident
track) of the switch block and each edge in S represents a
programmable switch that connects two terminals. T is
partitioned into 2+2Ns subsets, each with W=tx terminals; two
subsets represent the tracks incident to the short sides of the
switch block and 2Ns subsets represent the tracks incident to the
long sides. Each terminal in T is labeled tm,n where m is the subset
number (0≤m≤2Ns+1) and n is the terminal number within the
subset (0≤n≤W-1).

The programmable connections within our baseline rectangular
switch block can be obtained by replicating the Imran pattern Ns

times. As an example, Figure 4 shows the switching pattern
assuming ty=12 and tx=4 and assuming all tracks end at this
switch block. As the figure shows, the final switching pattern is
the sum of three individual Imran switch block patterns. Note
that, in general, the last sub-block may have fewer than tx vertical
inputs; this is called a partial sub-block. The connection pattern
for a partial sub-block is the same as a full sub-blocks with the
exception that a connection is not made if, due to it being a partial
sub-block, one or more of its incident tracks does not exist. This
exception is incorporated into the algorithm using the function,
Exists(tm1,n1, tm2,n2), where tm1,n1 and tm2,n2 represent incident
tracks. Figure 5 shows an algorithmic description of the baseline
switch block.

3.2 Family of Rectangular Switch Blocks
As Ns becomes large, the baseline switch block becomes
unsuitable. Consider the block in Figure 4. In this example, the
effective Fs for horizontal tracks (number of choices for each
incident horizontal track) is 7. In general, if there are Ns sub-
blocks, then Fs=1+2Ns. This high value for Fs is harmful for two
reasons:

1. The routing delay of a net using a horizontal track will be

high because of the large number of switches incident to the
track at each switch block.

2. The large number of switches translates to a large layout
area, which will reduce the achievable logic density of the
device.

S S B0 S S B1 S S B(N s-1)

t2,0 t2 ,1 t2 ,2 t2 ,W -1 t4 ,0 t4 ,1 t4 ,2 t4 ,W -1

t3 ,0 t3 ,1 t3 ,2 t3 ,W -1 t5 ,0 t5 ,1 t5 ,2 t5 ,W -1

t2N s,0 t2N s,X

t2N s+ 1,0 t2N s+ 1,X

t0 ,W -1

t0 ,2

t0 ,1

t0 ,0

t1 ,W -1

t1 ,2

t1 ,1

t1 ,0

...

...

...

... ...

...

...

...

......

Figure 3: Terminal labeling scheme for a rectangular switch
block.

SS B0 SS B1 SS B2

SS B0 SS B1 SS B2SS B0 SS B1 SS B2

SS B0 SS B1 SS B2

Figure 4: The tracks of a rectangular switch block are the
summation of tracks from three individual Imran patterns.

71

This motivates us to develop a new switch pattern with fewer
potential connections for each track. Rather than defining a single
switch block, we define a family of switch blocks, where each
member of the family is obtained by depopulating the baseline
switch block by a different amount. Members of the family will
be referred to as MODn where n is the proportion of diagonal
switches that have been removed. Figure 7 shows an example
MOD2 and MOD4 block, assuming ty/tx=4. Note that in Figure 7,
tx parallel connections are shown by a solid line for clarity (the
pattern within each solid line is the Imran pattern as shown in
Figure 4).

An algorithmic description of the family of switch blocks is given
in Figure 6. Depopulating the switch block removes connections
in a pattern dictated by what we call sub-block coefficients which
are identified by a 4-tuple, AMODn=(α0, α1, α2, α3). The values of
each tuple depends on n; for a MOD2 switch block, we have
arbitrarily chosen AMOD2=(1, 0, 1, 0), while for a MOD4 block,
the pattern is AMOD4=(2, 1, 3, 0). These patterns can be seen in
the example of Figure 7.

4. EXPERIMENTAL RESULTS
To investigate the suitability of the new switch block family, we
used an experimental approach. Twenty benchmark circuits from
the Microelectronics Corporation of North Carolina (MCNC)
were used [11]. Because we were primarily interested in circuits
which would fit into an embedded programmable logic core, we
chose circuits which were approximately 10% of the size of
circuits which could be implemented in commercially available
stand-alone FPGAs. Half of the circuits were sequential, and half
were combinational. Each circuit was optimized and technology-

mapped using SIS [12] and Flowmap/Flowpack [13]. The logic
elements were then packed to logic clusters using Vpack [14] and
timing-driven placement and routing was performed using a
modified version of VPR [14]. For each circuit and architecture,
the minimum number of tracks required for 100% routability was
found; the number of tracks in each channel was then increased by
20%, and the routing repeated. In all cases, we assumed a 0.18
µm CMOS process from TSMC.

First consider the effect that the track ratio (ty/tx) has on the
overall density and speed of the programmable logic core. Figure
8 shows results assuming the core aspect ratio is 4:1 (ie. the core
is four times as tall as it is wide). The upper graph in Figure 8

S = ∅
 for j = 0 to Ns-1
 for k = 0 to W-1

 if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k end at switch block

 // Wilton Switch Block Pattern

 if (j == 0)
 S = S ∨ { (t0, k, t1, k) }

 if (Exists(t2j+2, k, t2j+3, k))
 S = S ∨ { (t2j+2, k, t2j+3, k) }

 if (Exists(t0, k, t2j+2, (W-k) mod W))
 S = S ∨ { (t0, k, t2j+2, (W-k) mod W) }

 if (Exists(t2j+2, k, t1, (k+1) mod W))
 S = S ∨ { (t2j+2, k, t1, (k+1) mod W) }

 if (Exists(t1, k, t2j+3, (2W-2-k) mod W))
 S = S ∨ { (t1, k, t2j+3, (2W-2-k) mod W) }

 if (Exists(t2j+3, k, t0, (k+1) mod W))
 S = S ∨ { (t2j+3, k, t0, (k+1) mod W) }

 else if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k pass through switch block

 // Disjoint Switch Block Pattern

 S = S ∨ { (t0, k, t2j+3, k) }

 end
 end
 end

Figure 5: Connection algorithm for the baseline rectangular
switch block.

S = ∅
 for j = 0 to Ns-1
 for k = 0 to W-1

 if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k end at switch block

 // Wilton Switch Block Pattern

 if (j == 0)
 S = S ∨ { (t0, k, t1, k) }

 if (Exists(t2j+2, k, t2j+3, k))
 S = S ∨ { (t2j+2, k, t2j+3, k) }

 if ((j mod n = α0) && Exists(t0, k, t2j+2, (W-k) mod W))
 S = S ∨ { (t0, k, t2j+2, (W-k) mod W) }

 if ((j mod n = α1) && Exists(t2j+2, k, t1, (k+1) mod W))
 S = S ∨ { (t2j+2, k, t1, (k+1) mod W) }

 if ((j mod n = α2) && Exists(t1, k, t2j+3, (2W-2-k) mod W))
 S = S ∨ { (t1, k, t2j+3, (2W-2-k) mod W) }

 if ((j mod n = α3) && Exists(t2j+3, k, t0, (k+1) mod W))
 S = S ∨ { (t2j+3, k, t0, (k+1) mod W) }

 else if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k pass through switch block

 // Disjoint Switch Block Pattern

 S = S ∨ { (t0, k, t2j+3, k) }

 end
 end
 end

Figure 6: Connection algorithm for a MODn rectangular
switch block.

tx

tx

tx

tx

tx

tx

tx

tx

tx tx

M O D 2

tx

tx

tx

tx

tx

tx

tx

tx

tx tx

M O D 4

Figure 7: MOD2 and MOD4 rectangular switch patterns.

72

shows the area of the core as a function of the track ratio. The
curve is a result of two competing trends. The first trend marks an
increase in the number of transistors in each switch block as the
track ratio increases (since there are more sub-blocks). The
second trend shows that as the track ratio increases, channel
capacity increases in the long direction of the core, thus increasing
the overall routing flexibility. This leads to a reduction in the
overall number of tracks required in the core and consequently a
reduction in its overall area (or equivalently, an increase in the
achievable density). Together, these trends cause a distinct
minimum in the area curve, as shown in Figure 8. For all switch
block types, the best track ratio was between 1 and 1.5. The
average critical path delay is not significantly affected by the
choice of ty/tx as shown in the lower graph of Figure 8. This
experiment was repeated for aspect ratios of 2, 6, 8, and 10, with
consistent results.

Figure 8 illustrates another interesting result: different members of
our switch block family are appropriate for cores with different
track ratios. As the figure shows, MOD2 is the best (in terms of
tile area) for track ratios less than 1.5. For ratios greater than 1.5,
MOD4 is the best choice and the baseline switch block should
never be used.

Figure 9 shows the results across several aspect ratios. For each
track ratio, the best switch block (from MOD2 and MOD4) was
chosen. As the aspect ratio increases from 2:1 to 10:1, the curve
minimum changes from approximately 1.2 to 1.5. This shows that
the demand for channel capacity in the long direction of a
rectangular programmable logic core increases with the aspect

ratio. Note, however that this increase is not as dramatic as might
be expected; the demand for extra tracks in the long direction
needs to be balanced with the larger size of a highly non-square
switch block.

Figure 10 compares the best results of Figure 9 with those
obtained assuming ty/tx=1. The dashed line represents an
architecture that maintains a unity track ratio and uses a baseline
switch block for all aspect ratios. The solid line represents an
architecture that has the best switch block and track ratio for each
aspect ratio. On average, the tile area for a programmable logic
core with the best track ratio is 8.7% less than a core with a track
ratio of unity. In terms of delay, a programmable logic core with
the best track ratio is (with one exception) roughly 2.7% slower
than a core with a track ratio of unity.

Figure 10 also shows that a square core is always best in terms of
both area and critical path delay. This does not mean that
rectangular cores are a bad idea; in many applications, the fixed
shapes and sizes of the other cores will dictate that a rectangular
programmable logic core is to be used. For small aspect ratios, the
area density penalty for using a rectangular core is small; for an
aspect ratio of 2:1, there is a 1.6% penalty. As the aspect ratio
increases, however, the penalty increases. For an aspect ratio of
10:1, the penalty is 47.7%. In terms of delay, the penalty of using
an apsect ratio of 2:1 is 1.1%, and is 14.5% for an aspect ratio of
10:1.

Tile Area vs. X/Y Track Ratio using the Best Switch for Various Aspect Ratios

6000

7000

8000

9000

10000

11000

12000

13000

1 1.5 2 2.5 3 3.5 4

Track Ratio

T
ile

 A
re

a

2:1

4:1

6:1

8:1

10:1

Critical Path Delay vs. X/Y Track Ratio for the Best Switch-Block for Various Aspect

Ratios

1.40E-08

1.45E-08

1.50E-08

1.55E-08

1.60E-08

1.65E-08

1.70E-08

1.75E-08

1.80E-08

1 1.5 2 2.5 3 3.5 4

Track Ratio

C
ri

ti
ca

l P
at

h
 D

el
ay

2:1

4:1

6:1

8:1

10:1

Figure 9: Plot of tile area and critical path delay versus track
ratio for each aspect ratio. The ideal switch block is used for
each track ratio.

Tile Area vs. X/Y Track Ratio for Aspect Ratio = 4 for Various Switch-Blocks

6000

8000

10000

12000

14000

16000

18000

1 1.5 2 2.5 3 3.5 4

Track Ratio

T
ile

 A
re

a

mod2

mod4

baseline

Critical Path Delay vs. X/Y Track Ratio for Aspect Ratio = 4 for Various Switch-Blocks

1.40E-08

1.45E-08

1.50E-08

1.55E-08

1.60E-08

1.65E-08

1.70E-08

1 1.5 2 2.5 3 3.5 4

Track Ratio

C
ri

tic
al

 P
at

h
 D

el
ay

mod2

mod4

baseline

Figure 8: Area/Delay as a function of track ratio for various
switch blocks. The core ratio is 4:1.

73

5. CONCLUSIONS
In this paper, we have investigated the detailed routing
architectures of programmable logic cores. Specifically, we have
focused on rectangular cores, and have made three contributions:

1. We have quantified the improvement in density and speed

when using different channel widths in the x and y direction
of rectangular cores. We showed that for a core aspect ratio
of 2:1, a track ratio of 1.2 is appropriate, while for a core
aspect ratio of 10:1, a track ratio of 1.5 is best.

2. We have shown that for small aspect ratios, there is only a
small penalty associated with using a rectangular core
(compared to a square core). For an aspect ratio of 2:1, the
area penalty is 1.6% and the delay penalty is 1.1%. For very
rectangular cores, however, this penalty becomes larger; for
an aspect ratio of 10:1, the area penalty is 47.7% and the
delay penalty is 14.5%.

3. We have presented a new family of switch blocks that work
well in rectangular programmable logic cores. Compared to
a simple extension of a previous switch block, we have
shown that our family of switch blocks results in an average
area savings of 8.7%.

As mentioned in the introduction, this work is only a first step at
examining the use of programmable logic cores in the SoC design
style. More work is needed to quantify the benefits of merging
small amounts of programmable logic onto a fixed ASIC chip,
across all application domains. We feel that, eventually, the use
of programmable logic in this way will become an essential tool in

every chip designer's arsenal. When this happens, switch blocks
and architectures such as the one described in this paper will
become critical.

6. ACKNOWLEDGMENTS
This work was supported by the Micronet, the British Columbia
Advanced Systems Institute, and the Natural Sciences and
Engineering Research Council of Canada. The authors wish to
thank the Canadian Microelectronics Corporation for providing
process data, and Mike Sheng and Elias Ahmed for encapsulating
this data into a VPR-readable format.

7. REFERENCES
[1] C. Matsumoto, "LSI Logic ASICs to add Programmable Logic

Cores," Electrical Engineering Times, August 29, 1999.

[2] C. Matsumoto, "Actel Plans to Produce FPGAs as ASIC Cores,"
Electrical Engineering Times, September 20, 1999.

[3] V. Betz and J. Rose, "Directional and Non-Uniformity in FPGA
Global Routing Architectures," IEEE/ACM International Conference
on Computer-Aided Design, 1996, pages 652-659.

[4] Xilinx, Inc., The Programmable Logic Data Book, 2000.

[5] Y.-W. Chang, D. Wong, and C. Wong, "Universal switch modules
for FPGA design, "ACM Transactions on Design Automation of
Electronic Systems, vol. 1, pp. 80-101, January, 1996.

[6] S.J.E. Wilton, "Architectures and Algorithms for Field-
Programmable Gate Arrays with Embedded Memory," Ph.D. thesis,
University of Toronto, 1997.

[7] M.I. Masud and S.J.E. Wilton, "A New Switch Block for Segmented
FPGAs," in Lecture Notes in Computer Science 1673, Springer-
Verlag, pages 274-281.

[8] V. Betz and J. Rose, "Automatic Generation of FPGA Routing
Architectures from High-Level Descriptions,” ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 2000.

[9] V. Betz and J. Rose, "FPGA Routing Architecture: Segmentation
and Buffering to Optimize Speed and Density," ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 1999.

[10] V. Betz, J. Rose, A. Marquardt, "Architecture and CAD for Deep-
Submicron FPGAs," Kluwer Academic Publishers, 1999.

[11] S. Yang, "Logic Synthesis and Optimization Benchmarks, Version
3.0," Tech. Report, 1991.

[12] E.M. Sentovich et al, "SIS, A System for Sequential Circuit
Analysis," Tech. Report No. UCB/ERL M92/41, 1992.

[13] J. Cong and Y. Ding, "Flowmap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based FPGA
Designs,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 1, January 1994, pages 1-12.

[14] V. Betz and J. Rose, "VPR: A New Packing, Placement and Routing
Tool for FPGA Research," Int. Workshop on Field-Programmable
Logic and Applications, August, 1997.

Tile Area vs. Aspect Ratio

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

1 2 3 4 5 6 7 8 9 10

Aspect Ratio

T
ile

 A
re

a

best switch box/best track ratio

baseline switch box/track ratio=1
Critical Path Delay vs. Aspect Ratio

1.40E-08

1.45E-08

1.50E-08

1.55E-08

1.60E-08

1.65E-08

1.70E-08

1.75E-08

1.80E-08

1 2 3 4 5 6 7 8 9 10

Aspect Ratio

C
ri

ti
ca

l P
at

h
 D

el
ay

best switch block/best track ratio

baseline switch block/track ratio = 1

Figure 10: Area/Critical path delay as a function of track
ratio. The dotted line represents the baseline switch block
and an aspect ratio of 1:1. The solid line represents the best
switch block and the best track ratio for a given track ratio.

74

	Main Page
	FPGA'01
	Front Matter
	Table of Contents
	Author Index

