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Abstract  

“ System-On-Chip” has become a reality, and recently
new reconfigurable devices have appeared. However, few
efforts have been carr ied out in order to define HW/SW
codesign methodologies and algorithms which address the
challenges presented by new reconfigurable devices.

In this paper we address this open problem and present
a novel HW/SW partitioning algorithm for dynamically
reconfigurable architectures. The algorithm is a
constructive algorithm, which obtains an initial solution
and afterwards tries to optimize it. The HW/SW
partitioning is done taking into account the features of the
dynamically reconfigurable devices, and its final goal is
minimize the reconfiguration latency.

The partitioning algorithm has been implemented and
integrated into our developed codesign environment,
where several experiments have been carr ied out. The
results obtained demonstrate the benefits of the algorithm.

1. Introduction and Motivation
The continued progress of semiconductor technology

has enabled the “System-On-Chip” to become a reality.
Integrated circuits that merge core processors, embedded
memory and custom logic have been reported by a wide
range of companies. In this sense, programmable logic
companies have also proposed new products [1, 2]. A clear
example is the CS2112 chip from Chameleon Systems, Inc.
This device integrates a RISC core, embedded memory,
and a run-time reconfiguration fabric on single chip [3].

 Clearly, these types of programmable devices could be
used as the final target architecture in a HW/SW codesign
methodology. However, Dynamically Reconfigurable
Logic (DRL) changes many of the basic assumptions in the
HW/SW codesign process. The flexibilit y of DRL devices
(multiple contexts, partial and run-time reconfiguration,
etc.) requires the development of new methodologies and
algorithms, as conventional codesign approaches do not
consider the features of these new DRL devices.
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Traditionally, the HW/SW partitioning problem and the
reconfiguration latency minimization problem (the major
challenge introduced by DRL devices) have been
addressed independently. In this paper, we propose a
automatic HW/SW partitioning algorithm for DRL
architectures. The proposed algorithm takes into account
the reconfiguration prefetching when performing HW/SW
partitioning. The experiments carried out demonstrate that
the benefits using a prefetching technique, for
reconfiguration latency minimization, can be improved if it
is considered at the HW/SW partitioning level.

This HW/SW partitioning algorithm has been included
within a HW/SW codesign methodology for discrete event
systems, which have been recently addressed using
HW/SW codesign techniques [10, 19]. Key features of this
methodology are: (1) it is based on the object-oriented
paradigm, and (2) the dynamic scheduling (HW/SW and
DRL multi-context) approach.

The rest of the paper is organized into 6 sections.
Section 2 overviews the previous related work. Section 3
shortly introduces the codesign methodology. In section 4
we present the HW/SW partitioning algorithm for DRL
architectures. In section 5, we apply our algorithm to
telecom networks simulation, and give the obtained results.
Finally, in section 6 we present the conclusions.

2. Previous Related Work
There are a great number of approaches to HW/SW

codesign of embedded systems, which use different
techniques for partitioning and scheduling. Earlier
approaches to HW/SW partitioning model the system
based on a template of a CPU and an ASIC [8, 11].
Moreover, several types of algorithms (constructive or
iterative) have been used [21].

In the other hand, configuration prefetching techniques
can be used for reconfiguration latency minimization. They
are based on the idea of loading the next reconfiguration
context before it is required, hence overlapping device
reconfiguration and application execution. Hauck firstly
introduced configuration prefetching in [13], where a
single-context prefetching technique is presented. This
approach addresses the problem of reconfiguration latency
minimization, but it does not address HW/SW partitioning.

Recent research efforts have addressed this open



problem. In [6] an integrated algorithm for HW/SW
partitioning and scheduling, temporal partitioning and
context scheduling is presented. A more recent work [16]
presents a fine-grained HW/SW partitioning algorithm (at
loop level). This algorithm optimizes the global
application execution time. Both previous approaches are
similar to [9, 12] which take the reconfiguration time into
account when performing the partitioning, but they do not
consider the effects of configuration prefetching for
latency minimization. In [14] this topic is introduced, and
a HW/SW co-synthesis approach for partially
reconfigurable devices is presented. They do not address
multi-context devices. Moreover, this approach which is
based on a ILP formulation, is limited by the high
execution times of the algorithm, which hardly gives
solutions for task graphs having more than 10 tasks.

3. Codesign Methodology
This section briefly presents the methodology we

proposed in [19], which is divided into three stages:
Application Stage, Static Stage and Dynamic Stage.

The application stage includes Discrete Event (DE)
System Specification and Design Constraints. Initially, a
set of independent DE classes are modeled. We define a
DE class as a concurrent process type with a certain
behavior, which is specified as a function of state variables
and input events. Concrete instances of DE classes are DE
objects. These DE classes are used to specify the entire
system as a set of interrelated DE objects, which
communicate among them using events. A DE object
computation is activated upon the arrival of an event.

The static stage includes: (1) extraction, (2) estimation,
(3) HW/SW partitioning, and (4) HW and SW synthesis.
The extraction phase obtains: (1) a list of all system
instances (DE objects), and (2) a list of all different DE
classes and objects connected to it. Once this phase has

finished, DE classes can be viewed as a set of independent
processes or tasks. The estimation phase can use typical
estimators (i.e. for delay and area) that could be obtained
using high-level synthesis and profiling tools. The HW/SW
partitioning phase decides which classes will be executed
in HW and which in SW. These classes are then packed
into reconfiguration contexts.

The dynamic stage includes HW/SW Scheduling and
DRL Multi-Context Scheduling. Both of them run in
parallel and base their functionality on events present in
the event stream. To better understand how this stage
works, let us introduce first the target architecture, which is
depicted in figure 1. It is an heterogeneous architecture
which comprises a software processor, a DRL-based
hardware architecture and shared memory resources.

The HW/SW and DRL Multi-Context Scheduler are
mapped to hardware using a centralized control scheme.
The Event Stream (a list of events sorted by time) is stored
in the Event Stream memory. DRL contexts (which
correspond to packed classes) are stored in the DRL
Context memory. Finally, DE objects states are stored in
the Object State memory. The HW/SW and DRL
schedulers co-operate and run in parallel during
application run-time execution, in order to meet system
constraints. Events get the central scheduler through I/O
ports or as a result of a previous event computation.

The HW/SW scheduler decides at run-time the
execution order of the events stored in the event stream.
The DRL multi-context scheduler is used to minimize
packed classes switches. A packed class switch is a
mechanism that allows to change from the execution in a
DRL of a class (that belongs to a packed class) to another
(that belongs to another packet class). A packed class
switch implies a DRL reconfiguration. Another mechanism
used is the object switch that allows to change from the
execution of one object to another object of the same class.

Our approach will process at every moment the first
event of the sorted event stream on a DRL cell or in the
CPU. The scheduler tries to minimize the packed class
switch (reconfiguration) overhead by overlapping the
execution of events with these switches. This objective is
accomplished by using a lookahead strategy into the event
stream memory (see figure 1). Event Window (EW) is the
number of events that are observed in advance. At the
beginning of the execution of a new event, the scheduler
looks ahead EW events in the event stream to see if there is
any class Ci mapped to HW that will be next executed
which is not currently configured in any DRL. Then the
scheduler obtains the state of each DRL. In case there is
any DRL that is configured with a packed class which is
not going to be necessary before the execution of the class
Ci, and the DRL is free (is not being reconfigured neither
is executing the current event) then the DRL is
reconfigured to the packed class where the class Ci

belongs.
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   Figure 1. DRL Target Architecture.



4. HW/SW Partitioning for Dynamically
Reconfigurable Architectures

As introduced in the previous section, a set of
independent DE classes C = (C1, C2,  ..., CL) is the input to
the HW/SW partitioning algorithm. The partitioning
algorithm throughout its execution will work with two
subsets (CHW and CSW):

�  CHW is the set of DE classes mapped to hardware,
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A concrete class (Ci) of the input set of classes, is
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where:

�  HW
iAET stands for Average Execution Time for a

hardware implementation of the DE class Ci.
�  SW

iAET stands for Average Execution Time for a

software implementation of the DE class Ci.
�  SVMi stands for State Variables Memory size

required by the class.
�  DRLAi stands for DE class DRL required Area.
�  NOi stands for Number of Objects of this class.
An important comment is needed for HW

iAET and
SW

iAET . These estimators are static estimators, which only

give information about the execution time for a concrete
event processing. They do not take into account the
dynamic (random) behavior of the event stream. And even
more important is the fact that these estimators do not take
into account the features or parameters of the dynamically
reconfigurable architecture (reconfiguration time, number
of contexts, etc). These parameters indeed have a direct
impact into the performance given by the HW/SW
partitioning. Without taking into account the features of
the reconfigurable architecture, the HW/SW partitioning
could give really poor results.

Let’s consider first the HW
iAET estimator, and how it

can be modified to take into account the features of our
target reconfigurable architecture. As explained in the
introduction, reconfiguration latency minimization is one
of the major challenges introduced by reconfigurable
computing. In our approach, we propose a hardware based
prefetching technique, which overlaps processing and
reconfiguration. The following expression represents how
is going to be taken into account at the HW/SW
partitioning level: (1) the parameters from reconfigurable
platform, and (2) the configuration prefetching technique
for reconfiguration latency minimization.
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where:
�  αR is the reconfiguration probabilit y, which is a

function of the number of classes found in the set CHW,
and the number of DRL cells. Its value is depicted in
expression (2).
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�  TR is the reconfiguration time needed for a DRL cell to
change its context.

�  EW is the size (in number of events) of the prefetch
window. We experimentally obtained that the best EW
is represented by expression (3).
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�  
EXET  is the average executing time for all classes of set

C. Each class belongs either to subset CHW or to subset
CSW, so only one of its estimators will be considered to
calculate the average executing time, which is given
by the following expression.
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HW
iAET  represents the average execution time for

class Ci on top of the reconfigurable architecture. This
value is obtained adding to its execution time the
reconfiguration overhead, which is not a fixed value and
depends on the number of DRL cells, its reconfiguration
time and number of classes in subset CHW. The
reconfiguration overhead depends on the reconfiguration
probabilit y (which will be higher when more classes are
present in subset CHW, when fixed the number of DRL
cells) and the reconfiguration time which could be reduced
using the prefetching technique. As the prefetching
techniques is based on the fact of overlapping the
execution on a DRL cell with the reconfiguration of
another DRL cell , the reconfiguration time could be
reduced by a factor which is proportional to the EW and
average execution time of the set of classes C.

Let’s consider now the SW
iAET estimator, and how it is

modified to take into account the features of the event
stream, software processor and HW/SW communication
strategy. This is shown in the following expression:

COMCOM
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where:
�  αCOM is the HW/SW communication probabilit y,

which is a function of the number of classes found in
the set CSW. In our approach, we assume that HW/SW
communication could also be improved using a
prefetching technique which overlaps an event



execution on the DRL architecture with the HW/SW
communication for an event which will be executed by
the software processor in the near future (within the
EW). Its value is depicted in expression (5). This
probability represents the case in which two events,
that have to be executed into the software processor,
are consecutive in the event stream.
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�  
COMT  is the average H/SW communication time. It

represents the average access and transfer time
through the system bus.

Our partitioning algorithm is resource constrained. The
design constraints are object memory and class (DRL
context) memory. That is, the total object state memory is
limited and denoted by OSMA (Object State Memory
Available). CMA stands for the total amount of Class
Memory Available. DRLA stands for the DRL device
available Area. We formulate our problem as maximizing
the number of DE classes mapped to the subset CHW while:
(1) meeting memory and DRL area constraints, and (2) the
average execution time for all classes present in CHW is less
than its average software execution time.
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The partitioning algorithm that we are proposing is
divided in three main phases, which are: (1) obtaining an
initial solution, (2) improvement of the initial solution, and
(3) Class packing into reconfiguration contexts.

In order to perform this incremental approach, classes
are labelled with an active state. We consider these states:
(1) free, (2) fixed_HW and fixed_SW, and (3) tagged_HW
and tagged_SW. Free state means that the class is not
assigned to any subset (CHW or CSW). Initially all classes
are free. Fixed_HW means that the class belongs to subset
CHW, and that it can not be moved from this subset.
Fixed_SW means the same as fixed_HW but using CSW.
Tagged_HW means that class belongs to subset CHW, but
that the class could be moved to CSW. Tagged_SW means
that class belongs to subset CSW, but that the class could be
moved to CHW.

4.1. Obtaining the Initial Solution
Obtaining an initial solution is addressed using a list-

based partitioning algorithm. The idea of this approach is
to give priority to the more time consuming DE classes
when mapping to hardware, in order to minimize the total
execution time. Thus, the set of input DE classes is
sequentially ordered and more time consuming DE classes
are prioritized using a cost function. The following cost
function has been used.
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Indeed, this cost function prioresses DE classes with
significant difference in its HW and SW execution times.
We assume that lower values, as result of applying cost
function, are better than higher values. So, the sort function
classifies values from lowest to highest. Parameters α and
β are used as a trade-off between the speed-up and the
number of objects for the class.

The algorithm obtains the initial sequentially sorted list
after the cost function has been applied to all DE classes.
Afterwards, it performs a loop, and tries to set as
tagged_SW as many DE classes as possible while memory
and DRL area constraints are met. Classes that do not meet
the requirements will be set as fixed_SW. See [20] for
details on this algorithm.

4.2. Improvement of the Initial Solution
Improvement of the initial solution is achieved using an

iterative algorithm. This algorithm is based on the idea of
moving classes from the subset CSW (concretely, the ones
labeled as tagged_SW) to the subset CHW. The movement
of a class, from the subset CSW to the subset CHW, is mainly
determined by the expressions introduced previously at the
beginning of this section (expressions 1 to 6).

The pseudo-code of the proposed algorithm is shown in
figure 2. The input to this algorithm is the sorted list of
classes, where each class is labeled with a state. The
ImproveInitialSolution(PINITIAL) {
 Movement = TRUE;

 while Movement == TRUE loop
  Movement = FALSE;

  FirstTaggedSW = GetFirstClassTaggedSW();
  CF = GetFirstClass(PINITIAL, FirstTaggedSW);

  SetState(CF, tagged_HW);
  ExecTime = AverageExecutionTime();
  αR = ReconfigurationProbability();
  EW = EventWindowSize();

  SetState(CF, tagged_SW);
  αCOM = CommunicationProbability();
  MediumCommTime = AverageCommTime();

  for i = 0 to FirstTaggedSW loop
    Ci = GetClass(PINITIAL);

    TexecHWi = TexecHW(Ci);
    TexecSWi = TexecSW(Ci);

    ExecTimeHWi = TexecHWi + αR * (TR – EW * ExecTime);
    ExecTimeSWi = TexecSWi + αCOM * CommTime;

    if (ExecTimeHWi < ExecTimeSWi) then
        if (GetState(Ci) == tagged_SW) then
           SetState(Ci, tagged_HW);
           Movement = TRUE;
        elsif (GetState(Ci) == tagged_HW)
           SetState(Ci, fixed_HW);
           Movement = TRUE;
        end if;
    else
         Movement = FALSE;
         Break;
    end if;
  end loop;
 end loop;
}

Figure 2. Improvement of the initial solution.



classes are still ordered by the cost function. The algorithm
iterates within a loop while there is any movement. When
trying to perform the movement, the algorithm initially
gets the first class in the list that is labeled as tagged_SW,
and, for a brief period of time, labels the class as
tagged_HW. After that, the algorithm evaluates the
partitioning expressions 2, 3 and 4, assuming that the class
is mapped to HW. Once this process has finished, it returns
the class to its initial label (tagged_SW) and evaluates the
expression 6 assuming that the class is assigned to SW.

At this point it is possible to evaluate expressions 1 and
5 for all the preceding classes in the list, which indeed
means to evaluate the influence that will have moving a
new class into the reconfigurable platform on the average
executing time of the other classes. For each class the
algorithm checks if the average execution time in HW is
less than the average execution time in SW. If this
condition is not asserted the algorithm stops, otherwise it
checks the state of the class in order to move the class to
HW. This process of moving a class to HW is performed
in two steps: (1) the class changes its state from
tagged_SW to tagged_HW, and (2) the class changes its
state from tagged_HW to fixed_HW. Each one of these
steps will be performed in different iterations of the
algorithm. This mapping process is done this way to
prevent the algorithm to enter into a non-converging state.

As result of applying this algorithm there will be some
classes labeled as fixed_HW, which indeed will be the
classes finally mapped into the reconfigurable HW.

4.3. Class Packing into Reconfiguration Contexts
Once the improvement of the initial solution is finished,

it is possible to perform a second type of optimization to
minimize reconfiguration latency. The basic idea is to
reduce the number of reconfigurations that are performed
during execution. This objective can be achieved if all
classes labeled as fixed_HW are packed into the minimum
number of reconfiguration contexts. A reconfiguration
context represents the implementation of several classes
into a single DRL cell. In the worst case, each
reconfiguration context will implement a single class. And,
in the best case a single reconfiguration context will be
needed for all classes. Classes are packed into
reconfiguration contexts according to their DRL area
estimator. A reconfiguration context can implement N
classes if the sum of the DRL required area of these N
classes does not exceed the area of the DRL cell.

We have addressed this problem of obtaining the
minimum number of reconfiguration contexts using a Left-
Edge based algorithm. The Left-Edge algorithm is well
known for its application in channel-routing tools for
physical-design automation. It has been also adapted to
solve the register allocation problem in high level synthesis
[15]. We have adapted and used this algorithm to address
our problem. Using this approach we always get optimal

results for the number of reconfiguration contexts. See [20]
for details on this algorithm.

5. Experiments and Results
In this section, we explain a case study of our codesign

methodology and partitioning algorithm. We center this
case study in the software acceleration of broadband
telecom networks simulation [18]. For our case study we
have chosen the SONATA network [5]. Within this
network it is possible to identify six different DE classes,
which have been the input to our partitioning algorithm.

We carried out several experiments on top of our
codesign framework [19]. Several experiments have been
performed varying the DRL architecture parameters:
number of DRL cells (0, 1, 2, 3, and 4) and its associated
reconfiguration time (2000ns, 1000ns and 500ns). For all
experiments we assume a DRL architecture where the
object state and class memory have a size of 128Kx32 bits.

Figure 3 shows the several iterations carried out in the
improvement of the initial solution phase of the HW/SW
partitioning algorithm. This example assumes a DRL
architecture of two DRL cells, each of them with a
reconfiguration time of 1000ns. In this example, we also
assume that all input classes are tagged_SW, and there is
not any class fixed_SW. In the first iteration, class C1 is the
first class tagged_SW, and after evaluating the partitioning
expressions it is tagged_HW (grey colour). In the second
iteration, class C2 is the first class tagged_SW and after
evaluating the partitioning expressions, class C1 is
fixed_HW  (black colour) and class C2 is tagged_HW, and
so on. A special comment is needed for iteration 6, where
the algorithm stops its execution, because there is not any
move. This is due to the fact that when trying to move C5
to hardware, the algorithm detects that a previously class
fixed_HW (C2) should be set as a software class.  Within
our algorithm this possibility is not possible (as explained
in the previous section), otherwise the algorithm will enter
into a non-convergence problem (if this possibility was
considered then algorithm would be again in the same state
as in iteration 3).

Figures 4 show the total network simulation execution
time when the number of DRL cells increases. A DRL=0
value means an all software simulation execution. For each
reconfiguration time, we compare the results obtained
when applying the algorithm presented in this paper (S
algorithm), with the results given in [19] where DRL

1 C1 C6 C3 C2 C4 C5
2 C1 C6 C3 C2 C4 C5
3 C1 C6 C3 C2 C4 C5
4 C1 C6 C3 C2 C4 C5
5 C1 C6 C3 C2 C4 C5
6 C1 C6 C3 C2 C4 C5

ITER.

Figure 3. Partitioning Algorithm Iterations.



features are not taken into account (L algorithm) at the
HW/SW partitioning level. Figure 4, shows the benefits
given by the S algorithm. It does give better results even in
the case of having a single DRL cell with a reconfiguration
time of 2000ns. When applying the L algorithm it is seen
that using a single DRL cell with a reconfiguration time of
2000ns, give worst results than an all software solution.

From figure 4, it is also seen that just having two DRL
cells has a great impact into the performance. The
important point here is the results given by the two
partitioning algorithms. When having two DRL cells, it is
possible to obtain almost the same results when using: (1)
the S algorithm and slower reconfiguration time DRL cells,
(2) the L algorithm and twice faster DRL cells. That is,
although using faster DRL devices it is not guaranteed that
best results will be obtained. The results do highly depend
on the partitioning algorithm.

Finally, it can be seen that when increasing the number
of DRL cells (three or four) both algorithms converge to
the execution time obtained using an static hardware
approach (this configuration would be the best possible
one, because it means that there are six DRL cells, so there
is no reconfiguration overhead). However, it can be seen
that algorithm S converges with three DRL cells, while
algorithm L converges with four DRL cells.

6. Conclusions
New HW/SW codesign methodologies and algorithms

have to be developed, in order to take into account the
features of new appearing DRL devices and architectures.

In this paper, we have presented a major contribution: a
novel automatic HW/SW partitioning algorithm for
dynamically reconfigurable architectures, which takes into
account a configuration prefetching mechanism for
reconfiguration latency minimization.

We have included this partitioning algorithm within our
codesign framework and applied it to the software
acceleration of telecom networks simulation. Several
experiments have been carried out, and results demonstrate
the benefits of our algorithm.
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