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Abstract

Wireless transceivers for digital telecommunications are
heterogeneous systems that combine digital hardware,
software and analog circuitry. The pressure to miniaturi-
zation and lower power consumption for these transceivers
imposes tight specifications on their analog RF parts.
Many aspects of RF circuits cannot be simulated accu-
rately and efficiently with a classical circuit-level SPICE
approach. In this paper three important simulation prob-
lems for RF circuits are addressed:
1. high-level simulation of analog and RF blocks for the

determination of the specifications of the circuits
2. accurate circuit-level simulation of nonlinear circuits

with time constants that differ largely,
3. efficient and accurate computation of phase noise in RF

oscillators
For each of these problems, solutions are proposed. These
solutions illustrate that accurate and efficient simulations
of RF communication circuits need a heterogeneous vari-
ety of advanced algorithms.

1. Introduction

The booming market of portable digital telecommunication
transceivers requires the design of RF front-ends for these
transceivers in a short time. Support from accurate and
efficient simulation tools in the design process is essential,
but quite challenging. One of the reasons is that a digital
telecommunication transceiver unifies various domains:
digital hardware, software and analog circuits. For an op-
timal performance of the complete transceiver, it is impor-
tant that these different domains are co-designed to some
extent. For example, some signal degradations caused by
the analog front-end can be compensated in the digital do-
main. As another example, analog circuits such as power
amplifiers and variable-gain amplifiers are often digitally
controlled. A careful co-design requires that the different
domains can be co-simulated in some way. This allows for
example to simulate the bit-error-rate (BER) degradation
caused by the different non-idealities in the implementa-
tion (e.g. finite wordlength effects in the digital domain,
passband ripples and finite stopband suppressions of both

analog and digital filters, noise and nonlinear distortion in
the analog blocks). Since circuit-level simulations are not
feasible to this end, a higher abstraction level is required
for the different domains. Whereas this is common practice
for the digital domain, it is not easy for the analog and RF
blocks. First, accurate high-level models are required for
the analog blocks. Next, an efficient simulation engine is
required. This simulation engine needs to efficiently co-
simulate at a high level RF blocks (operating in the GHz
range), analog low-frequency blocks and digital blocks
(both operating at baseband frequencies). To this purpose,
a digital dataflow simulator for analog circuits has been
developed in the simulator FAST [1]. Compared to the
classical use of complex lowpass representations [2, 3, 4]
for co-simulation of RF and baseband, FAST has a similar
efficiency but a higher accuracy. Moreover, the co-
simulation problem of the analog domain and the digital
domain is greatly simplified since FAST is in essence a
dataflow simulator.
The high-level simulations mentioned above can be used to
determine the specifications of the individual RF circuits.
During the actual design of these circuits, and when ex-
tracting parameters for high-level simulations, circuit-level
simulations are used to compute transfer functions, imped-
ances, distortion and noise levels, ….For RF circuits this is
a particularly challenging simulation problem because high
accuracy must be achieved on problems where the signals
have vastly different dynamic ranges and timescales. Much
effort in the RF circuit simulation field has gone to ad-
dressing the multiple timescale problem, but no current
simulation technology is capable of achieving high accu-
racy solutions, reliably and efficiently, in the presence of
highly nonlinear devices, realistic semiconductor device
models, and malicious waveform profiles. In Section 3 we
discuss our experiences in developing a new class of robust
high-accuracy RF circuit simulation algorithms, in the pro-
cess discussing several popular "myths" about the accuracy
and numerical stability of some widely-used circuit simu-
lation techniques.
Phase noise is a critical consideration in RF system design,
since it corrupts spectral purity and generates large power
content in a continuous spread of frequencies around the



desired oscillator tone, thus contributing to adjacent chan-
nel interference. In digital circuits, the same phenomenon
manifests itself as timing jitter. Recently, a rigorous theory
has been developed for phase noise [6] that is uniformly
applicable to any oscillatory system described by differen-
tial-algebraic equations. A key outcome of the theory is
that a periodic vector function termed the Perturbation
Projection Vector or PPV, can always be found that repre-
sents a “transfer function” between the noise perturbations
to the circuit, and the phase noise manifested in the oscil-
lator. In this paper a new technique is proposed to compute
the PPV in a way that is reliable and low cost for large
circuits regardless of their nature. The technique fully ex-
ploits the inherent accuracy of harmonic balance. Further,
it is easy to implement in existing steady-state codes, since
the same linear Jacobian solution required at each Newton
step for finding the steady-state is simply invoked one ex-
tra time.
The outline of the paper is as follows. Section 2 discusses
high-level simulation of analog and RF front-ends, as well
as aspects of the coupling of an analog high-level simulator
with a digital dataflow simulator for an analog-RF-digital
co-simulation. The approach is illustrated with a high-level
simulation of a superheterodyne receiver front-end (see
Fig. 1).

Figure 1: A classical double superheterodyne re-
ceiver front end used for high-level simulations.

Section 3 treats a new class of robust high-accuracy RF
circuit simulation algorithms. Section 4 discusses efficient
phase noise computations starting from a periodic steady-
state solution of an oscillator, computed with a harmonic
balance or shooting method.

2. High-level simulation of mixed-signal
transceivers

For efficient co-simulation of the digital part of a trans-
ceiver, e.g. described in dataflow, with the analog front-
ends that are modeled at a high level, it is interesting to
have one simulation approach. This is realized in the FAST
simulator [1], which is in essence a dataflow simulator. In
essence, the digital blocks could be simulated with FAST
as well. However, we opted for a co-simulation with the

digital simulation environment OCAPI [5], since this envi-
ronment supports different abstraction levels for the digital
blocks, as well as a path down to VHDL. Aspects of the
coupling between FAST and OCAPI are further discussed
in Section 2.2.
The analog front-end blocks can be modeled in various
ways. Top-down models are used when a block is not
known at all. Usually such models have a low accuracy.
An example of a top-down model is a description of an
amplifier in the form of a polynomial of order three:
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Bottom-up models, on the other hand, are extracted from
circuit-level simulations or measurements. For the case of
a linear transfer function, this can be a list of complex
numbers as a function of frequency. For the nonlinear be-
havior, bottom-up models can also be extracted. For exam-
ple, in [7] a bottom-up modelling approach is presented
that takes into account the frequency dependence of the
nonlinear circuit behavior.
Efficient co-simulation of RF blocks with analog baseband
blocks is obtained in FAST by using a multicarrier signal
representation, which is an extension to multiple carriers of
the complex lowpass representation of signals [2] in such a
way that the effect of out-of-band distortion is taken into
account. Further, a high simulation efficiency is obtained
by translating a high-level description into a computational
graph (a kind of precompilation step) prior to simulation.
The computational graph is constructed in two phases (see
Section 2.1). First, the number of linear feedback loops in
the architecture is reduced and the overall nonlinearity of
the system is limited to order three. In the next phase,
equivalent digital filters are computed to represent the s-
domain transfer function.
After a construction of the computational graph, the com-
putations are scheduled and executed. The scheduler pro-
motes vector processing as much as possible to speed up
the computations. A complete simulation example is dis-
cussed in Section 2.3.

2.1 Determining the computational graph

A FAST simulation is the execution of a computational
graph prior to execution. This graph is contructed based
upon the connectivity in the original architecture. How-
ever, feedback loops are best eliminated, since the simula-
tion of a feedback loop cannot be performed with vector
processing, since in fact a set of simultaneous equations
needs to be solved. This slows down the computations
considerably. Therefore, the feedback loops are eliminated.
For linear feedback loops this is performed with a standard
AC analysis. In addition to the elimination of the feedback
loops, internal nodes (which are no longer of any concern)
are eliminated as well. Both aspects reduce the simulation
time significantly. The simulation results described below



uses such a preprocessing stage in order to eliminate linear
feedback loops and the internal nodes.
Next, the s-domain transfer functions are approximated by
a digital filter. A multitude of methods are available to
extract a digital filter out of a transfer function specified in
the frequency domain. The two most frequently used
methods in filter design are
- windowing design methods that use a weighting se-

quence to modify the original impulse response
and/or the original transfer function. The correct
choice of the weighting sequence is of utmost impor-
tance since it influences both the impulse response
and the frequency domain characteristic [2, 8].

- Equiripple approximation in the frequency domain
using e.g. a Parks and McClellan method [8, 9]. The
advantage of this approach is that it is possible pro-
vide a frequency dependent weighting of the ap-
proximation error.

The latter method is preferred since it enables the user to
specify which frequency bands are of importance to its
application and which frequency bands do not really mat-
ter. This implies that the resulting filter will described the
frequency response accurately in the frequency band of
interest, while concentrating the modeling errors in the
uninteresting frequency ranges.

2.2 High-level analog-digital co-simulation

Typically, the simulation of a complex mixed-signal sys-
tem is not achieved in a single specific simulation ap-
proach. While, specifically for the digital part, flexibility in
data models, the order of model refinement steps, and a
path towards HDL code generation are important, the ana-
log part requires mainly accurate yet efficient simulations.
The program OCAPI [5] serves the above digital require-
ments. Since this program does not contain the features of
FAST that yield a high simulation efficiency for the analog
part, and since, on the other hand, FAST does not allow
model refinement as in OCAPI, the two approaches are
coupled for a co-simulation of analog front-end blocks
with digital modem blocks.
Since both OCAPI and FAST are based on the same da-
taflow scheduling along with generalized firing rules, the
coupling interface has to implement queue management
and data type adaptation only. To maximize simulation
speed and minimize computing platform dependencies, an
interface C++ class EKOCAPI with direct access to both
its OCAPI and/or FAST I/O queues was preferred over a
memory pipe, system pipe, or file-based solution.
Maximum independence between OCAPI and FAST parti-
tions is achieved by slaving all OCAPI schedulers as sub-
processes under a FAST master scheduler in a hierarchical
way. Both OCAPI and FAST partitions are developed and
tested as stand-alone applications before the system inte-
gration. This preserves the localities of the dataflow sched-

uling in every partition leading to a simpler system-level
schedule. At instantiation time, the EKOCAPI class de-
fines the connections between OCAPI and FAST parti-
tions. At runtime, i.e. during the simulation, it handles I/O
queue management including multi-rate adaptation at the
partition boundaries.
The result is a distributed, hierarchical scheduling with
lean communication at partition boundaries only, which
translates into a low coupling overhead.

Figure 2: Coupling connects the underlying ob-
ject and scheduler classes of OCAPI and FAST,
respectively, by an interface object, which defines
the connection during instantiation and handles
the inter-scheduler communication during simu-
lation.

An example for a forward chain topology (Fig. 2) shows
how the stimulus is read from a file, preprocessed by an
OCAPI partition, handed over to FAST being further proc-
essed, then passed to another OCAPI partition for post-
processing and the output finally being written to a results
file. This scenario is typically found in end-to-end link
simulations of a transmitter and receiver over a channel.
The coupling mechanism handles also other relevant to-
pologies, including bidirectional or feedback communica-
tion between OCAPI and FAST partitions. For this case,
initialization methods are foreseen in both tool classes to
support cyclo-static dataflow.

2.3 High-level simulation example

A system level simulation has been setup for a classical
double heterodyne receiver front end shown in figure 1.



All mixer and amplifier stages are modeled using system
level specification for the gain, IIP3, input and output im-
pedance’s. The high-level description of the filters are in
the form of measured S-parameters. The S-parameter
specifications of the filters are used to determine the effect
of the impedance mismatches between the different blocks.
The equivalent digital FIR filters are extracted afterwards
using an equiripple approximation in the frequency band of
interest.
The purpose of the overall simulation is to determine the
ability of the front-end to suppress the mirror frequency
fLO+fIF and two out-of-band spurious components: one at
fLO-fIF/2 and one close to the wanted input frequency (fLO-
fIF). Although four modulated tones are considered in
practice (the wanted signal, the mirror frequency and the
two spurious components), it has been chosen to describe
the input signals using only three modulated tones. By in-
creasing the sampling rate of modulation signals, it is pos-
sible to join the spurious signal near the RF signal with the
RF signal itself. This implies that only three carrier signals
(at fLO+fIF, fLO-fIF/2 and fLO-fIF) need to be considered but
this at a higher sampling rate. The original RF signal was
16 times oversampled for this purpose.
The cascade of the different nonlinear distortions implies
that a large number of tones at distinct frequencies are gen-
erated. Some of these tones are exclusively generated by
higher-order nonlinear contributions and hence can be ne-
glected. Only the contributions up to the third order are
considered in this simulation example. This reduces the
computational load significantly: the RF-part only consid-
ers fLO+fIF, fLO-fIF/2 and fLO-fIF due to the preselector filter.
The RF mixer is represented using a polynomial static
nonlinearity which multiplies the LO signals with a poly-
nomial function of the RF signal. Phase noise of the local
oscillators can be included during the simulation. Further-
more, it is assumed that all spectral contributions falling
outside the IF frequency band can be neglected. In addition
to nonlinear distortion, it is assumed that all active blocks
(LNA and mixers) produce additive noise.
After constructing the computational graph, a FAST
simulation is setup. A digital symbol is first represented
using a sequence of 8 samples which are then oversampled
16 times in order to represent both the wanted signal and
one of spurious responses using one and the same carrier.
This implies that a single digital symbol is represented by
128 time domain samples.
The overall simulation time of FAST for receiving a single
digital symbol takes about 1.5ms on a PIII 500MHz. This
means that the influence of additive noise, nonlinear dis-
tortion, impedance mismatches, phase noise of the oscilla-
tors, interference due to spurious components on e.g. the
BER can be evaluated efficiently within a reasonable time.

3. Achieving efficient high-accuracy RF cir-
cuit simulation

The two numerical methods commonly used in RF circuit
simulation are the shooting-Newton method, based on low-
order finite difference discretizations such as the second-
order Gear method, and the harmonic balance method,
based on high-order spectral discretizations [10, 11]. The
advantage of the low-order polynomial-based methods
traditionally used in SPICE-class circuit simulators is that
they can select time-points based on localized error esti-
mates and as a result can easily handle sharp transitions in
circuit waveforms. The harmonic balance method, on the
other hand, has the advantage of attaining spectral accu-
racy for smooth waveforms. Neither method, however, is
capable of achieving high accuracy solutions, reliably and
efficiently, under all circumstances likely to occur when
simulating a modern RFIC.
Because high precision computations are often necessary
in simulation of sensitive RF circuits, we have recently
developed a method that works by discretizing the circuit
equations by dividing the simulation domain into a set of
intervals whose size is adaptively chosen and using Che-
byshev polynomials to represent the solution in each inter-
val [12].  On each interval, the time-derivative operator is
replaced by a Chebyshev differentiation matrix, and conti-
nuity between the interval boundaries is enforced.  The
order of approximation within each interval and the size of
the intervals can be adjusted independently, resulting in a
flexible method that can achieve high resolution on a wide
variety of nonlinear circuits. It is also suitable for combin-
ing with matrix-implicit Krylov-subspace solvers in order
to analyze large circuits with moderate computational cost.
Another way of viewing our discretization scheme is as an
implicit Runge-Kutta (IRK) method [13]. Leveraging the
theoretical framework available for analysis of IRK meth-
ods has given us an increased understanding of limitations
of numerical techniques traditionally used in analog and
RF circuit simulation, in particular the computational ad-
vantages associated with the superior stability properties
that multistage IRK methods possess. This is important
because in practice the multistep BDF formulas are not
actually as numerically stable as is popularly believed. The
Gear methods of orders 1 and 2 are considered to be "A-
stable",  that is, generating numerically stable solutions for
all systems with eigenvalues λ in the closed left half-plane,
regardless of the numerical step size h. In Figure 3 we
show the stability region of the third-order Gear method, in
the complex plane z =λ h. For a small region around the
imaginary axis, the method is not stable. This region be-
comes considerably larger for higher order Gear methods,
such that methods of order greater than three are not used
in practice. We also show the stability region of a fourth-
order scheme from a particular family of Chebyshev-based
IRK methods. This particular family was deliberately con-



structed to be stiffly stable, but we did not design it to be
A-stable, though such a construction is possible. We chose
a fourth order scheme because it is one of the less stable in
the family; the methods are A-stable for orders one and
two and, interestingly, become much more stable at higher
orders. To make a fair comparison we must adjust the re-
gions to account for the fact that a single IRK step has sev-
eral internal stages, each comparable to a single Gear steps.
The method is not A-stable, with the size of the region of
instability comparable to that of Gear-3. This is generally
acceptable for circuit simulation.
To understand the advantages of the IRK methods, we
must engage in a more general analysis. Any practical
simulator uses non-uniform timesteps, and non-uniform
timesteps generally degrade the stability behavior of
multistep methods. In particular, the second order Gear
method is not A-stable for nonuniform steps, and in fact it
is not stable for any timestep if the ratios between con-
secutive steps exceed about 2.4. Precise statements about
numerical stability are difficult to make for nonuniform
timestep schemes, but we may formally define a “stability
region” for a multistep formula with a fixed stepsize
growth ratio to be the region where no artificial numerical
growth is introduced, just as for the fixed timestep case.  In
Figure 3 we see that, by this metric, a second-order Gear
scheme where the timestep ratios are bounded by 2.0 is
considerably less stable than third order Gear. The stability
properties of the third-order Gear method are even more
strongly affected by varying timesteps. The practical im-
plication is that a rapid change of timestep in a multistep
code also necessarily comes with a loss of order, because
higher-order schemes would be destabilized by rapid
timestep variation.
There are two consequences to dropping method order.
First, to achieve the same accuracy, in general the lower
order methods must take smaller timesteps. Therefore an
efficiency penalty is introduced. Second, even though in
theory the lower order Gear methods can always achieve
acceptable accuracy  by using a sufficiently small timestep,
beyond a certain level of precision roundoff effects start to
come into play and additional accuracy cannot be obtained
by decreasing the timestep in a low-order method (par-
ticularly for the first-order backward-Euler scheme). In
fact, if the timesteps are made exceedingly small, the ma-
trices associated with the boundary problems generated by
an RF simulator may become ill-conditioned, slowing the
convergence of the iterative Krylov-subspace solvers, and
in extreme cases can even make the results less accurate
than if a larger timestep was used. In contrast, the Che-
byshev-IRK method is a one-step method. Its high order of
accuracy comes from possessing multiple internal stages.
Each step is independent of the ones before and after, so
the method easily adapts to very rapid variation of the so-
lution waveform without risk of numerical instability.

It is also interesting to note something that cannot be seen
from the stability region plot : the worst-case growth rate
of the potentially unstable mode is much less for the IRK
family than for the multistep methods.  In all aspects, the
IRK methods with multiple implicit stages are naturally
more stable than the multistep methods.
The spectral discretization methods (representation of the
solution by Fourier series, as in harmonic balance) turn out
to have related shortcomings. Accuracy in the harmonic
balance method is usually achieved by increased the order
of approximation. For a given set of collocation points, the
maximal possible order of approximation is used. With
smooth waveforms, this has the very desirable effect of
achieving spectral convergence, meaning that as the spac-
ing between the collocation points decreases, then asymp-
totically the error decreases faster than any polynomial
approximation (in particular, faster than the Gear meth-
ods).

Fig. 3: Stability regions for third-order Gear (solid
line), second-order Gear with timestep ratio
bounded by 2.0 (dashed line), and fourth-order
Chebyshev-RK method (solid area).

However, representation of the solution by Fourier series
means that the basis functions, sines and cosines, must
cover the entire domain. Unlike the Gear methods, which
couple only local points, every point in the solution inter-
val is coupled to every other through each basis function.
The spectral convergence of the Fourier series is very de-
sirable for smooth waveforms and nearly linear circuits,
but unfortunately, a single discontinuous point can destroy
the spectral convergence properties. Because of the global
nature of the basis functions, spectral convergence is very
difficult to recover once interrupted. Most semiconductor
device models possess some degree of discontinuity in the
derivatives, and so true spectral convergence is rarely ob-
served in practice. In the worst case, near a point where a
waveform (and we emphasize that the culprit waveform
may be a solution variable, such as a node voltage, or a



residual quantity, such as the current inflow at a node) or
its derivative is almost discontinuous, for example a break-
point of a piecewise-linear model or source, then oscilla-
tions can occur that seriously degrade the accuracy of the
method.  Gear methods avoid this problem by dropping to
a low-order method at the aberrant point, with costs al-
ready discussed, but remedies are more difficult for the
higher order schemes. The result is that harmonic balance
codes can mysteriously lose accuracy on certain types of
nonlinear problems.  The multi-interval Chebyshev scheme
avoids these problems by locally adapting the interval size.
Many of the numerical advantages of highly implicit, mul-
tistage numerical integration schemes have been known for
some time.  They have not been widely used, however,
because the traditional view of the circuit simulation com-
munity has been that the highly coupled nature of the lin-
ear and nonlinear systems makes the IRK methods, on a
per-timestep basis, disproportionately expensive as order
(i.e. accuracy) is increased.  However, in RF simulation,
the spread of iterative solution methods has ameliorated
the computational problems associated with implementing
implicit multi-stage integration schemes.  With the Che-
byshev collocation method, each internal stage where the
solution is computed is equivalent to a single timepoint in
a shooting or harmonic balance code, requiring precisely
one matrix assembly.  As the overall number of timepoints
can be much less due to the more adaptable discretization,
the issue for these methods is the construction of an effec-
tive preconditioner in order to achieve minimal computa-
tional complexity.

4. Phase noise eigenfunctions from harmonic
balance or shooting

The output power spectrum of an oscillator shows a peak
at the oscillation frequency and tails in both sidebands,
which decrease as the frequency offset from the oscillation
frequency increases. These tails are referred to as phase
noise. The mechanisms that determine this phase noise
have long been a point of discussion. Many analysis theo-
ries have been developed recently [14-18] as a correction
to the classical paper of Leeson [19]. Depending on the
analysis method, the simulation of the phase noise is also
different. In [6] a rigorous theory has been developed for
phase noise that is uniformly applicable to any oscillatory
system described by differential-algebraic equations. A key
outcome of the theory is that a periodic vector function
v1(t), termed the Perturbation Projection Vector or PPV,
can always be found that represents a "transfer function"
between the noise perturbations to the circuit, and the
phase noise manifested in the oscillator.
Existing numerical techniques for finding the PPV are
based on explicit eigendecomposition of the monodromy
matrix of the adjoint of the oscillator’s differential equa-
tions. Full eigendecompositions are expensive for large

systems; however, iterative linear methods can be used to
find only a few eigenpairs with relatively little computa-
tion, to the point where the cost for finding the PPV be-
comes insignificant compared to, e.g., that for finding a
steady-state solution of the oscillator (a prerequisite).
For high-Q oscillators, however, monodromy matrices
often have many eigenvalues close to 1 that are numeri-
cally indistinguishable from the oscillatory mode. In such
situations, explicit eigendecomposition methods need to
find a potentially large number of candidate PPVs and
choose one from amongst them using heuristics. Finding
many candidate eigenpairs can raise the computation to the
point where it becomes dominant. Using heuristics to find
the correct PPV is also often unreliable in such cases. Fur-
thermore, monodromy matrix calculations have so far been
limited to the time domain, where numerical accuracy is
inherently poor compared to carefully implemented fre-
quency-domain techniques.
We briefly describe here1 a new computational procedure
for the PPV that does not require the monodromy matrix.
Instead, the method uses only a single linear solution of the
steady-state Jacobian matrix of the oscillator. Heuristics
are not required - the linear solution directly produces the
correct PPV, with an accuracy limited only by the intrinsic
numerical conditioning of the steady-state equations. Fur-
thermore, the Jacobian matrix can be either a frequency-
domain one (e.g., from harmonic balance) or a time-
domain one (e.g., from shooting), as appropriate for the
circuit in question. Hence the new technique is a) reliable
and low cost for large circuits regardless of their nature, b)
able to fully exploit the inherent accuracy of harmonic bal-
ance, and c) easy to implement in existing steady-state
codes, since the same linear Jacobian solution required at
each Newton step for finding the steady-state is simply
invoked one extra time.
The new technique is based on an elegant connection be-
tween the Fourier coefficients of the PPV and the aug-
mented Jacobian matrix of the oscillator's steady-state
equations. For harmonic balance, this connection is:
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V=  are the Fourier coefficients of the PPV

v1(t). The augmented harmonic balance matrix 

~
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J  arises
naturally as the Jacobian matrix of the oscillator's steady-
state equations augmented by a phase condition, with the
frequency of oscillation as an additional unknown. Hence,
from equation (2), the Fourier coefficients of v1(t) can be
obtained from a single solution of the Hermitian of the
augmented harmonic balance Jacobian of the oscillator,

                                                           
1 Details are available in [20].



with right-hand-side equal to a unit vector with value 1 in
the phase condition equation. By exploiting circulant ap-

proximations to 
~

*HB

J  and applying iterative linear methods
to solve equation (2), this computation becomes approxi-
mately linear in the system size.
To evaluate the new method, it has been compared against
the established method that uses monodromy matrix eigen-
decomposition. The steady-state of a tank-circuit-based
oscillator has been computed using harmonic balance with
m=31 harmonics, resulting in N=63 distinct frequency
components. The frequency of oscillation f0 was
159154.853364298Hz.  The time-domain voltage wave-
form at the tank capacitor and the current through the
power supply are shown in Figures 4 and 5,.respectively.

Figure 4: Oscillator steady-state: voltage over the
capacitor of the tank.

Figure 5: Oscillator steady-state: current through
VDD.

The PPV v1(t) is first determined through the time-domain
monodromy matrix by computing its 1-eigenpair using
iterative linear methods followed by manual selection from
among candidate eigenpairs. The eigenvector thus obtained
was then used as an initial condition for a transient simula-
tion of the adjoint system, using a time-step corresponding
to an oversampling factor of 4 (i.e., 4N timepoints) to limit
accuracy loss from linear multistep formulae for DAE so-
lution. The result of this transient simulation, after nor-
malization, is the conventionally computed PPV, referred
to as v1m(t) .
The new method described above simply computes the
system of equation (2) directly from the oscillator’s har-
monic balance Jacobian, with a single iterative linear solve.
No oversampling is used by the method. The PPV obtained
in this manner is denoted by v1d(t) .
Figures 6 and 7 depict the components of v1d(t) (solid red
line) and v1m(t) (blue x marks) corresponding to the ca-
pacitor node and the power supply current, respectively.

Figure 6: Capacitor node of PPVs v1d and v1m.

It can be seen that the PPV waveforms produced by the
two methods are visually indistinguishable from each
other.
A more critical assessment of the two methods can be
made using the fact that the dot product of the PPV v1(t)
with the tangent vector u1(t) of the steady-state orbit of the
oscillator is always unity. We plot the error

111 −= )t(vu)t( d
T

dε  versus 111 −= )t(vu)t( m
T

mε  in

Figure 8. The solid red line indicates )t(dε , the error of

the new method, while the blue marks indicate )t(mε . The

new method is about two orders of magnitude more accu-
rate than monodromy matrix eigendecomposition, despite
the 4x oversampling used by the latter method.



Figure 7: Power supply current component of
PPVs v1d and v1m.

Figure 8: Errors in the PPV obtained using the
monodromy and new methods.
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