A HW/SW Partitioning Algorithm for Dynamically Reconfigur able Architectures

Juanjo Noguera, RosaM. Badia
Dept. Computer Architecture. Universitat Politecnica Catalunya
e-mail: {jnoguera, rosab} @ac.upc.es

Abstract

“ System-On-Chip” has become a reality, and recently
new reconfigurable devices have appeared. Howeve, few
efforts have been carried ou in order to define HW/SW
codesign methoddogies and algorithms which addessthe
challenges presented by new reconfigurable devices.

In this paper we addressthis open problem and present
a novd HW/SW partitioning dgorithm for dynamically
reoonfigurable architedures. The algorithm is a
constructive algorithm, which oltains an initial solution
and dterwards tries to opimize it. The HWSW
partitioning is dore taking into account the features of the
dynamically reconfigurable devices, and its final god is
minimize the reconfiguration latency.

The partitioning dgorithm has been implemented and
integrated into ou devdoped codesign environment,
where seveal experiments have been carried ou. The
results obtained demonstrate the benefits of the algorithm.

1. Introduction and Motivation

The mntinued progress of semiconductor technology
has enabled the “System-On-Chip” to bemme a redity.
Integrated circuits that merge re procesrs, embedded
memory and custom logic have been reported by a wide
range of companies. In this snse, programmable logic
companies have dso proposed new products [1, 2]. A clea
example isthe CS2112chip from Chameleon Systems, Inc.
This device integrates a RISC core, embedded memory,
and aruntime reconfiguration fabric on single chip [3].

Clealy, these types of programmable devices could be
used as the final target architecture in a HW/SW codesign
methoddogy. However, Dynamicdly Rewnfigurable
Logic (DRL) changes many of the basic assumptions in the
HW/SW codesign process The flexibility of DRL devices
(multiple ntexts, partial and runtime reanfiguration,
etc.) reguires the development of new methoddogies and
algorithms, as conventional codesigh approaches do not
consider the feaures of these new DRL devices.

" Thiswork has been funded by CICYT-TIC project TIC-98-0410-CO2-
01. Authors acknowledge ALTERA support within its Programmable
Hardware Devel opment program.

Traditionally, the HW/SW partitioning problem and the
reconfiguration latency minimization problem (the major
challenge introduced by DRL devices) have been
addressed independently. In this paper, we propose a
automatic HW/SW partitioning agorithm for DRL
architectures. The proposed algorithm takes into account
the reconfiguration prefetching when performing HW/SW
partitioning. The experiments carried out demonstrate that
the benefits using a prefetching technique, for
reconfiguration latency minimization, can be improved if it
is considered at the HW/SW partitioning level.

This HW/SW partitioning algorithm has been included
within a HW/SW codesign methodology for discrete event
systems, which have been recently addressed using
HW/SW codesign techniques[10, 19]. Key features of this
methodology are: (1) it is based on the object-oriented
paradigm, and (2) the dynamic scheduling (HW/SW and
DRL multi-context) approach.

The rest of the paper is organized into 6 sections.
Section 2 overviews the previous related work. Section 3
shortly introduces the codesign methodology. In section 4
we present the HW/SW partitioning algorithm for DRL
architectures. In section 5, we apply our agorithm to
telecom networks simulation, and give the obtained results.
Finally, in section 6 we present the conclusions.

2. Previous Related Work

There are a great number of approaches to HW/SW
codesign of embedded systems, which use different
techniques for partitioning and scheduling. Earlier
approaches to HW/SW partitioning model the system
based on a template of a CPU and an ASIC [8, 11].
Moreover, several types of algorithms (constructive or
iterative) have been used [21].

In the other hand, configuration prefetching techniques
can be used for reconfiguration latency minimization. They
are based on the idea of loading the next reconfiguration
context before it is required, hence overlapping device
reconfiguration and application execution. Hauck firstly
introduced configuration prefetching in [13], where a
single-context prefetching technique is presented. This
approach addresses the problem of reconfiguration latency
minimization, but it does not address HW/SW partitioning.

Recent research efforts have addressed this open



problem. In [6] an integrated algorithm for HW/SW
partitioning and scheduling, temporal partitioning and
context scheduling is presented. A more recent work [16]
presents a fine-grained HW/SW partitioning algorithm (at
loop level). This agorithm optimizes the global
application execution time. Both previous approaches are
similar to [9, 12] which take the reconfiguration time into
account when performing the partitioning, but they do not
consider the effects of configuration prefetching for
latency minimization. In [14] this topic is introduced, and
a HW/SW co-synthesis approach for partialy
reconfigurable devices is presented. They do not address
multi-context devices. Moreover, this approach which is
based on a ILP formulation, is limited by the high
execution times of the algorithm, which hardly gives
solutions for task graphs having more than 10 tasks.

3. Codesign Methodology

This section briefly presents the methodology we
proposed in [19], which is divided into three stages:
Application Stage, Satic Sage and Dynamic Stage.

The application stage includes Discrete Event (DE)
System Specification and Design Congtraints. Initially, a
set of independent DE classes are modeled. We define a
DE class as a concurrent process type with a certain
behavior, which is specified as a function of state variables
and input events. Concrete instances of DE classes are DE
objects. These DE classes are used to specify the entire
system as a set of interrelated DE objects, which
communicate among them using events. A DE object
computation is activated upon the arrival of an event.

The static stage includes: (1) extraction, (2) estimation,
(3) HWISW partitioning, and (4) HW and SW synthesis.
The extraction phase obtains. (1) a list of al system
instances (DE objects), and (2) a list of al different DE
classes and objects connected to it. Once this phase has

DRL-based Hardware Co-processor Architecture

Object State
RAM
- i Object Bus
< »
1 t +
v v :
DRLCell, | | DRLCell, o DRLCell, |
A A A A DpRLATay A :
| ® ® ».| DRL Context
ClassBus | A e 7| (Class) RAM
Event Stream RAM
>
Event Bus
A 4 —
110, | HW/SW & DRL
Multi-Context
/10, » Scheduler Event Window(EW)
System Bus * >
CPU System RAM

Figure 1. DRL Target Architecture.

finished, DE classes can be viewed as a set of independent
processes or tasks. The estimation phase can use typical
estimators (i.e. for delay and area) that could be obtained
using high-level synthesis and profiling tools. The HW/SW
partitioning phase decides which classes will be executed
in HW and which in SW. These classes are then packed
into reconfiguration contexts.

The dynamic stage includes HW/SW Scheduling and
DRL Multi-Context Scheduling. Both of them run in
parallel and base their functionality on events present in
the event stream. To better understand how this stage
works, let us introduce first the target architecture, which is
depicted in figure 1. It is an heterogeneous architecture
which comprises a software processor, a DRL-based
hardware architecture and shared memory resources.

The HW/SW and DRL Multi-Context Scheduler are
mapped to hardware using a centralized control scheme.
The Event Stream (a list of events sorted by time) is stored
in the Event Stream memory. DRL contexts (which
correspond to packed classes) are stored in the DRL
Context memory. Finaly, DE objects states are stored in
the Object State memory. The HW/SW and DRL
schedulers co-operate and run in paralel during
application run-time execution, in order to meet system
constraints. Events get the central scheduler through 1/0
ports or as aresult of a previous event computation.

The HW/SW scheduler decides at run-time the
execution order of the events stored in the event stream.
The DRL multi-context scheduler is used to minimize
packed classes switches. A packed class switch is a
mechanism that alows to change from the execution in a
DRL of a class (that belongs to a packed class) to another
(that belongs to another packet class). A packed class
switch implies a DRL reconfiguration. Another mechanism
used is the object switch that allows to change from the
execution of one object to another object of the same class.

Our approach will process at every moment the first
event of the sorted event stream on a DRL cell or in the
CPU. The scheduler tries to minimize the packed class
switch (reconfiguration) overhead by overlapping the
execution of events with these switches. This objective is
accomplished by using a lookahead strategy into the event
stream memory (see figure 1). Event Window (EW) is the
number of events that are observed in advance. At the
beginning of the execution of a new event, the scheduler
looks ahead EW eventsin the event stream to seeif thereis
any class C; mapped to HW that will be next executed
which is not currently configured in any DRL. Then the
scheduler obtains the state of each DRL. In case there is
any DRL that is configured with a packed class which is
not going to be necessary before the execution of the class
C;, and the DRL is free (is not being reconfigured neither
is executing the current event) then the DRL is
reconfigured to the packed class where the class G
belongs.



4. HW/SW Partitioning for Dynamically
Reconfigurable Architectures

As introduced in the previous section, a set of
independent DE classes C = (Cy, Cy, ..., C) istheinput to
the HW/SW partitioning agorithm. The partitioning
algorithm throughout its execution will work with two
subsets (C™and C3):

»  C"™isthe set of DE classes mapped to hardware,
cW =W ciw _.ciwy, c™oc
»  C¥jsthe set of DE classes mapped to software,
c¥ =¥ c¥..cm,c™oc
» C™Ne¥ =g, c™yc¥ =c
A concrete dass (Cj) of the input set of classs, is
charaderized by a set of estimators E;,

E, =(AET", AET,%Y,SVM,,DRLA ,NO,)
where:
*  agT, stands for Average Exeaution Time for a

hardware implementation of the DE classC;.
* agTstands for Average Exeaution Time for a

software implementation of the DE classC..

=  SVM; stands for State Variables Memory size
required by the dass

= DRLA standsfor DE classDRL required Area

= NO, stands for Number of Objeds of thisclass

An important comment is needed for gt +wand

AET . These estimators are static estimators, which only

give information about the exeaution time for a concrete
event processng. They do not teke into acount the
dynamic (random) behavior of the event stream. And even
more important is the fad that these estimators do not take
into acount the feaures or parameters of the dynamicdly
reconfigurable achitecure (reconfiguration time, number
of contexts, etc). These parameters indeed have adired
impad into the performance given by the HW/SW
partitioning. Without taking into acount the feaures of
the reconfigurable achitedure, the HW/SW partitioning
could give redly poa results.

Let's consider first the AET " estimator, and how it

can be modified to take into acount the feaures of our
target recnfigurable achitedure. As explained in the
introduction, recmnfiguration latency minimization is one
of the major challenges introduced by remnfigurable
computing. In our approach, we propcse ahardware based
prefetching technique, which overlaps processng and
reconfiguration. The following expresson represents how
is going to be taken into acount at the HW/SW
partitioning level: (1) the parameters from reconfigurable
platform, and (2) the cnfiguration prefetching technique
for reconfiguration latency minimization.

AET"Y = AET"™ +a, EﬁrR -EW EFEXE) D

where:

» gg is the remnfiguration probability, which is a
function of the number of classes found in the set C"%,
and the number of DRL cdls. Its value is depicted in
expresson (2).

o it |c™|<DRL
= CHW‘ - DRL | ‘ ‘ - (2)
@LCHW it [c"|>DRL

= Tristheremnfiguration time needed for aDRL cdl to
change its context.

=  EW isthe size (in number of events) of the prefetch
window. We experimentall y obtained that the best EW
isrepresented by expresson (3).

HDRL if

QDRL +1 if

‘CSW‘Sl 3)
c|>1
T, Isthe average exeauting time for all classes of set

C. Each classbelongs either to subset C"" or to subset
C%, so only one of its estimators will be mnsidered to
cdculate the average exeauting time, which is given
by the foll owing expresson.

\C\

B AET{HW sw} (4)
EXE - ‘C‘
AET "W represents the average eeadtion time for

class C; on top d the remonfigurable achitedure. This
value is obtained adding to its exeaution time the
reconfiguration overhead, which is not a fixed value and
depends on the number of DRL cdls, its reconfiguration
time ad number of clases in subset C™™. The
reconfiguration overhead depends on the reconfiguration
probability (which will be higher when more dasses are
present in subset C™, when fixed the number of DRL
cdls) and the reconfiguration time which could be reduced
using the prefetching technique. As the prefetching
techniques is based on the fad of overlapping the
exeaution on a DRL cdl with the remnfiguration of
another DRL cdl, the reonfiguration time ould be
reduced by a fador which is propartional to the EW and
average exeaution time of the set of classes C.

Let's consider now the AgT, ¥ estimator, and how it is

modified to take into acount the feaures of the event
strean, software procesor and HW/SW communicaion
strategy. Thisis siown in the foll owing expresson:

AETiSN = AETiSN +0 com Teom ©)

where:

"  Qcom IS the HW/SW communicaion probability,
which is a function of the number of classes found in
the set C3". In our approach, we asume that HW/SW
communication could also be improved using a
prefetching technique which overlaps an event



execution on the DRL architecture with the HW/SW
communication for an event which will be executed by
the software processor in the near future (within the
EW). Its value is depicted in expression (5). This
probability represents the case in which two events,
that have to be executed into the software processor,
are consecutive in the event stream.

S| Sl ®)
< Icl

Toou 1S the average H/SW communication time. It
represents the average access and transfer time
through the system bus.

Our partitioning algorithm is resource constrained. The
design constraints are object memory and class (DRL
context) memory. That is, the total object state memory is
limited and denoted by OSMA (Object State Memory
Available). CMA stands for the total amount of Class
Memory Available. DRLA stands for the DRL device
available Area. We formulate our problem as maximizing
the number of DE classes mapped to the subset C™" while:
(1) meeting memory and DRL area constraints, and (2) the
average execution time for all classes present in C"'" isless
than its average software execution time.

Max(|C"™ |), such that:

M M
L 5 SVM,<OSMA 5 DRLA <CMA and DRLA, <DRLA
1= 1=

2. AET™ < AET,0C, OC™

The partitioning algorithm that we are proposing is
divided in three main phases, which are: (1) obtaining an
initial solution, (2) improvement of the initial solution, and
(3) Class packing into reconfiguration contexts.

In order to perform this incremental approach, classes
are labelled with an active state. We consider these states:
(D) free, (2) fixed_ HW and fixed_SW, and (3) tagged HW
and tagged SW. Free state means that the class is not
assigned to any subset (C™ or C™). Initially all classes
are free. Fixed HW means that the class belongs to subset
C"™ and that it can not be moved from this subset.
Fixed SW means the same as fixed HW but using C>".
Tagged HW means that class belongs to subset C™, but
that the class could be moved to C3". Tagged SW means
that class belongs to subset C3¥, but that the class could be
moved to C"*",

4.1. Obtaining the I nitial Solution

Obtaining an initial solution is addressed using a list-
based partitioning algorithm. The idea of this approach is
to give priority to the more time consuming DE classes
when mapping to hardware, in order to minimize the total
execution time. Thus, the set of input DE classes is
sequentially ordered and more time consuming DE classes
are prioritized using a cost function. The following cost
function has been used.

F :aEQAETi”W—AETiSN)wD'% )

Indeed, this cost function prioresses DE classes with
significant difference in its HW and SW execution times.
We assume that lower values, as result of applying cost
function, are better than higher values. So, the sort function
classifies values from lowest to highest. Parameters a and
B are used as a trade-off between the speed-up and the
number of objects for the class.

The algorithm obtains the initial sequentially sorted list
after the cost function has been applied to al DE classes.
Afterwards, it performs a loop, and tries to set as
tagged_SW as many DE classes as possible while memory
and DRL area constraints are met. Classes that do not meet
the requirements will be set as fixed SW. See [20] for
details on this algorithm.

4.2. Improvement of the Initial Solution

Improvement of the initial solution is achieved using an
iterative algorithm. This algorithm is based on the idea of
moving classes from the subset C3 (concretely, the ones
labeled as tagged SW) to the subset C™. The movement
of aclass, from the subset C3" to the subset C"Y, is mainly
determined by the expressions introduced previoudly at the
beginning of this section (expressions 1 to 6).

The pseudo-code of the proposed agorithm is shown in
figure 2. The input to this algorithm is the sorted list of
classes, where each class is labeled with a state. The

ImproveInitialSolution (Piyrrran) |
Movement = TRUE;

whi | e Movement == TRUE | oop
Movement = FALSE;

FirstTaggedSW = GetFirstClassTaggedSW();
Cr - GetFirstClass (Piyiran, FirstTaggedSw) ;

SetState (Cy, tagged_HW);

ExecTime = AverageExecutionTime () ;
Oz = ReconfigurationProbability();
EW = EventWindowSize () ;

SetState (Cr, tagged_SW);

Ocov = CommunicationProbability();
MediumCommTime = AverageCommTime () ;

for i = 0 to FirstTaggedSw | oop
Ci = GetClass (Piyrrian) i

TexecHW; = TexecHW (C;);

TexecSW; = TexecSW(C;);

ExecTimeHW; = TexecHW; + Oy « (T — EW * ExecTime);
ExecTimeSW; = TexecSW; + Ocoy * CommTime;

if (ExecTimeHW; < ExecTimeSW;) then
if (GetState(C;) == tagged_SW) then
SetState (C;, tagged_HW);
Movement = TRUE;
el sif (Getstate(C;) == tagged_HW)
SetState (C;, fixed_HW);
Movement = TRUE;
end if;
el se
Movement = FALSE;
Break;
end if;
end | oop;
end | oop;
}

Figure 2. Improvement of the initial solution.



classes are till ordered by the cost function. The algorithm
iterates within a loop while there is any movement. When
trying to perform the movement, the algorithm initialy
gets the first class in the list that is labeled as tagged SW,
and, for a brief period of time, labels the class as
tagged HW. After that, the algorithm evaluates the
partitioning expressions 2, 3 and 4, assuming that the class
is mapped to HW. Once this process has finished, it returns
the class to its initial label (tagged SW) and evaluates the
expression 6 assuming that the classis assigned to SW.

At this point it is possible to evaluate expressions 1 and
5 for al the preceding classes in the list, which indeed
means to evaluate the influence that will have moving a
new class into the reconfigurable platform on the average
executing time of the other classes. For each class the
algorithm checks if the average execution time in HW is
less than the average execution time in SW. If this
condition is not asserted the algorithm stops, otherwise it
checks the state of the class in order to move the class to
HW. This process of moving a class to HW is performed
in two steps: (1) the class changes its state from
tagged_SW to tagged HW, and (2) the class changes its
state from tagged HW to fixed HW. Each one of these
steps will be performed in different iterations of the
algorithm. This mapping process is done this way to
prevent the algorithm to enter into a non-converging state.

As result of applying this algorithm there will be some
classes labeled as fixed HW, which indeed will be the
classes finally mapped into the reconfigurable HW.

4.3. Class Packing into Reconfigur ation Contexts

Once the improvement of the initial solution is finished,
it is possible to perform a second type of optimization to
minimize reconfiguration latency. The basic idea is to
reduce the number of reconfigurations that are performed
during execution. This objective can be achieved if all
classes labeled as fixed HW are packed into the minimum
number of reconfiguration contexts. A reconfiguration
context represents the implementation of several classes
into a single DRL cell. In the worst case, each
reconfiguration context will implement a single class. And,
in the best case a single reconfiguration context will be
needed for al classes. Classes are packed into
reconfiguration contexts according to their DRL area
estimator. A reconfiguration context can implement N
classes if the sum of the DRL required area of these N
classes does not exceed the area of the DRL cell.

We have addressed this problem of obtaining the
minimum number of reconfiguration contexts using a L eft-
Edge based algorithm. The Left-Edge algorithm is well
known for its application in channel-routing tools for
physical-design automation. It has been aso adapted to
solve the register alocation problemin high level synthesis
[15]. We have adapted and used this algorithm to address
our problem. Using this approach we always get optimal

results for the number of reconfiguration contexts. See [20]
for details on this algorithm.

5. Experiments and Results

In this section, we explain a case study of our codesign
methodology and partitioning algorithm. We center this
case study in the software acceleration of broadband
telecom networks simulation [18]. For our case study we
have chosen the SONATA network [5]. Within this
network it is possible to identify six different DE classes,
which have been the input to our partitioning algorithm.

We carried out several experiments on top of our
codesign framework [19]. Several experiments have been
performed varying the DRL architecture parameters:
number of DRL cells (0, 1, 2, 3, and 4) and its associated
reconfiguration time (2000ns, 1000ns and 500ns). For all
experiments we assume a DRL architecture where the
object state and class memory have a size of 128Kx32 bits.

Figure 3 shows the several iterations carried out in the
improvement of the initial solution phase of the HW/SW
partitioning agorithm. This example assumes a DRL
architecture of two DRL cells, each of them with a
reconfiguration time of 1000ns. In this example, we aso
assume that al input classes are tagged SW, and there is
not any class fixed_SW. In the first iteration, class Cl isthe
first class tagged SW, and after evaluating the partitioning
expressions it is tagged HW (grey colour). In the second
iteration, class C2 is the first class tagged SW and after
evaluating the partitioning expressions, class Cl is
fixed HW (black colour) and class C2 is tagged HW, and
so on. A special comment is needed for iteration 6, where
the algorithm stops its execution, because there is not any
move. Thisis due to the fact that when trying to move C5
to hardware, the algorithm detects that a previoudly class
fixed HW (C2) should be set as a software class. Within
our algorithm this possibility is not possible (as explained
in the previous section), otherwise the algorithm will enter
into a non-convergence problem (if this possibility was
considered then algorithm would be again in the same state
asiniteration 3).

Figures 4 show the total network simulation execution
time when the number of DRL cells increases. A DRL=0
value means an all software simulation execution. For each
reconfiguration time, we compare the results obtained
when applying the agorithm presented in this paper (S
algorithm), with the results given in [19] where DRL

ITER.
1 |[C1|C6|C3|C2|C4|C5

2 C6 | C3|C2|C4|C5
3 M C3 | C2|C4|C5
4 6 C2 | C4|C5
5 6 C4 | C5
6 6 C4 | C5

Figure 3. Partitioning Algorithm Iterations.



fedures are not taken into acount (L algorithm) at the
HW/SW partitioning level. Figure 4, shows the benefits
given by the S algorithm. It does give better results even in
the case of havinga single DRL cdl with arecnfiguration
time of 200s. When applying the L algorithm it is sen
that using a single DRL cdl with a reconfiguration time of
200(ns, give worst results than an al software solution.

From figure 4, it is also seen that just having two DRL
cdls has a grea impad into the performance The
important point here is the results given by the two
partitioning algorithms. When having two DRL cdls, it is
posshle to oltain almost the same results when using: (1)
the S algorithm and slower reconfiguration time DRL cdls,
(2) the L algorithm and twice faster DRL cdls. That is,
athough wsing faster DRL devicesiit is not guaranteed that
best results will be obtained. The results do highly depend
on the partiti oning algorithm.

Findly, it can be seen that when increasing the number
of DRL cdls (three or four) both agorithms converge to
the exeaution time obtained using an static hardware
approach (this configuration would be the best possble
one, because it means that there ae six DRL cdls, so there
is no reconfiguration overhead). However, it can be seen
that algorithm S converges with three DRL cdls, while
algorithm L converges with four DRL cdls.

6. Conclusions

New HW/SW codesign methoddogies and agorithms
have to be developed, in order to take into acournt the
feaures of new appeaing DRL devices and architecures.

In this paper, we have presented a major contribution: a
novel automatic HW/SW partitioning agorithm for
dynamicdly reconfigurable achitedures, which takes into
acount a nfiguration prefetching medhanism for
reconfiguration latency minimization.

We have included this partitioning a gorithm within our
codesign framework and applied it to the software
accéeration of telecom networks sSmulation. Several
experiments have been carried out, and results demonstrate
the benefits of our algorithm.

Architecture Performance Evaluation

200000

180000

160000 =

140000 -

120000 & :

100000 N \ek

80000 \,\ N

60000 e

40000 \‘\

20000
0

Execution Time

#DRL

—a—T_Reconf 500_S —e— T_Reconf_1000_S —m— T_Reconf_2000_S
---A-- T_Reconf 500_L ...e--- T_Reconf _1000_L -..m-- T_Reconf_2000_L

Figure 4. Comparison Results.

7. References

[1] http://www.altera.com/

[2] http://www.xili nx.com/

[3] http://www.chamel eonsystems.com/

[4] F. Balarin et al. “Scheduling for Embedded Red-Time
Systems’, IEEE Design and Test, Jan-March, 1998

[5] N. Caporio et al., "Single Layer Opticd Platform Based on
WDM/TDM Multiple Access for Large Scde Switchless
Networks', European Trans. on Telemmmunications.

[6] K.S. Chatta, R. Vemuri, “Hardware-Software Codesign for
Dynamicdly Rewmnfigurable Architedures’. Proc. of
FPL’99. Glasgow, Scotland. September, 1999

[71 R. P. Dick, N. K. Jha, “CORDS: Hardware-Software Co-
Synthesis of Reonfigurable Red-Time Distributed
Embedded Systems’. Proc. Intl Conference on Computer-
Aided Design. ICCAD’98.

[8] R. Ernst, J. Henkel, T. Benner, “Hardware-Software
Cosynthesis for microcontrollers’. IEEE Design and Test of
Compuiters, vol. 10, no. 4, pp 6475, Dec 1993

[9] J. Fleischman, et al., “A Hardware/Software Prototyping
Environment for Dynamicdly Reoonfigurable Embedded
Systems’. CODES 98, Sedtle, USA.

[10] R. Gerndt, R. Ernst “An Event-Driven Multi-Threading
Architedure for Embedded Systems’. Codes/CASHE' 97,
pages 29-33, Braunschweig, Germany, March 1997

[11] R. Gupta, G. De Micheli, “Hardware-Software cosynthesis
for Digital Systems”. IEEE Design and Test of Compuiters,
vol. 10, no. 3, pp 2941, Sept. 1993

[12] R. W. Hartenstein et al., “Two-Level Partitioning of Image
Processng Algorithms for the Paralel Map-oriented
Madine” CODES/CASHE' 96, Pittsburgh, USA.

[13] S. Hauck, “Corfiguration Prefetch for Single Context
Remnfigurable Coprocessors’, ACM/SIGDA International
Sympasium on FPGA, pp. 65-74, 1998

[14] B. Jeong et al., “Hardware-Software Cosynthesis for Rur-
Time Incrementally Reconfigurable FPGAS'. Proc. of Asia
South-Padfic Design Automation Conf. (ASP-DAC’2000).

[15] F. J. Kurdahi, A. C. Pearker, “REAL: A Program for
Register Allocation”, Proc. 24" Design Automation
Conference, DAC'87.

[16] Yanbing Li et al., “Hardware-Software Co-Design o
Embedded Rewrfigurable Architedures’, Proc. 37"
Design Automation Conference, DAC'200Q

[17] R. Maestre, F. J. Kurdahi, M. Fernandez, R. Hermida, “A
Framework for Scheduling and Context Allocaion in
Reamnfigurable Computing”, Proc. 1ISSS99.

[18 J Nogwera, R. M. Badia, J Domingo J Sole,
“Remnfigurable Computing: an Innovative Solution for
Multimedia and Teleommunicaion Network Simulation”.
IEEE Proc. of the 25" Euromicro Conference Milan. 1999

[19] J. Noglera, R. M. Badia, “Run-Time HW/SW Codesign for
Discrete Event Systems using Dynamicdly Rewnfigurable
Architedures’, 1ISSS$2000 Madrid, Spain. 200Q

[20] J. Noguera, R. M. Badia, “An Objed-Oriented HW/SW
Partitioning Algorithm for Dynamicdly Rewnfigurable
Architedures’”, Reseach repot UPC-DAC-200077.
http://www.acupc.es/rececareports/. Decanber, 200Q

[21] F. Vahid, “Modifying Min-Cut for Hardware and Software
Functional Partitioning”. Codes/CASHE' 97, pages 43-48,
Braunschweig, Germany, March 1997




	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


