
Simultaneous Logic Decomposition with Technology
Mapping in FPGA Designs

Gang Chen and Jason Cong
Computer Science Department

University of California, Los Angeles, CA 90095
{chg, cong}@cs.ucla.edu

ABSTRACT
Conventional technology mapping algorithms for SRAM-based
Field Programmable Gate Arrays (FPGAs) are normally carried out
on a fixed logic decomposition of a circuit. The impact of logic
decomposition on delay and area of the technology mapping
solutions is not well understood. In this paper, we present an
algorithm named SLDMap that performs delay-minimized
technology mapping on a large set of decompositions and
simultaneously controls the mapping area under delay constraints.
Our study leads to two conclusions: (1) For depth minimization, the
best algorithms in conventional flow (dmig + CutMap) produce
satisfactory results with a short runtime, even with a fixed
decomposition; (2) When all the structural decompositions of the 6-
bounded Boolean network are explored, SLDMap consistently
outperforms the state-of-the-art separate flow (dmig + CutMap) by
12% in depth and 10% in area on average; it also consistently
outperforms the state-of-the-art combined approach dogma by 8% in
depth and 6% in area on average.

1. Introduction
Field Programmable Gate Arrays (FPGAs) have become more and
more popular in recent years because of their short time-to-market,
field programmability, ease of use, and low cost in small- to
medium-volume production. A typical type of FPGA is based on a
K-input lookup-table (LUT) kind of cell, which can implement
arbitrary K-input functions. Technology mapping is an essential step
in FPGA synthesis, and there have been very extensive studies on
the problem. However, in most conventional approaches, mapping
is applied on a fixed logical decomposition of the circuit.
The conventional flow for FPGA mapping consists of three phases.
During the first phase, technology-independent optimizations are
applied on the initial circuit. Both Boolean and algebraic methods
are used, such as: kernel/cube extraction, node substitution, don’t
care-based optimizations, etc. Then, during the logic decomposition
phase, large gates are decomposed into K-bounded gates (gates with
less than K inputs). After that, technology mapping is applied on the
K-bounded network. The drawback for the separate approach is that
during the technology-independent optimization and decomposition
stage, we have great freedom to go from one solution to another, but
a fast and accurate estimation of the final mapping result is not

available. During the technology mapping stage, we are able to
perform depth-optimal mapping, but the solution space is greatly
confined because we are committed to a fixed circuit structure as the
starting point for mapping. Since the delay-optimal decomposition
for mapping is NP-hard [1], it is unclear how far away we are from
the optimal solution when logic decomposition and technology
mapping are performed simultaneously. The goal of this research is
to combine logic decomposition and technology mapping for LUT-
based FPGA designs, with delay minimization as the primary
objective.
The delay of a LUT network can be roughly measured by the depth
of a network. We first review the existing algorithms on FPGA
mapping for delay optimizations. Chortle-d [2], MIS-pgad [3] and
DAGMap [4] are early attempts to minimize circuit delays. Chortle-
d decomposes the network into fanout-free trees, maps each tree
optimally using dynamic programming and bin-packing techniques,
then combines the solutions for each tree. It results in sub-optimal
depth and uses a larger area. MIS-pgad makes use of dynamic
resynthesis techniques and layout information during mapping, but
overall it produces larger depth than Chortle-d. The dmig [4]
(decompose-multi-input-gate) algorithm transforms an arbitrary
simple-gate network into a two-input network, and guarantees that
the transformed network has the smallest possible depth. DAGMap
first applies the dmig algorithm to generate a depth-optimal 2-
bounded network, then it generates the mapping solution on the
general network directly using the Lawler labeling, and finally gate
decomposition and predecessor packing are used to minimize the
area as post-processing. DAGMap produces both better delay and
area result than Chortle-d and MIS-pgad, but it is depth-optimal
only for trees. FlowMap [5] is the first depth-optimal polynomial
time algorithm for general K-bounded Boolean networks. It uses
flow computation to label each node with its minimum possible
depth. Compared to DAGMap, FlowMap achieves a small delay
reduction but a sizeable area reduction. Afterwards, FlowMap-r [6]
is able to trade the depths of nodes on non-critical paths or even the
depth of the entire network for a smaller area. CutMap [7] performs
simultaneous delay and area minimization. It is able to outperform
FlowMap in area by 15% while maintaining the optimal depth.
CutMap is used in this work for comparison. The general FPGA
mapping problem for area minimization is NP-hard [8]. A more
extensive survey of LUT-based technology mapping is available in
[9].
Previous studies on simultaneous decomposition and mapping went
back to Chortle-d, which guarantees depth-optimal technology
mapping for simple-gate tree networks. Afterwards, dogma [1]
studied structural gate decomposition for depth-optimal technology
mapping of general networks. Although the problem of delay-
optimal structural decomposition is NP-hard, the work shows that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FPGA 2001, February 11-13, 2001, Monterey, California, USA.
Copyright 2001 ACM 1-58113-341-3/01/0002…$5.00.

48

a fedcb g

(a) Initial 5-bounded network

a fedcb g

(b) Result from dmig decomposition and the
best mapping on it with depth of 3 and area of 5

a

(c) Result from optimal simultaneous decomposition
with mapping with depth of 2 and area of 3

fb c d e g

Figure 1. Impact of gate decomposition on technology mapping

structural decomposition will result in better final implementation in
terms of both delay and area over previous separate decomposition
methods (tech_decomp, dmig followed by FlowMap or Chortle-d).
In parallel, Lehman et al. developed a novel method [10][11] of
performing logic decomposition during technology mapping for
library-based designs. They showed that there is a lot of room in
delay reduction for library-based mapping if decomposition and
mapping are combined in one step. Recently, [12] shows that area-
delay trade-offs can also be obtained using the combined approach.
For FPGA mapping, logic decompositions could significantly affect
the final mapping depth and area. For example, given a 5-bounded
Boolean network in Figure 1(a), assume that the 3-LUT is used for
the mapping. A mapping solution is a network of LUTs. The
mapping depth is defined to be the number of levels of the LUT
network, and the mapping area is defined to be the number of LUTs
in the network. The conventional state-of-the-art gate decomposition
algorithm (dmig) will generate a 2-bounded network of four levels,
as shown in Figure 1(b). The best result we can obtain from dmig
decomposition is depth 3 and area 5. However, a mapping solution
of depth 2 and area 3 can be obtained from the gate decomposition
of Figure 1(c).
The objective of this research is to evaluate the impact of the logic
decomposition on both delay and area of the final mapping
solutions. We perform logical decomposition and technology
mapping simultaneously and explore the entire solution space of all
structural decompositions for a W-bounded Boolean network.
Compared with the conventional approach (dmig + CutMap), our
approach reduces the LUT network depth by up to 40% (12% on
average) and reduces the number of LUTs by up to 57% (10% on
average).

2. Problem Formulation and Preliminaries
2.1 Definitions
We consider FPGA synthesis for combinational circuits in this
work. A combinational Boolean network N can be represented by a
directed acyclic graph (DAG) N=(V, E), in which each node v ∈ V
represents a logic gate and each directed edge (u, v) represents a
wire connecting the output of gate u to one input of gate v. A
primary input (PI) is a node without incoming edges; a primary
output (PO) is a node without outgoing edges. A node v is K-
bounded if and only if |fanin(v)| ≤ K; a network N is K-bounded if
and only if all the nodes in N are K-bounded. The depth (or level) of
a node v is the number of edges on the longest path from any PI to v.
Obviously all PIs have a depth of 0. The depth of a network is the
maximum depth of all nodes in the network. A mapping solution of
a Boolean network N is a DAG in which each node is a K-LUT and
the edge (Cu, Cv) exists if the output of Cu is connected to one input
of Cv. The mapping depth of the LUT network is the maximum
mapping depth of all POs; the mapping area is the number of LUTs
in the mapped network. The minimum mapping depth of N, denoted
as MMD, is the minimum network depth of all mapping solutions of
N. The label of a node is the minimum mapping depth of the node.
Let fanin(v) and fanout(v) represent the set of fanins and the set of
fanouts of node v, respectively. Given a subgraph H of a network N,
let fanin(H) denote the set of distinct nodes outside H that supply
inputs to nodes inside H. A node u is a predecessor of a node v if
there exists a directed path from u to v in network N. A fanin cone
Cv rooted at v is a connected sub-network, which consists of only v
and its predecessors. All the directed paths connecting any two
nodes u1 and u2 in Cv, lie entirely in Cv. A cut is a partitioning (X,
X’) of a cone Cv such that X’ is a cone of v. The node cut-set of the
cut, denoted V(X, X’), consists of the inputs of cone X’. A cut is K-

49

feasible if |V(X, X’)| ≤ K. The height of a cut (X, X’), denoted h(X,
X’), is defined to be the maximum label in X, i.e., h(X, X’) = max
{label(x)| x ∈ X}.
Gate decomposition methods include structural, algebraic, Boolean
and functional approaches. Simple gates consist of AND, OR, XOR
gates or their inversions, and a simple-gate network is a network
consisting of simple gates only. Structural gate decompositions can
only be applied to simple gates. The tech_decomp algorithm in SIS
[13], the dmig algorithm, and the Chortle mapping algorithm family
all carry out structural gate decomposition. The dogma algorithm
performs structural decomposition and technology mapping
simultaneously and gets better mapping solutions than dmig in both
delay and area. In algebraic decomposition approaches, networks
are usually partially collapsed, and gates are represented in the sum-
of-product (SOP) form. Common logic sub-functions are then
extracted with algebraic divisions. In Boolean decomposition
approaches, logic gates are decomposed via functional operations.
Shannon expansion, if-then-else (ITE) decomposition, and AND-
OR decomposition are very common Boolean decomposition
operations. In functional decomposition approaches, networks are
completely collapsed whenever possible for the outputs to be
directly represented as functions of the network inputs. The output
functions are then decomposed into composed K-input sub-
functions for implementation using K-LUTs. Optional LUT
mapping steps may follow to improve the synthesis results. In
general, algebraic and Boolean approaches are more effective for
both area and delay minimization while structural approaches are
usually faster.
The problem we are going to solve in this work is structural gate
decomposition in a W-bounded network for K-LUT mapping
(W-SGD/K): given a simple-gate W-bounded network NW,
decompose NW into a 2-bounded network N2 such that for any other
2-bounded decomposed network N’2 , MMD(N2) ≤ MMD(N’2).

2.2 Complexity Results
We would like to briefly review some existing complexity results on
structural decomposition for FPGA mapping in [1].

Theorem 1 [1]
Given a W-bounded network N, if only structural gate
decomposition is allowed, the minimum mapping depth for all
integrated mapping approaches equals the minimum mapping depth
for all separate mapping approaches (i.e., generate a fixed
decomposition followed by technology mapping).

Theorem 2 [1]
The W-SGD/K problem is NP-hard for W = K ≥ 5.

Corollary 2.1
The W-SGD/K problem is NP-hard for W ≥ K ≥ 5.

Proof: If W-SGD/K is not NP-hard for W > K ≥ 5, then any W
bounded simple-gate network can be decomposed into a speed-
optimal 2-bounded network in polynomial time when W > K ≥ 5.
For any K bounded network, it is also W bounded (when W > K ≥
5), so it can also be decomposed into a speed-optimal 2-bounded
network in polynomial time. This implies W-SGD/K is not NP-hard
for W = K ≥ 5, which is contradictory to Theorem 2.

3. Description of SLDMap
3.1 Review of [11]
In [11], Lehman et al. propose an algorithm that performs logic
decomposition and technology mapping simultaneously for library-
based designs. The mapping procedure effectively explores all
decompositions encoded in a mapping graph and generates a delay
optimal tree implementation. One problem with this algorithm is
that area is uncontrolled and sometimes becomes unnecessarily
large. Here are some preliminaries from their work.

g 2

i1

c 1

a

x

u

v

y
z

z ’

g 1

c 2
i2

Figure 2. Illustration of mapping graph

A Boolean network is called an AND2/INV network when every
internal node is either an inverter (INV) or a 2-input AND (AND2).
The AND2/INV decomposition decomposes a simple-gate network
into an AND2/INV network. A mapping graph is a data structure
based on an AND2/INV Boolean network with four modifications.
First, a choice node, whose fanin nodes are all logically equivalent,
is introduced. Second, directed cycles may exist in a mapping graph.
Third, a ugate is a collection of nodes in a mapping graph consisting
of two complementary choice nodes and all of their immediate
fanins. Fourth, each choice node in a reduced mapping graph is
unique, i.e., any two choice nodes represent different logic
functions. Figure 2 is an illustration of the mapping graph. c1 and c2
are two complimentary choice nodes, a is a primary input, g1 and g2
are two 2-input AND gates, and i1 and i2 are two inverters. From this
mapping graph, one can tell that the primary input a is logically
equivalent to (x ∧ y) and the inversion of (u ∧ v), gates c1, i2, c2 and
i1 form a cycle, and all these nodes together form a ugate.
For Boolean networks, there are three types of transformations:
associative, distributive and inverter transformations (Figure 3).
The associative transformation is based on the associative law: (xy)z
= x(yz). The distributive transformation is based on the distributive
law: (xy + xz)’ = (x(y + z))’. The inverter transformation adds or
removes two consecutive inverters between two consecutive nodes
in a mapping graph. Let replacement transformation model the
effect of the reduction operation on a mapping graph, which joins
two or more logically equivalent mapping graphs into one. For a
single AND2/INV decomposition α of network N, if associative,
inverter, and replacement transformations are exhaustively applied
on α, the resulting mapping graph is denoted as ΛN.

Theorem 3 [11]
Every AND2/INV decomposition of a Boolean network N is
contained in ΛN.

50

x
y

z

y
z

x

(a) (b)

(a) A s s o c ia t iv e t r a n s f o r m a t io n
(x y) z = x (y z)

y

x

x
y

z

z

(a)

(b)

(b) D i s t r i b u t i v e t r a n s f o r m a t i o n
(x y + x z) ’ = (x (y + z)) ’

(c) In v e r te r t r a n s fo rm a tio n (x ’) ’ = x
x x

Figure 3. Three kinds of logic transformations

3.2 Overview of SLDMap
This work extends the basic framework of [11] from library-based
mapping to FPGA mapping, but it also successfully integrates into
the framework the labeling technique and cut enumeration technique
which have proven successful in FPGA mapping. The results in [11]
show that a remarkable delay reduction in library cell mapping can
be obtained if logic decomposition and technology mapping stages
are combined. Therefore, in this work we want to evaluate such an
impact on FPGA mapping. The problem itself is very difficult for
FPGAs, since the depth-optimal logic decomposition should be
identified with accurate area estimations at the same time for
simultaneous area minimization. Both the W-SGD/K [1] and area
minimization LUT mapping [8] problems are NP-hard. The
following is the outline of our approach:

(1) An arbitrary initial decomposition is obtained by using either
tech_decomp, dmig or dogma.

(2) A new W-bounded network is generated by collapsing
consecutive AND gates into larger W-bounded AND gates. The
mapping graph is then constructed based on the new W-
bounded network to encode all possible decompositions for
each gate.

(3) A depth minimization mapping is performed on the mapping
graph to label each ugate with the smallest possible depth with
consideration of all possible decompositions.

(4) Under the minimized depth constraint, label relaxation is
performed to get better area without affecting the network
depth.

(5) The best decomposition is selected from all decompositions
encoded in the mapping graph.

(6) The state-of-the-art mapping algorithms for a fixed
decomposition (CutMap and Greedy_Pack) are performed on
the selected decomposition to obtain the final mapping
solution.

The following sections discuss steps (2) to (5) in more detail.

y

x

z

z

y

z

f = xyz

f= xy

f= yz

f= xz

Figure 4. A mapping graph which encodes all decompositions of

f = xyz

3.3 Mapping Graph Construction
The construction of a mapping graph consists of two phases.
First, a given decomposition is mapped into an AND2/INV network.
This is simply done by using the “map” command in SIS [13] to
map the decomposition into a library consisting of AND2 and
inverter only. This is a preprocessing step, and its optimality is not
important. Then consecutive AND2s are collapsed into bigger W-
bounded AND gates.
Second, all nodes are processed one by one in topological order. If a
node is a PI or Inverter, a corresponding ugate will be created; if it is
an AND, all possible structural decompositions of the AND gate
will be enumerated and connected to a choice node. One example of
a mapping graph is given in Figure 4, where all possible
decompositions of f = (xy)z = (xz)y = (yz)x are succinctly
represented. For a W-input AND gate, the number of different
decompositions is ((2W)!/W!2W(2W-1)) [11], and the number of
ugates introduced is 2W-W-1 [12]. Note that the binary decision
diagram (BDD) is used during the mapping graph construction to
identify functionally equivalent nodes for graph reduction.
However, when W is not too large, both numbers can be regarded as
constants. For example, when W = 6, the number of different
decompositions is 945, and the number of ugates introduced is 57
for one 6-input AND gate. So both the complexity of the mapping
graph construction algorithm and the increase in the mapping graph
size are linear (bounded by a large constant).

3.4 Mapping for Depth Minimization
Before the detailed description of our mapping algorithm, we first
take a look at the complexity of the problem itself. During the phase
of mapping graph construction, all neighboring AND2s are
collapsed into W-bounded AND gates, then all the structural

51

decomposition of theses AND gates are enumerated in the mapping
graph. If we could obtain the delay-optimal decomposition in the
mapping graph, then we actually could solve the W-SGD/K
problem. As we know in Corollary 2.1, W-SGD/K is NP-hard for W
≥ K ≥ 5, so the mapping graph mapping problem is NP-hard for W ≥
K ≥ 5.

Corollary 2.2
For a mapping graph constructed from a W-bounded network N
containing every structural decomposition of N, depth-optimal
mapping is NP-hard for LUT-based FPGA mapping when W ≥ K ≥
5.
Our delay minimization technology mapping SLDMap is applied
directly on the mapping graph without dividing the graph into trees.
SLDMap combines the labeling technique in DAGMap and the cut
enumeration technique in Preator [14].
First, all the nodes are sorted in pseudo topological order starting
from PI nodes, i.e., orders increase from primary inputs to primary
outputs, and the same order is assigned to all ugates in a cycle.
Mathematically, if there exists a directed path from ugate u1 to ugate
u2, then order(u1) ≤ order(u2); if there exists no directed path from
either u1 to u2 or u2 to u1, then order(u1) ≠ order(u2); if there exists
both directed paths from u1 to u2 and from u2 to u1, then order(u1) =
order(u2).
Second, each ugate u with PI fanin is labeled h(u) = 0, and the cut-
set of u is u itself (cut-set(u) = {u}). For large circuits that need to be

partitioned, pseudo PIs and POs should be created across the cut-
line, and each pseudo PI should be labeled with the label of the
pseudo PO it is connected to.
Third, each ugate u is labeled with its minimum depth h(u) in
pseudo topological order, and all K-feasible cuts of height h(u) are
recorded in u. Each branch of fanin to a ugate u represents one
possible implementation, and the minimum label of all branches
should be used to label h(u). If a branch v is a PI node, then label(v)
is 0. If a branch v is an AND2, let u1 and u2 be the two ugates
supplying inputs to the AND2 gate v, and p be max(h(u1), h(u2)). All
recorded cut-sets of u1 and u2 are combined to form new cut-sets. Of
all the new cut-sets generated, if there exists K-feasible cuts of
height p, the label(v) is p and all such K-feasible cuts are
temporarily stored at AND2 gate v; otherwise label(v) is p + 1 and
{u1, u2} are stored. After all the branches are labeled, the minimum
label of them (minv∈fanin(u)label(v)) is selected for h(u), and all K-
feasible cuts of h(u) are kept at u. For ugates in a cycle, the labeling
process needs to be repeated within the cycle until the label of each
ugate remains unchanged. In our experiment, the labels always
become stable in less than five iterations.
Figure 5 is a portion of the mapping graph that encodes both the
dmig decomposition in Figure 1(b) and the optimal decomposition
in Figure 1(c). Assume K is 3 for the LUT mapping. The pair (1,
{b,c}) for ugate u1 means u1’s minimum depth h(u) is 1, its cut-set is
{b, c}. Ugate u9 has two branches that both generate a depth of 2, so
both cut-sets {u1, u5} and {a, u8} are kept; ugate u10 has two

a fedcb g

u2:(1,{b,c})
u3:(1,{f,g})

u5:(1,{b,c,d}) u6:(1,{e,f,g})

u8:(1,{b,c,d})

u9:(2,{u1,u5}),
(2,{a,u8})

u10:(2,{u6,u8}),(
2,{u3,u4,u5})

u11:(2,{a,u6,u8})

B

u1:(1,{a,b}) u4:(1,{b,e})

u7:(2,{u3,u4})

A C

D

Figure 5. Labeling of ugates in the mapping graph of network in Figure 1

52

branches which both generate a depth of 2, so both cut-sets {u6, u8}
and {u3, u4, u5} are kept. When cut-sets at u9 and u10 are combined,
the only 3-feasible cut-set of height 2 is {a, u6, u8}, so ugate u11’s
depth is labeled 2.

Theorem 4
The mapping graph LUT mapping algorithm is at least as good as
performing DAGMap on all the structural decompositions of the
original W-bounded network.
Proof: Please refer to [15].
In practice, the procedure is not very time-consuming since most
combinations of cut-sets of u1 and u2 result in K-infeasible cut-sets
and hence cannot be further propagated. Also, if u is assigned to a
depth of max(h(u1), h(u2)) + 1, the only cut-set kept is {u1, u2}. In
our final implementation, we decided to keep only one cut-set with
minimum cut-size among all K-feasible cut-sets for each ugate.
Experimental results show that there are no observable differences
in depth between this heuristic and the optimal DAGMap mapping
for the mapping graph. When only one cut is kept for each ugate, the
mapping algorithm’s complexity is linear to the size of the mapping
graph.

3.5 Area Relaxation
A reverse pass through the mapping graph can be performed by
working backward recursively from each primary output and fixing
the decomposition in the depth minimization mapping stage. The
drawback for this simple approach is that the fastest solutions on all
paths instead of critical paths are kept. This naturally consumes a
bigger area than necessary. Off the critical paths, solutions just fast
enough and with the smallest possible area consumption should be
preferred.
To obtain the optimal solution, both delay and area should be stored
at each cut of a ugate. For standard cell mapping, only the Pareto
points need to be stored to get the optimal solution [12]. But for
FPGA mapping, this is not the case. In our approach, the first five
smallest solutions with the same depth are kept for each ugate, and
propagated from PIs to POs. Then from each PO ugate, the solution
with fast enough speed and smallest possible area is selected, and a
reverse pass is performed to select the best decomposition for the
entire network encoded in the mapping graph.
In our implementation, in order to avoid further complications
induced by cycles in the mapping graph for area estimation, graph
mapping is performed multiple times. Whenever cycles are detected,
heuristics are used to remove them. All ugates with the minimum
label in a cycle are selected, and their branches of fanin AND2s with
both input ugates in the same cycle are removed. The procedure is
repeated until no cycles exist in the mapping graph.
During the area control phase, there are three steps: label relaxation,
forward pass and backward pass.
Label relaxation adds required arrival time (RAT) to each ugate in
the mapping graph. The depth of the entire network is assigned to
each PO ugate’s RAT, and propagated backward to all internal
ugates in the reverse topological order.
The forward pass generates all the delay/area pairs and propagates
from PIs to POs. At each ugate u, only cuts with a height smaller
than or equal to RAT(u) are kept. For cuts of the same depth, the first
five cuts with the minimum area are kept. For area estimation,
several heuristics have been tested:

(1) area(u) = ∑v∈cut-set(u)area(v) + 1;

(2) area(u) = ∑v∈cut-set(u)area(v)/num_fanout(v) + 1;

(3) area(u) = ∑v∈cut-set(u)area(v)/crossing_num(v) + 1 [12].
The experiments show that the simplest estimation (1) gives the best
mapping area in the shortest amount of time.
In the backward phase, we select the delay/area pairs with minimum
area and fast enough speed from each PO and propagate all the way
back to PIs. The best decomposition is selected on the fly during this
phase. The resulting decomposition is an AND/INV 2-bounded
network, on which the state-of-the-art mapping algorithm CutMap is
applied to generate the final mapping solutions.

4. Experimental Results
The UCLA RASP package [16] and CUDD package [17] are used
for the experiments. As a pre-processing step, script.rugged is
performed on all original MCNC circuits for both area and delay
minimization, and tech_decomp –a 1000 –o 1000 is used to
generate a simple-gate network. Then, dmig, dogma, and SLDMap
are applied on the simple-gate networks for comparison. K
(maximum number of inputs to a LUT) is set to 5, and W can be
chosen from 2 to 9. W cannot be larger than 10, since for a W-input
AND, the number of different decompositions is ((2W)!/W!2W(2W-
1)), and the number of ugates introduced is 2W-W-1.
A comparison is made with the conventional separate approach
(dmig + DAGMap/CutMap), and a combined approach (dogma [1]
+ DAGMap/CutMap). CutMap [7] is used instead of FlowMap
because it produces the same optimal mapping depth while using
fewer LUTs in general. The Greedy_Pack algorithm is applied on all
the mapping solutions as a post-processing step to further minimize
area.

Table 1. Comparison of SLDMAP with dmig[4] and dogma[1]
using DAGMap (D: Delay; A: Area; R: Ratio to SLDMap)

circuit dmig dogma SLDMap

D R A R D R A R D A
count 5 1.67 46 0.71 5 1.67 43 0.66 3 65

9symml 5 1.00 129 1.32 5 1.00 100 1.02 5 98
frg1 5 1.25 67 0.93 4 1.00 82 1.14 4 72
i3 4 1.33 154 2.33 4 1.33 138 2.09 3 66

alu2 7 1.00 139 1.10 7 1.00 136 1.08 7 126
x1 3 1.00 136 1.08 3 1.00 134 1.06 3 126

C432 10 1.00 130 1.23 10 1.00 131 1.24 10 106
alu4 9 1.00 258 0.99 9 1.00 275 1.06 9 260
rot 7 1.17 298 0.96 7 1.17 292 0.94 6 312
i2 5 1.25 119 1.51 4 1.00 79 1.00 4 79

C880 8 1.00 127 1.01 8 1.00 125 0.99 8 126
C2670 9 1.13 271 0.91 9 1.13 268 0.90 8 298
dalu 5 1.00 454 1.38 5 1.00 411 1.25 5 329

C3540 10 1.00 608 1.04 10 1.00 599 1.02 10 587
toplarge 5 1.00 176 1.02 5 1.00 196 1.13 5 173

t481 6 1.20 181 1.06 6 1.20 169 0.99 5 171
k2 6 1.00 469 1.00 6 1.00 482 1.03 6 468

C7552 8 1.00 651 1.08 8 1.00 647 1.07 8 605
des 5 1.00 1316 1.00 6 1.20 1304 0.99 5 1312

C499 4 1.00 66 0.93 4 1.00 72 1.01 4 71
apex6 6 1.20 280 1.07 5 1.00 274 1.05 5 262
apex7 4 1.00 80 1.08 4 1.00 82 1.11 4 74
duke2 4 1.00 201 1.00 4 1.00 203 1.01 4 201
e64 4 1.33 246 0.89 4 1.33 272 0.99 3 275

9sym 5 1.00 143 1.17 5 1.00 124 1.02 5 122
delay
ratio

1.10 1.09 1

area
ratio

1.11 1.07 1

53

Table 2. Comparison of SLDMAP with dmig and dogma using
CutMap (D: Delay; A: Area; R: Ratio to SLDMap)

Circuit dmig dogma SLDMap

D R A R D R A R D A
Count 5 1.67 31 0.70 5 1.67 31 0.70 3 44
9symml 5 1.25 120 1.24 4 1.00 100 1.03 4 97
frg1 5 1.25 59 0.87 4 1.00 74 1.09 4 68
i3 4 1.33 154 2.33 4 1.33 138 2.09 3 66
alu2 7 1.00 129 1.07 7 1.00 122 1.01 6 122
x1 3 1.00 129 1.12 3 1.00 124 1.08 3 115
C432 10 1.00 125 1.19 10 1.00 127 1.21 10 105
alu4 9 1.13 217 1.06 8 1.00 207 1.01 8 205
rot 7 1.17 268 0.95 7 1.17 271 0.96 6 275
i2 5 1.25 118 1.49 4 1.00 79 1.00 4 79
C880 8 1.00 98 0.98 8 1.00 100 1.00 8 100
C2670 9 1.13 235 0.86 9 1.13 242 0.89 8 272
dalu 5 1.00 357 1.17 5 1.00 318 1.04 5 305
C3540 10 1.00 543 1.02 10 1.00 541 1.01 10 534
toolarge 5 1.00 162 0.99 5 1.00 176 1.07 5 164
t481 6 1.20 175 1.07 6 1.20 163 1.00 5 163
k2 6 1.00 428 0.98 6 1.00 442 1.02 6 435
C7552 8 1.14 541 1.07 7 1.00 527 1.04 7 506
des 5 1.00 1020 1.11 5 1.00 918 1.00 5 919
C499 4 1.00 66 1.00 4 1.00 66 1.00 4 66
apex6 5 1.00 248 1.02 5 1.00 251 1.04 5 242
apex7 4 1.00 71 1.06 4 1.00 72 1.07 4 67
duke2 4 1.00 192 1.04 4 1.00 192 1.04 4 185
e64 4 1.33 237 0.94 4 1.33 255 1.01 3 253
9sym 5 1.00 132 1.13 5 1.00 118 1.01 5 117
delay
ratio

1.12 1.08 1

area
ratio

1.10 1.06 1

Table 3. Impact of W on depth and area

circuit W =2 W =4 W =6 W =8
depth area depth area depth area depth area

count 5 31 5 31 3 44 3 49
9sym m l 4 97 4 97 4 97 4 98
frg1 4 68 4 68 4 68 4 70
i3 3 66 3 66 3 66 3 66
alu2 7 114 7 111 6 122 6 127
x1 3 117 3 117 3 115 3 116
C 432 10 105 10 113 10 105 10 105
alu4 8 205 8 215 8 205 8 245
rot 7 255 7 258 6 282 6 305
i2 4 79 4 79 4 79 4 79
C 880 8 100 8 101 8 100 8 128
C 2670 9 230 9 248 8 272 8 285
dalu 5 291 5 298 5 305 5 319
C 3540 10 527 10 534 10 534 10 534
too_large 5 159 5 159 5 164 5 163
t481 6 160 6 153 5 163 6 160
k2 6 435 6 450 6 435 6 435
C 7552 7 506 7 523 7 506 7 506
des 5 919 5 926 5 919 5 919
C 499 4 66 4 66 4 66 4 66
apex6 5 239 5 237 5 242 5 243
apex7 4 72 4 69 4 67 4 73
duke2 4 182 4 184 4 185 4 207
e64 4 244 4 241 3 253 3 266
9sym 5 116 5 116 5 117 5 115
total 142 5383 142 5460 135 5511 136 5680
delay ratio 1.05 1.05 1 1.01
area ratio 1 1.01 1.02 1.05

4.1 Mapping for All Possible Decompositions
Table 1 shows that SLDMap consistently produces solutions with
better delay than dmig and dogma when DAGMap is used to
generate the mapping solution. This confirms Theorem 4, which
shows that SLDMap algorithm is at least as good as performing
DAGMap on all decompositions encoded in the mapping graph.

4.2 Improvement Over Existing Approaches
Table 2 shows that SLDMap outperforms dmig by 12% in delay,
10% in area and dogma by 8% in delay, 6% in area when the state-
of-the-art FPGA mapping algorithm CutMap is performed. The
result verifies that the combined approach is better in terms of both
delay and area than the separate approach. However, the
improvement is not that dramatic, which indicates that the
conventional flow is quite close to the optimal result that could
possibly be obtained. This mainly comes from two factors: (1) The
level of the 2-bounded network is closely related to the level of the
mapped network; (2) CutMap (an enhancement of FlowMap) is
capable of generating both optimal depth and small area
simultaneously.

4.3 Impact of W on Mapping Results
When W increases, delay of the final mapping solutions gets better,
but area also increases slightly as shown in Table 3. One thing to
point out is that, given two different numbers W1 and W2 (assume
W1 < W2), the mapping graphs G1 constructed from the W1-bounded
network is not a strict sub-set of the mapping graph G2 constructed
from the W2-bounded network. It is possible that some logic
decompositions in G1 are not contained in G2, which accounts for
the fact that the total depths for W = 8 are slightly larger compared
with W = 6.

4.4 Statistics and Runtime
Table 4 shows some statistics of the mapping graph and SLDMAP
algorithm. The five columns show the value of W, the number of
nodes in the W-bounded network, the number of ugates and cycles
in the mapping graph, and the total runtime of SLDMap algorithm
(in seconds on a Sun Ultra-60 360MHz workstation) respectively.

Table 4. Statistics about the mapping graph for circuit rot
W # nodes # ugates # cycles runtime
2 1141 645 4 6
4 957 1267 5 10
6 881 2875 12 25
8 843 6472 94 150

4.5 Scalability
Also, we notice that SLDMap is more scalable than the commonly
used optimization script script.rugged. For most big circuits,
script.rugged fails, so script.algebraic is used instead. When our
algorithm is performed on networks optimized by algebraic scripts,
an area reduction of 8% over dmig can be achieved as shown in
Table 5. In general, the new approach is more scalable than
script.rugged but may not be as scalable as script.algebraic.

Table 5. Comparison with dmig and dogma after script.algebraic
circuit dmig dogma SLDMap

 D A R A D R D A

C7552 7 456 1.08 7 462 1.09 7 422
s35932 3 2659 1.11 3 2630 1.10 3 2387

too_large 6 755 1.04 6 759 1.04 6 727

alu4 6 1207 1.03 6 1211 1.03 6 1176
total 22 5077 22 5062 22 4712

ratio 1.08 1.07 1.07 1.07 1

54

5. Conclusions and On-going Work
SLDMap performs delay-minimized technology mapping on a large
set of decompositions and simultaneously controls mapping area
under the delay constraints. This work shows that the best
algorithms in conventional flow (dmig + CutMap) produce
satisfactory depth result even with a fixed decomposition. When
structural decomposition and technology mapping are taken into
consideration simultaneously, SLDMap outperforms the state-of-
the-art separate flow (dmig + CutMap) by 12% in depth and 10% in
area on average.
Since BDD is used during the mapping graph construction phase to
reduce the mapping graph, SLDMap currently cannot handle some
BDD-hard circuits, e.g. C6288 (multiplier). The proposed solution
for this problem is to build local BDDs for each gate that needs to
be decomposed, instead of building a global BDD for the entire
network. Although some global functional equivalence and sharing
information will be lost, it will enable us to handle BDD-hard
circuits and other large circuits.
For big circuits with more than 100K gates, an effective partitioning
algorithm shall be developed to divide the problem into smaller
sizes.
Another direction to explore is how to better handle networks with
W bigger than 10. We may enumerate a large set of promising
decompositions to limit the mapping graph size and control the
construction time. Even for W less than 10, we can still keep only
promising decompositions and explore the smaller solution space in
a more thorough way or in a shorter amount of time.
We will also investigate the impact of this combined approach after
placement and routing on real devices.

6. ACKNOWLEDGMENTS
The authors gratefully thank Dr. Yeanyow Huang on usage of
dogma and cutmap for our experiments. We would also like to thank
Dr. Songjie Xu, Chang Wu and Wangning Long for providing tons
of help. This work is partially supported by Actel, Lucent
Technology and Xilinx under the California Micro Program and the
NSF under grant MIP-9357582.

7. REFERENCES
[1] J. Cong and Y.-Y. Hwang, “Structural Gate Decomposition for

Depth-Optimal Technology Mapping in LUT-based FPGA
Design,” 33rd ACM/IEEE Design Automation Conference,
1996, pp. 726-729.

[2] R. J. Francis and J. Rose and K. Chung, “Chortle: A
Technology Mapping Program For Lookup Table-Based Field
Programmable Gate Arrays,” 27th ACM/IEEE Design
Automation Conference, 1990, pp. 613-619.

[3] R. Murgai, N. Shenoy, R. K. Brayton and A. Sangiovanni-
Vincentelli, “Performance Directed Synthesis For Table
Lookup Programmable Gate Arrays,” IEEE International
Conference on CAD, 1991, pp. 572-575.

[4] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng and P. Trajmar,
“DAG-Map: Graph-based FPGA Technology Mapping for

Delay Optimization,” IEEE Design and Test of Computers,
1992, pp. 7-20.

[5] J. Cong and Y. Ding, “FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits And Systems, 1994, vol. 13, no.
1, pp. 1-12.

[6] J. Cong and Y. Ding, “On Area/Delay Trade-off in LUT-based
FPGA Technology Mapping,” IEEE Trans. on VLSI Systems,
June 1994, vol. 2, no. 2, pp. 137-148.

[7] J. Cong and Y.-Y. Hwang, “Simultaneous Depth and Area
Minimization in LUT-Based FPGA Mapping,” ACM 3rd Int'l
Symp. on Field Programmable Gate Arrays, 1995, pp. 68-74.

[8] A. Farrahi and M. Sarrafzadeh, “Complexity of the Lookup-
Table Minimization Problem for FPGA Technology Mapping,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits
And Systems, 1994, vol. 13, no. 11, pp. 1319-1332.

[9] J. Cong and Y. Ding, “Combinational Logic Synthesis for
SRAM Based Field Programmable Gate Arrays,” ACM
Transactions on Design Automation of Electronic Systems,
1996, vol. 1, no. 2, pp. 145-204.

[10] E. Lehman, Y. Watanabe, J. Grodstein and H. Harkness,
“Logic Decomposition during Technology Mapping,”
IEEE/ACM International Conference on Computer-Aided
Design. 1995, pp.264-271.

[11] E. Lehman, Y. Watanabe, J. Grodstein and H. Harkness,
“Logic Decomposition during Technology Mapping,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits And
Systems, 1997, vol. 16, no. 8, pp. 813-834.

[12] D. Jongeneel, R. Otten, Y. Watanabe and R. K. Brayton, “Area
and Search Space Control for Technology Mapping,” 37th
ACM/IEEE Design Automation Conference, 2000, pp. 86-91.

[13] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. Stephan, R. Brayton and A.
Sangiovanni-Vincentelli, “SIS: A System for Sequential Circuit
Synthesis,” Electronics Research Laboratory, Memorandum
No. UCB/ERL M92/41, 1992.

[14] J. Cong, Y. Ding and C. Wu, “Cut Ranking and Pruning:
Enabling A General And Efficient FPGA Mapping Solution,”
ACM 7th Int'l Symp. on Field Programmable Gate Arrays,
1999, pp. 29-35.

[15] G. Chen and J. Cong, “Simultaneous Logic Decomposition
with Technology Mapping in FPGA Designs,” UCLA
Computer Science Department Technical Report CSD-200030.

[16] J. Cong, J. Peck and Y. Ding, “RASP: A General Logic
Synthesis System for SRAM-based FPGAs,” Proc. ACM 4th
Int'l Symp. on FPGA, 1996, pp. 137-143. The RASP package
can be downloaded from http://cadlab.cs.ucla.edu.

[17] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry
detection and dynamic variable ordering of decision
diagrams,” IEEE International Conference on Computer-Aided
Design, November 1994, pp. 628-631.

55

	Main Page
	FPGA'01
	Front Matter
	Table of Contents
	Author Index

