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ABSTRACT 
As the complexity of integrated circuits increases, the ability to 
make post-fabrication changes to fixed ASIC chips will become 
more and more attractive.  This ability can be realized using 
programmable logic cores.  These cores are blocks of 
programmable logic that can be embedded into a fixed-function 
ASIC or a custom chip.  Such cores differ from stand-alone 
FPGAs in that they can take on a variety of shapes and sizes.  
With this in mind, we investigate the detailed routing  
characteristics of rectangular programmable logic cores.  We 
quantify the effects of having different x and y channel capacities, 
and show that the optimum ratio between the x and y channel 
widths for a rectangular core is between 1.2 and 1.5.  We also 
present a new switch block family optimized for rectangular cores.   
Compared to a simple extension of an existing switch block, our 
new architecture leads to an 8.7% improvement in density with 
little effect on speed.  Finally, we show that if the channel widths 
and switch block are chosen carefully the penalty for using a 
rectangular core (compared to a square core with the same logic 
capacity) is small; for a core with an aspect ratio of 2:1, the area 
penalty is 1.6% and the speed penalty is 1.1%.   

Categories and Subject Descriptors 
D.7.1 [Integrated Circuits]: Types and Design Styles – VLSI 
(Very large scale integration) 

General Terms 
Design, Performance, Experimentation. 

Keywords 
Detailed Routing, Programmable Logic, FPGA, Embedded Cores, 
SoC Design. 

1. INTRODUCTION 
Field-Programmable Gate Arrays have rapidly become the 
implementation medium of choice for many digital circuits.  
Recent years have seen a plethora of research aimed at improving 

the speed and density of these devices.  Unfortunately, despite 
significant progress, for many applications FPGAs still do not 
provide the required speed or density.  For these applications, 
designers can still enjoy the benefits of flexibility and 
configurability by creating a custom chip or cell-based ASIC, and 
incorporating a programmable logic IP (Intellectual Property) 
core.   A chip designed this way would contain both fixed logic 
and programmable logic.  Parts of the chip that are unlikely to 
change can be implemented using the fixed ASIC circuitry or 
fixed IP (Intellectual Property) cores, while functions that may 
change can be implemented in the programmable logic core.   
 
There are several scenarios in which incorporating a 
programmable logic region within a fixed ASIC would be 
advantageous: 
 
1. Some design details can be left until late in the design cycle.  

In a communications application, for example, the 
development of the chip can proceed while standards are 
being finalized.  Once the standards are set, they can be 
incorporated in the programmable portion of the chip.  This 
is important, since time-to-market is so critical in industry 
today. 

2. As products are upgraded, or as standards change, it may be 
possible to incorporate these changes using the 
programmable part of the chip, without fabricating an 
entirely new device.   

3. In many cases, it may be possible to fabricate a single chip 
for an entire family of devices; the characteristics that 
differentiate each member of the family can be implemented 
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Figure 1: Hypothetical System-on-Chip with Programmable 
Logic IP Core. 
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using the programmable logic.  This would, in effect, 
amortize the cost of developing the ASIC over several 
products.  In a similar way, standard products can be 
customized for different customers by implementing the parts 
of the circuit specific to that customer in the programmable 
logic portion of the chip. 

4. Testing structures can be implemented using the 
programmable logic.  Consider a chip with a faulty 
functional unit.  To debug the functional unit (so changes can 
be made in later spins of the chip), it may be very valuable to 
construct a small circuit that can stimulate or analyze the 
faulty functional unit.  The nature of this circuit would be 
unknown when the chip was initially designed, and thus 
would be a natural candidate for the programmable logic 
portion of the chip. 

 
The use of programmable logic cores fits well with the emerging 
system-on-chip (SoC) design methodology, in which third-party 
cores are combined on a single chip.  The chip in Figure 1 is a 
hypothetical chip that follows this design style.  As the figure 
shows, the chip contains a processor core, some on-chip memory, 
two fixed IP blocks, and a programmable logic core.  In this case, 
the programmable logic core is simply another core that the 
system-on-a-chip designer can buy from a third party.  Already, 
several companies offer such cores [1][2].  
 
The potential benefits of integrating fixed and programmable 
logic described above are so compelling that we feel that the 
ability to make post-fabrication changes in a fixed-function ASIC 
will eventually become as important as design-for-testability is 
today.  In order for this to happen, however, there are a number of 
challenges that must be overcome.  Most programmable logic 
architecture and CAD tool research has focused on stand-alone 
FPGAs.  Much of this will not carry over to embedded 
programmable cores, which can take on many different shapes and 
aspect ratios.  A second issue is the integration of the FPGA CAD 
flow into the existing ASIC design flow.  Yet another challenge is 
the pre-tape-out verification of an ASIC with a programmable 
logic core; it is unclear how such a chip can be verified if the 
circuit to be included within the programmable logic core is 
unknown.  Finding solutions to these problems is part of a larger 
project at the University of British Columbia where we are 
studying the system-on-chip design style, and the use of 
programmable logic within that design style. 
 
In this paper, we focus on just one of these problems: the 
architecture of the programmable logic core, specifically the 
detailed routing architecture.  One of the most significant 
differences between embedded cores and stand-alone FPGAs is 
that embedded cores can take on a variety of shapes and sizes to 
better mesh with the fixed ASIC circuitry.  One SoC design may 
need a relatively square programmable logic block, while another 
may need a long narrow programmable logic block (perhaps 
placed along an entire edge of the chip to provide a programmable 
interface to the I/O ports).  Yet another design may need several 
small cores.  The example in Figure 1 uses an L-shaped core.  
Each of these sizes and shapes makes unique demands on the 
detailed routing architecture.  These demands and their 
implications to the detailed routing architecture are the focus of 
this paper.  Specifically, this paper focuses on two aspects: 

 
1. In [3], it was suggested that for a rectangular FPGA, 

channels in the long direction should have more tracks than 
channels in the narrow direction (as shown in Figure 2).  On 
average, signals will have to travel further in the long 
direction of the FPGA so channels in this direction should 
have a higher track capacity.  This is quantified in [3]; 
however, [3] approaches the problem using global routing 
only.  However, due to the limited connectivity with 
programmable logic routing, the detailed routing architecture 
will have a significant effect on the optimum channel widths 
for a given programmable logic core.  In this paper, we 
revisit this question, considering the detailed routing 
architecture. 

2. At each intersection between a horizontal and vertical 
channel lies a switch block. Since switch blocks use up a 
large portion of area and are a very significant part of the 
routing flexibility, the design of a good switch block is of the 
utmost importance. Thus, there has been considerable work 
developing efficient switch block architectures [4][5][6][7].  
All of the previous switch blocks are square; in other words, 
they assume the same number of incident tracks for all sides.  
In our environment, however, vertical and horizontal 
channels will often have different widths.  A second 
contribution of the paper is the presentation of a new switch 
block optimal for cores with different vertical and horizontal 
channel widths. 

 

Thus, the contribution to this paper is two-fold: we quantify the 
effects of different channel widths in rectangular programmable 
logic cores, and we propose a new switch block specifically for 
programmable logic cores that are directionally biased. 

2. ARCHITECTURAL FRAMEWORK 
In this paper, we restrict our attention to rectangular island-style 
programmable logic cores.  Each core consists of nx*ny clusters, 
each containing r logic elements (in the results of Section 4, we 
fix r = 4).  Each logic element consists of a 4-input lookup table 
and a flip-flop.  The logic clusters are surrounded by a grid of 
routing channels; each vertical channel contains ty parallel tracks, 
and each horizontal channel contains tx parallel tracks.  In this 
paper, we assume, without loss of generality, that ty > tx.  We 
assume a segmented architecture in which every track spans 4 

Log ic B lock Sw itch B lock

Narrow  C hannel W ide  C hannel  
Figure 2: An FPGA with unequal horizontal and vertical 
channel capacities. 
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logic clusters.  Tracks of the same channel are staggered relative 
to each other [8].  At the intersection of each horizontal and 
vertical channel is a switch block that comprises of 50% pass-
transistors and 50% tri-state buffers (see [9]).  Connection-block 
and switch-block populations are both 100% (see [10]).  

3. RECTANGULAR SWITCH BLOCK 
At the intersection of each horizontal channel and each vertical 
channel lies a switch block.   Each switch block provides for 
programmable connections between tracks of the incident 
channels.  Switch blocks consume a large portion of the area of an 
FPGA and their structure has a significant effect on the routability 
and speed attainable by the device.  Thus, optimizing the 
architecure of the switch block structure is very important. 
 
Previously proposed switch blocks such as the Disjoint [4], 
Universal [5], and Wilton [6] have all been square; an equal 
number of tracks enters each side of the block.  In each of these 
previous switch blocks, each incoming track can be connected to 
one or more of three outgoing tracks (ie. Fs = 3).  In [7], a switch 
block was proposed for FPGAs with segmented routing.  In such 
an FPGA, each track spans s switch blocks, and the track start 
points are staggered, so that at each switch block, 1/s of the tracks 
end, while the remaining pass through.  The switch block in [7] 
distinguishes between these two types of tracks; tracks that ended 
were connected using a Wilton pattern, while tracks that passed 
straight through were connected using a Disjoint pattern.  It was 
shown that this scheme helped improve the routability of the 
device significantly.  Thus, we use the switch block from [7] 
(which we will call the Imran block) as a building block in this 
paper. 
 
Since a programmable logic core can take on so many different 
shapes and sizes, it makes sense to define a family of switch 
blocks, where each family member is best for certain shapes and 
sizes of the core.  In the following subsection we describe a 
baseline rectangular switch block and in Subsection 3.2 we show 
how a family of switch blocks can be derived from this baseline. 
 
3.1 Baseline Rectangular Switch Block 
Our baseline rectangular switch block is a natural extension of a 
square Imran switch block.  As shown in Figure 3, our block is 
composed of several subblocks.  With tx tracks incident to the 
switch block from the x-channel and ty tracks incident from the y-
channel, there are Ns = ceil(ty/tx) subblocks (called SSBn where 
0≤n<Ns).  The (Ns-1)th subblock will be a partial subblock if the 
number of vertical channels is not evenly divisible by the number 
of horizontal channels.  The switch block can be represented by a 
graph M(T,S) where each node in T represents a terminal (incident 
track) of the switch block and each edge in S represents a 
programmable switch that connects two terminals.  T is 
partitioned into 2+2Ns subsets, each with W=tx terminals; two 
subsets represent the tracks incident to the short sides of the 
switch block and 2Ns subsets represent the tracks incident to the 
long sides.  Each terminal in T is labeled tm,n where m is the subset 
number (0≤m≤2Ns+1) and n is the terminal number within the 
subset (0≤n≤W-1). 
 
The programmable connections within our baseline rectangular 
switch block can be obtained by replicating the Imran pattern Ns 

times.  As an example, Figure 4 shows the switching pattern 
assuming ty=12 and tx=4 and assuming all tracks end at this 
switch block.  As the figure shows, the final switching pattern is 
the sum of three individual Imran switch block patterns.  Note 
that, in general, the last sub-block may have fewer than tx vertical 
inputs; this is called a partial sub-block.  The connection pattern 
for a partial sub-block is the same as a full sub-blocks with the 
exception that a connection is not made if, due to it being a partial 
sub-block, one or more of its incident tracks does not exist.  This 
exception is incorporated into the algorithm using the function, 
Exists(tm1,n1, tm2,n2), where tm1,n1 and tm2,n2 represent incident 
tracks.  Figure 5 shows an algorithmic description of the baseline 
switch block. 

3.2 Family of Rectangular Switch Blocks 
As Ns becomes large, the baseline switch block becomes 
unsuitable.  Consider the block in Figure 4.  In this example, the 
effective Fs for horizontal tracks (number of choices for each 
incident horizontal track) is 7.  In general, if there are Ns sub-
blocks, then Fs=1+2Ns.  This high value for Fs is harmful for two 
reasons: 
 
1. The routing delay of a net using a horizontal track will be 

high because of the large number of switches incident to the 
track at each switch block. 

2. The large number of switches translates to a large layout 
area, which will reduce the achievable logic density of the 
device. 

S S B0 S S B1 S S B(N s-1)

t2,0 t2 ,1 t2 ,2 t2 ,W -1 t4 ,0 t4 ,1 t4 ,2 t4 ,W -1

t3 ,0 t3 ,1 t3 ,2 t3 ,W -1 t5 ,0 t5 ,1 t5 ,2 t5 ,W -1

t2N s,0 t2N s,X

t2N s+ 1,0 t2N s+ 1,X

t0 ,W -1

t0 ,2

t0 ,1

t0 ,0

t1 ,W -1

t1 ,2

t1 ,1

t1 ,0

...

...

...

... ...

...

...

...

......

 
Figure 3: Terminal labeling scheme for a rectangular switch 
block. 
 

SS B0 SS B1 SS B2

SS B0 SS B1 SS B2SS B0 SS B1 SS B2

SS B0 SS B1 SS B2

 
Figure 4: The tracks of a rectangular switch block are the 
summation of tracks from three individual Imran patterns. 
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This motivates us to develop a new switch pattern with fewer 
potential connections for each track.  Rather than defining a single 
switch block, we define a family of switch blocks, where each 
member of the family is obtained by depopulating the baseline 
switch block by a different amount.  Members of the family will 
be referred to as MODn where n is the proportion of diagonal 
switches that have been removed.   Figure 7 shows an example 
MOD2 and MOD4 block, assuming ty/tx=4.  Note that in Figure 7, 
tx parallel connections are shown by a solid line for clarity (the 
pattern within each solid line is the Imran pattern as shown in 
Figure 4). 
 
An algorithmic description of the family of switch blocks is given 
in Figure 6.  Depopulating the switch block removes connections 
in a pattern dictated by what we call sub-block coefficients which 
are identified by a 4-tuple, AMODn=(α0, α1, α2, α3).  The values of 
each tuple depends on n; for a MOD2 switch block, we have 
arbitrarily chosen AMOD2=(1, 0, 1, 0), while for a MOD4 block, 
the pattern is AMOD4=(2, 1, 3, 0).  These patterns can be seen in 
the example of Figure 7. 
 

4. EXPERIMENTAL RESULTS 
To investigate the suitability of the new switch block family, we 
used an experimental approach.  Twenty benchmark circuits from  
the Microelectronics Corporation of North Carolina (MCNC) 
were used [11].  Because we were primarily interested in circuits 
which would fit into an embedded programmable logic core, we  
chose circuits which were approximately 10% of the size of 
circuits which could be implemented in commercially available 
stand-alone FPGAs.  Half of the circuits were sequential, and half 
were combinational.  Each circuit was optimized and technology- 

 
mapped using SIS [12] and Flowmap/Flowpack [13].  The logic 
elements were then packed to logic clusters using Vpack [14] and 
timing-driven placement and routing was performed using a 
modified version of VPR [14].  For each circuit and architecture, 
the minimum number of tracks required for 100% routability was 
found; the number of tracks in each channel was then increased by 
20%, and the routing repeated.  In all cases, we assumed a 0.18 
µm CMOS process from TSMC. 
 
First consider the effect that the track ratio (ty/tx) has on the 
overall density and speed of the programmable logic core.  Figure 
8 shows results assuming the core aspect ratio is 4:1 (ie. the core 
is four times as tall as it is wide).  The upper graph in Figure 8 

S = ∅ 
 for j = 0 to Ns-1 
 for k = 0 to W-1 
 
  if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k end at switch block 
 
   // Wilton Switch Block Pattern 
 
   if ( j == 0 ) 
    S = S ∨ { (t0, k, t1, k) } 
 
   if ( Exists(t2j+2, k, t2j+3, k) ) 
    S = S ∨ { (t2j+2, k, t2j+3, k) } 
 
   if ( Exists(t0, k, t2j+2, (W-k) mod W) ) 
    S = S ∨ { (t0, k, t2j+2, (W-k) mod W) } 
     
   if ( Exists(t2j+2, k, t1, (k+1) mod W) ) 
    S = S ∨ { (t2j+2, k, t1, (k+1) mod W) } 
 
   if ( Exists(t1, k, t2j+3, (2W-2-k) mod W) ) 
    S = S ∨ { (t1, k, t2j+3, (2W-2-k) mod W) } 
 
   if ( Exists(t2j+3, k, t0, (k+1) mod W) ) 
    S = S ∨ { (t2j+3, k, t0, (k+1) mod W) } 
 
  else if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k pass through switch block 
 
   // Disjoint Switch Block Pattern 
 
   S = S ∨ { (t0, k, t2j+3, k) } 
 
  end 
 end 
 end 

 

Figure 5: Connection algorithm for the baseline rectangular 
switch block. 

S = ∅ 
 for j = 0 to Ns-1  
 for k = 0 to W-1 
 
  if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k end at switch block 
 
   // Wilton Switch Block Pattern 
 
   if ( j == 0 ) 
    S = S ∨ { (t0, k, t1, k) } 
 
   if ( Exists(t2j+2, k, t2j+3, k) ) 
    S = S ∨ { (t2j+2, k, t2j+3, k) } 
 
   if ( ( j mod n = α0 ) && Exists(t0, k, t2j+2, (W-k) mod W) ) 
    S = S ∨ { (t0, k, t2j+2, (W-k) mod W) } 
 
   if ( ( j mod n = α1 ) && Exists(t2j+2, k, t1, (k+1) mod W) ) 
    S = S ∨ { (t2j+2, k, t1, (k+1) mod W) } 
 
   if ( ( j mod n = α2 ) && Exists(t1, k, t2j+3, (2W-2-k) mod W) ) 
    S = S ∨ { (t1, k, t2j+3, (2W-2-k) mod W) } 
 
   if ( ( j mod n = α3 ) && Exists(t2j+3, k, t0, (k+1) mod W) ) 
    S = S ∨ { (t2j+3, k, t0, (k+1) mod W) } 
 
  else if incident wires t0, k, t1, k, t2j+2, k, t2j+3, k pass through switch block 
 
   // Disjoint Switch Block Pattern 
 
   S = S ∨ { (t0, k, t2j+3, k) } 
 
  end 
 end 
 end 

 

Figure 6: Connection algorithm for a MODn rectangular 
switch block. 
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Figure 7: MOD2 and MOD4 rectangular switch patterns. 
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shows the area of the core as a function of the track ratio.  The 
curve is a result of two competing trends.  The first trend marks an 
increase in the number of transistors in each switch block as the 
track ratio increases (since there are more sub-blocks).  The 
second trend shows that as the track ratio increases, channel 
capacity increases in the long direction of the core, thus increasing 
the overall routing flexibility.  This leads to a reduction in the 
overall number of tracks required in the core and consequently a 
reduction in its overall area (or equivalently, an increase in the 
achievable density).  Together, these trends cause a distinct 
minimum in the area curve, as shown in Figure 8.  For all switch 
block types, the best track ratio was between 1 and 1.5.  The 
average critical path delay is not significantly affected by the 
choice of ty/tx as shown in the lower graph of Figure 8.  This 
experiment was repeated for aspect ratios of 2, 6, 8, and 10, with 
consistent results. 
 
Figure 8 illustrates another interesting result: different members of 
our switch block family are appropriate for cores with different 
track ratios.  As the figure shows, MOD2 is the best (in terms of 
tile area) for track ratios less than 1.5.  For ratios greater than 1.5, 
MOD4 is the best choice and the baseline switch block should 
never be used.   
 
Figure 9 shows the results across several aspect ratios.  For each 
track ratio, the best switch block  (from MOD2 and MOD4) was 
chosen.   As the aspect ratio increases from 2:1 to 10:1, the curve 
minimum changes from approximately 1.2 to 1.5.  This shows that 
the demand for channel capacity in the long direction of a 
rectangular programmable logic core increases with the aspect 

ratio.  Note, however that this increase is not as dramatic as might 
be expected; the demand for extra tracks in the long direction 
needs to be balanced with the larger size of a highly non-square 
switch block. 
 
Figure 10 compares the best results of Figure 9 with those 
obtained assuming ty/tx=1.  The dashed line represents an 
architecture that maintains a unity track ratio and uses a baseline 
switch block for all aspect ratios.  The solid line represents an 
architecture that has the best switch block and track ratio for each 
aspect ratio. On average, the tile area for a programmable logic 
core with the best track ratio is 8.7% less than a core with a track 
ratio of unity.  In terms of delay, a programmable logic core with 
the best track ratio is (with one exception) roughly 2.7% slower 
than a core with a track ratio of unity.   
 
Figure 10 also shows that a square core is always best in terms of 
both area and critical path delay.  This does not mean that 
rectangular cores are a bad idea; in many applications, the fixed 
shapes and sizes of the other cores will dictate that a rectangular 
programmable logic core is to be used. For small aspect ratios, the 
area density penalty for using a rectangular core is small; for an 
aspect ratio of 2:1, there is a 1.6% penalty.  As the aspect ratio 
increases, however, the penalty increases.  For an aspect ratio of 
10:1, the penalty is 47.7%.  In terms of delay, the penalty of using 
an apsect ratio of 2:1 is 1.1%, and is 14.5% for an aspect ratio of 
10:1. 
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Figure 9: Plot of tile area and critical path delay versus track 
ratio for each aspect ratio.  The ideal switch block is used for 
each track ratio. 
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Critical Path Delay vs. X/Y Track Ratio for Aspect Ratio = 4 for Various Switch-Blocks
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Figure 8: Area/Delay as a function of track ratio for various 
switch blocks.  The core ratio is 4:1. 
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5. CONCLUSIONS 
In this paper, we have investigated the detailed routing 
architectures of programmable logic cores.  Specifically, we have 
focused on rectangular cores, and have made three contributions: 
 
1. We have quantified the improvement in density and speed 

when using different channel widths in the x and y direction 
of rectangular cores.  We showed that for a core aspect ratio 
of 2:1, a track ratio of 1.2 is appropriate, while for a core 
aspect ratio of 10:1, a track ratio of 1.5 is best. 

2. We have shown that for small aspect ratios, there is only a 
small penalty associated with using a rectangular core 
(compared to a square core).  For an aspect ratio of 2:1, the 
area penalty is 1.6% and the delay penalty is 1.1%.  For very 
rectangular cores, however, this penalty becomes larger; for 
an aspect ratio of 10:1, the area penalty is 47.7% and the 
delay penalty is 14.5%. 

3. We have presented a new family of switch blocks that work 
well in rectangular programmable logic cores.  Compared to 
a simple extension of a previous switch block, we have 
shown that our family of switch blocks results in an average 
area savings of 8.7%. 

 
As mentioned in the introduction, this work is only a first step at 
examining the use of programmable logic cores in the SoC design 
style.  More work is needed to quantify the benefits of merging 
small amounts of programmable logic onto a fixed ASIC chip, 
across all application domains.  We feel that, eventually, the use 
of programmable logic in this way will become an essential tool in 

every chip designer's arsenal.  When this happens, switch blocks 
and architectures such as the one described in this paper will 
become critical. 
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Figure 10: Area/Critical path delay as a function of track 
ratio.  The dotted line represents the baseline switch block 
and an aspect ratio of 1:1.  The solid line represents the best 
switch block and the best track ratio for a given track ratio. 
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