

Network Processors: A Perspective on Market Requirements,
Processor Architectures and Embedded S/W Tools

Pierre G. Paulin

STMicroelectronics
Central R&D, SoC Platform Automation

16 Fitzgerald Rd. Suite 300,
Nepean, Ontario, K2H 8R6, Canada

pierre.paulin@st.com

Faraydon Karim
STMicroelectronics

Central R&D, Advanced Design Group
4690 Executive Drive

San Diego, CA 92121, USA
faraydon.karim@st.com

Paul Bromley
STMicroelectronics,

Advanced System Technology
1060 Brokaw Rd.

San Jose, CA, USA
paul.bromley@st.com

Abstract

With the projected explosion of low-cost bandwidth
availability, the intensive processing tasks and service
hosting will move close to consumers on the "intelligent
edge" of the network, where a significant portion of the
future storage, processing and network management will
take place. We address the rationale for this change, the
characteristics of the network processor architecture
required to address it, and the software development tools
needed in order to improve time-to-market without
sacrificing embedded software performance.

1. Network Infrastructure Trends

We have been studying the network infrastructure to

understand the technologies required to participate in the
considerable future market as the Internet and "Anywhere,
Anyhow" communications spread across the globe over
the next five years. If we look to a future network based on
ultra-high bandwidth fibre communications this will
radically shift our preconceptions about where
computation and storage take place.

Two simple facts illustrate this shift. In the labs of
leading telecom companies, a throughput of 6.4 Terabits/s
(6400 Gbit/sec) has been demonstrated using a single fibre
strand by means of Wave Division Multiplexing (WDM).
The world's total voice traffic in 1999 was 10 Terabits/sec,
and the world's transoceanic cable capability will have

grown 1000% between 1999 and 2001. In other words,
communication bandwidth and the price of that bandwidth
will become much less significant in the near future.

This will have a dramatic effect on the complexity and
protocols of today's networks. There will be a trend
towards much greater simplification and efficiencies
through the widespread use of WDM and IP. The "last
mile" to the home will remain a challenge, but this is being
addressed progressively by xDSL, cable modems,
broadband wireless and satellite links.

It is our contention that this bandwidth availability in
the wider network will mean that the intensive processing
tasks and service hosting will move close to consumers on
the "intelligent edge" of the network. It is proposed that
this intelligent edge is where a significant portion of the
future storage, processing and network management will
take place. Therefore, we are actively working at the
corporate level on the packet processor core often called a
"Network Processing Unit" – or NPU – that is the
fundamental core of that intelligent edge.

2. Network Processing Unit Architecture

The projected explosive growth in network bandwidth

and services has created the need for a new breed of
processors. The rapid introduction of new protocols and
applications forces network designers to deal with fast
"time -to-market" but also brief "time -in-market." An
emerging approach to this challenge is the development of

a programmable multi-processor solution that preserves
customer investment by keeping up with ongoing changes.

Packet processing poses some challenges in
comparison to general data processing. Locality can be
poor in network applications. The reason stems from the
fact that packet data is essentially data flow. One packet
arrival has little in common, generally, with any other
packet arrival. This eliminates much of the utility of a
traditional data cache for network processors.
Furthermore, data structure access per packet also has poor
locality. For example, hash and longest prefix match
searches are pointer tracing. Thus, the memory data
accessed has little necessary inter-relation. Both memory
capacity and bandwidth are demanding. Routing look-up
tables may not only be huge, but they must also be very
fast. Generally, in order to make the timing work, one or
more forms of latency hiding techniques are required.

There are some general characteristics of network
processors. A network processor is a highly integrated set
of micro-coded or hardwired accelerated engines, the
memory sub-system, and high-speed interconnect and
media interfaces to tackle packet processing close to the
wire. It uses pipelining, parallelism, and multi-threading
to hide latency. It has good data flow management and
high-speed internal communications support. It has the
ability to access co-processors and is closely coupled with
the media interface.

Network processors present a whole new set of
requirements. In our bandwidth hungry world, OC-12 and
OC-48 network speeds are becoming common. On the
horizon is OC-192 which allows for only 52ns of
processing per packet received. After that, OC-768 will
soon follow, leaving us only 13ns of processing time per
packet. It is clear that traditional microprocessors cannot
keep up with the speed and programmability requirements
of network processors.

2.1 Illustrative Commercial NPUs

Seeing the unique needs of network processors, many

companies such as Intel, MMC and IBM have introduced
new designs for this fast paced market.

Intel’s IXP 1200 [1] is targeted at LAN-WAN
switches operating at OC-48 speeds. The architecture
consists of 6 micro-engines sharing a bus with memory.
The micro-engines are managed by a StrongARM core
processor. It has a PCI bus to communicate with the host
CPU, memory controllers, and a bus interface to network
MAC devices. The device operates at 162MHz. Each
micro -engine supports 4 threads, which helps to eliminate
micro -engines waiting for memory resources. Micro-
engines have a large register set, consisting of 128
general-purpose registers, along with 128 transfer
registers. Shift and ALU operations occur in a single
cycle. A hardware hash unit is responsible for the

generation of 48 or 64-bit adaptive polynomial hash keys.
Multiple IXP 1200’s can be aggregated in serial or
parallel.

MMC [2] developed the AnyFlow 5000 network
processors. These have five different stages: ingress
processing, switching, queuing, scheduling, and egress
processing. Per-flow queuing is used which allows each
flow to be queued independently. Other functions handled
on a per-flow basis are queuing control and scheduling.

MMC also developed the nP3400, which integrates a
programmable packet processor, switch fabric, and
multiple Ethernet interfaces on a single chip. It contains
two programmable 200-MHz RISC processors and a 4.4
Gb/s switch fabric. It has policy engines supporting 128
rules.

IBM developed the Rainier NPU [3]. It has sixteen
programmable protocol processors and a PowerPC control
processor. It has hardware accelerators to perform tree
searches, frame forwarding, filtering, and alteration. Each
processor has a 3-stage pipeline (fetch, decode, execute)
and runs at 133 MHz. Each processor has seven
coprocessors associated with it, including one for
checksum, string copy, and flow information. Hardware
accelerators perform frame filtering and alteration and tree
searches.

2.2 NPU Design at STMicroelectronics

We are looking at processor design differently. First,

networking is mostly data flow with some unique
computational issues. Second, the nature of the
computations, branches and pointers require a new set of
instructions unique to this type of environment. We
present the key characteristics of this configurable and
scaleable multi-processor solution designed to address the
rapid changes in networking needs and customer
requirements.

We address the required performance of network
processors by attacking many different fronts. Instruction-
set definition, pipelining, parallelism, multithreading, fast
interconnect, and semiconductor technology all combine
to produce a network processor capable of OC-192 speeds
and higher.

Speedup is possible through an enhanced instruction-
set which is designed specifically for network-oriented
applications. There are specific instructions for field
extraction, byte alignment, comparisons, boolean
computations, endianess, conditional opcodes used to
reduce branches, and more powerful network-specific
computational instructions.

Another form of speedup is achieved via pipelining.
Our network processor has a chain of pipelined processing
units and flexible programmable elements.

A variety of accelerating techniques round out
STMicroelectronic’s network processor. These include:

hardware multi-threading, which provides latency hiding;
hardware accelerators for header parsing, checksums, and
other intensive per-packet networking tasks; and finally, a
world -class semiconductor technology.

The way in which all the packet-processing engines in
the network processor connect to outside resources is
crucial. If every packet processing engine is unable to
continue work because it is limited by a slow interconnect,
then much of the processing power is wasted. To
overcome this issue, we went to great lengths to ensure the
fastest possible packet processor to resource interconnect.
Whether the packet processor is sharing a memory bus
resource or special hardware coprocessor, the octagon
interface shown in Figure 1 insures that between any two
nodes, only two hops are needed, and that multiple packet-
processing engines can talk to different resources
simultaneously.

Figure 1. Octagon Interconnect

It is readily apparent that no two network processors

are alike. There is still no definitive unified definition for
network processors. STMicroelectronics bases its network
processor on the functions which it will perform. From
the moment a packet or cell arrives, and until it leaves the
switch, many functions must be performed on each one.
These include framing, classification, encryption,
compression, virus scanning, and traffic queuing. With
these requirements in mind, STMicroelectronics designed
a network processor capable of the task through a
combination of speedup techniques, special-purpose
instruction-set, and specialized hardware.

Our network processor consists of a few key
components, as shown in Figure 2. First, packets arrive
through a MAC and get stored into a packet buffer. Only
the header is stored here, and the rest of the packet
payload is stored in a large external memory. Each packet
processing engine will process a packet. When the packet
processor is done, it will give back the packet header and
pick up the next ready packet header to process.

Figure 2. STMicroelectronics

 NPU Architecture Overview

3. Embedded Software Development
Environment

In order to best exploit the inherent capabilities of the

optimized network processor architecture, a powerful
embedded software development toolset is required in
order to support high-level descriptions of the algorithms
running on the processor. This ensures time-to-market,
code readability and easy portability [4]. Perhaps more
difficult is that must be achieved without compromising
performance [5].

In most of the current offerings on the market, the
designer is forced to choose between two alternatives [4]:
1. A standard processor can be chosen in order to ensure

good tool support. However, this precludes
application-specific instruction-sets to obtain a higher
performance solution. In some cases, a standard
processor is adopted and extended with specific
packet-oriented instructions. In this case, C intrinsics

Nano
Processors

Bank

Inp
ut
Pr

Cir
cul
ar
Bu
ffe
r

U-
Proce
ssor

PCI Interface

Bus interface

Checksum
&

Policy key

SRa
m

IP-
TLC

SDRAM

Octagon
D
M

D
M

Network
Processo

r

Special
Processor

s

System
Registers

MACS

C5

C7

C2
C6

C4

C3

C1

C0

or in-line assembly are necessary to exploit the new
instructions, reducing productivity.

2. Another alternative is a fully dedicated processor
offering higher packet processing performance. In this
case, only a minimal toolset is usually provided. This
has a strong impact on productivity.
Moreover, due to the rapidly evolving nature of the

market, where new requirements emerge every few
months, the toolset must support rapid processor
configuration. Most commercial embedded software
environments are developed for a fixed instruction-set
architecture (ISA) and are not easily configured to support
new instructions, datatypes, memory and/or register file
configurations.

3.1 FlexWare: A Retargetable Embedded
Software Development Environment

We have based the STMicroelectronics network

processor's embedded software toolset on the FlexWare
embedded software development environment [6], already
used within the company for a wide range of general-
purpose and application-specific DSPs and MCUs. These
are used in consumer audio, wireless telecom, video
processing, digital imaging and other applications.

The FlexWare environment is a retargetable suite of
four tools:
1. FlexCC: High-performance C compiler technology.
2. FlexSim: High-speed instruction-set simulator model

generator.
3. FlexGdb: Source-level debug toolset.
4. FlexPerf: Performance analysis of the embedded S/W

and target processor pair.
In addition to FlexWare, the C++-based SystemC

simulation environment [14] is used for cycle-accurate
micro -architecture models.

In the next sections, we present an overview of the
technical characteristics of the FlexWare technologies. In
particular, we emphasize the wide range of architectures
supported by the FlexWare tools. This allows us to fine
tune the processor architecture to our customers’ specific
needs. This flexibility is a key requirement in the fast
changing network processor market environment.

A block diagram of the FlexWare environment is
given in Figure 3. A subset of the processor ISA
information is captured via the FlexSim tool’s graphical
user interface. This defines the entire information needed
for the instruction-set simulator. It also generates format
information for the retargetable assembler/linker, and the
performance evaluation tool. The compiler and debugger
also require tool-specific targeting files. This targeting
information is provided by the tool development experts.

While this approach precludes fully automatic
compiler and debugger generation from processor ISA
databases, we have found that this is an acceptable price to

pay for the resulting high-performance compilers and
debuggers, as will be demonstrated in this paper.

All the FlexWare tools are interoperable by
construction, but individual tools can be, and have been,
linked to other embedded software technologies.

3.2 FlexCC: Compilation Technology

The FlexCC technology is a retargetable C compiler

and assembler/linker based on the rule-driven approach
described in [7], [8]. The application of this technology to
a videophone application [9] was presented in [10]. This
involved an application-specific microcontroller and a
large instruction word video processor. This technology
has since been successfully applied to the following
commercial products:
1. A family of application-specific low-cost and low-

power DSP’s used in low-power telecom, motor servo
control and digital consumer applications. Production-
strength C compilers have been developed for three
members of this DSP family. This has led to the
exclusive use of C for all software development. No
assembly code has been required.

2. Two generations of a high-performance audio DSP, the
MMDSP [11] and the MMDSP+, used for high-volume
applications like MP3 players, set-top box, DVD, and
more recently, satellite digital radio. See [17] for a
description of representative products using this DSP
family (e.g STA013, STA014, STA015 audio decoders).

A number of other projects involved the development
of beta versions, prototypes and feasibility studies for low-
cost general-purpose microcontrollers, DSPs and RISC
embedded processors, typically in the early product
proposal phase.

Finally, the FlexCC technology was used as a basis
for a DSP architecture exploration study. A push-button
configurable compiler was developed that supports a
number of user-defined parameters. These include register
file size and configuration, immediate value formats, and a
restricted range of instruction-set permutations. Close to
500 compiler configurations were generated and
benchmarked [19].

These applications demonstrate the wide
retargetability of the FlexCC technology. The
development effort for a compiler ranges between three
person-months and one person-year. The bulk of this effort
is the validation of the resulting compiler, using industrial
ANSI validation suites. The first functional retargeting
requires one person-month typically.

Retargetablility is essential, but the performance of
the resulting compilers is even more important. A
representative benchmark for the FlexCC1 technology is
the ETSI C specification of the so-called Enhanced Full-
Rate (EFR) codec of the GSM wireless communication
standard [15]. This is a complex DSP application of

approximately fifteen thousand lines of C code. The ETSI
EFR code was compiled, without modifications, on the
MMDSP+ single-MAC DSP. The resulting code requires
only 53 MIPS to run the application in real time. After
seven person-days of optimization of the EFR C code
source (without resorting to any assembly code), a figure
of 25.5 MIPS was achieved. This is within 15 to 20% of
the performance of hand-coded assembly, which can
require two or more person years of effort.

3.3 FlexSim: Instruction-Set Simulation

The FlexSim tool takes a high-level specification of

the instruction-set written in a proprietary language called
IDL (Instruction Description Language), and generates a
high-speed functional C model. It also generates the
database information needed for the FlexCC assembler,
and the instruction-format information needed by the
FlexPerf performance evaluation tool. The generated C
model is designed for seamless integration with the
FlexGdb debugger.

The FlexSim technology has been applied to a wide
range of ST processors – close to a dozen in all – ranging
from 8 bit microcontrollers to high-performance VLIW
DSPs. Retargeting effort varies between two person-weeks
for a simple microcontroller, to two person-months for a
complex DSP. More importantly, the level of description
supported by the IDL language is exactly that of the ISA
functional specification. Changes in the ISA specification
can be reflected rapidly in the IDL description. Typical
model execution speed varies between 200K
instructions/sec to over 1.5M instr./sec. These speeds are
for an interpreted model, with full interactivity supported
(as opposed to a compiled code model which limits
interactivity and debug capabilities).

The tool also generates a Tk-based graphical interface
for instruction-level interaction with the C model (see
Figure 4 in last section for an example). A well-defined
API allows to link it with other tools, in particular the
FlexGdb source-level debugger.

FlexSim-based models have been used as the ‘golden’
reference exe cutable specification in most design projects
where it was adopted. In the case of an ST advanced DSP
design, it was used to validate the C compiler, the
applications running on the DSP under design, the
hardware implementation in VHDL and was linked to an
automatic functional test vector generation tool. Finally, it
was linked to the CoWare codesign environment in the
context of a rapid prototyping project [18].

3.4 FlexGdb: Source-level Debug Environment

The FlexGdb environment is a source-level debug

technology built on the Free Software Foundation GNU

public domain debugger [12]. It enriches this technology
with support for common extensions needed for embedded
processors. These include:
- Multiple memory spaces, such as those used in Harvard-

class DSP architectures with X and Y memory spaces.
- Arbitrary width memory addressing unit (MAU). The

GNU version supports an 8 bit MAU width only.
- Multiple MAUs on the same processor, for example one

for each memory space.
- Paged and segmented memories.
- Special purpose register files, with arbitrary data widths,

non-contiguous registers holding long operands, and
other application-specific needs.

- In conjunction with the debugger’s graphical user
interface, support for special purpose datatypes used in
embedded applications. An example is the fixed
fractional datatype used commonly in DSP’s.

The FlexGdb technology has been applied to the
MMDSP+ audio DSP. It runs with both the instruction-set
simulator and in-circuit emulator. The FlexGdb extensions
for complex memories have also been applied to an
STMicroelectronics general-purpose microcontroller.

3.5 FlexPerf: Performance Evaluation

The FlexPerf technology was developed to help

optimize the embedded-software and target-processor
pair. It can be thought of as an instruction-set-aware
performance and code profiler. It provides in-depth
feedback on the result of the embedded C compiled on the
target processor’s instruction-set. Two classes of users are
supported: the embedded software developer, who needs
to understand the relation beween the high-level code and
its mapping on the target processor; and the processor
architect, in order to fine-tune the instruction-set.

The FlexPerf tool is aware of all the instruction-set,
including the instruction word format hierarchy. It is also
linked with the debugger symbolic information database.
All requests can be done from the C source or assembly
source while maintaining the correspondence between the
two. For a given program, selected procedure, or set of
source code lines, the tool will generate a comprehensive
set of information types. These include:
- Instruction count
- Cycle count (for cycle-accurate models)
- Statistics on user-defined classes of instructions
- Waveform analysis
- Processor resource usage analysis

A wide range of graphical feedback utilities have been
developed: bar-charts, pie-charts, waveform viewers, and
memory access display.

The FlexPerf technology was introduced recently
within ST and has been applied to the ST100 advanced
DSP [17]. The tool is currently in use by the architecture

team to help evaluate and define future evolutions of this
DSP.

3.6 Application of FlexWare to the
STMicroelectronics Network Processor

A FlexWare -based embedded software development

toolset for the STMicroelectronics NPU is currently
underway.

A FlexSim-based model is used as the golden
reference functional ISA model. It is the first executable
specification of the processor and is used to validate the
compiler and run representative applications. It also serves
as a functional reference for the cycle-accurate model
written in SystemC [14]. The FlexSim graphical front-end
allowed to capture a first complete model in less than one
person-month. This includes basic unit testing.
Furthermore, the high-level constructs allow to track most
architecture changes in a day or less. After an additional
person-month of validation, this has led to a model robust
enough to be used for the evaluation, benchmarking and
validation of the C compiler. The FlexSim-based model
performance is over 200K instructions/second. In
comparison, a hand-coded C++ model runs at 15K
instructions/sec. The FlexSim GUI is shown in Fig. 4.

A FlexCC-based compiler has been developed and
supports all integer datatypes used in the architecture,
including all high-level ANSI C constructs (e.g.
structures). An assembler was automatically generated
from the FlexSim ISA database. The first working
compiler version required less than one person-month
effort. This was used as a basis for the first joint
architecture-compiler evaluations. This led to a number of
enhancements of the processor architecture, as explained
below.

The FlexGdb and FlexPerf retargeting process is
currently underway.

Lessons learned:

A key lesson so far is that the concurrent development
of the C compiler and the architecture has proven
essential. This was our experience for other DSP and
MCU architectures, and it is reconfirmed for the NPU
class. This is especially true when considered in the
context of a high-level language driven embedded
software development process, where the target is near
100% C code usage.

The early availability of a high-performance C
compiler raised a lot of issues and allowed us to make the
right decisions early on in the design. Many instructions
that seemed essential in the specification phase were later
demonstrated to be unexploitable by the compiler, or
redundant from a compilation perspective.

For example, when two or more code sequences
performing the same function have the same performance,

the compiler will systematically choose one of them. This
often leads to instructions that are never used, and can
therefore be removed from the instruction-set without
performance penalty. Since instruction-word width has a
determinant effect on cost and power, the effect of
removing non-essential or redundant instructions can be
considerable.

Another change driven by compilation considerations
was data memory access granularity. A byte-addressable
scheme was chosen over a 32 bit word granularity, based
on compiler-driven considerations.

Finally, the key network-specific instructions, which
are central to the processor’s packet processing
performance, are carefully chosen and tuned for the
combined compiler-processor performance. This involves
many trade-offs, some of which are counter-intuitive.
Once again the early availability of the compiler is
essential in achieving these.

3.6 FlexWare Outlook
We are currently in the final phases of productization

of the second generation of the FlexWare environment. On
the compilation front, this involves new compilation
optimization modules developed by STMicroelectronics.
These modules are built on top of the CoSy compiler
infrastructure of ACE Associated Compiler Experts bv [13].
The resulting FlexCC2 compiler technology is currently in
the final productization phase.

A significant benchmark result for the single MAC
MMDSP+ was obtained using the FlexCC2 beta version
currently under development. FlexCC2 was applied to the
ETSI EFR code example, without modifications to the
source. The code generated requires 24.5 MIPS of the
MMDSP+ to run the application in real time. This is
already within 10~15% of the performance of hand-coded
assembly on this class of DSP. Moreover, we are currently
completing the development of a new register allocation
module, which will improve on these already significant
results.

On average, for a large number of benchmarks,
including those of the EEMBC [16], we have found a 1.4X
to 2X performance improvement over FlexCC1, with a
10% code size reduction.

The FlexCC2 technology will be applied to the
STMicroelectronics NPU in mid-2001.

A new version of FlexSim is also currently under
development. It will support cycle-accurate simulations of
the processor micro-architecture and it’s peripherals. We
will evaluate the use of the FlexSim2 technology in
comparison with the existing SystemC microarchitecture
model.

4. Conclusion
The fast changing telecom networking environment

requires high-performance yet flexible packet-oriented
processing capabilities. We have presented the
characteristics of some illustrative network processing
units (NPU) currently available. We also presented the key
features of the NPU developed in the Central R&D
organization of STMicroelectronics, where the ISA was
developed from the ground up for high-performance
packet processing and complex software applications.

The STMicroelectronics FlexWare embedded
software environment was presented and it’s wide range of
retargetability demonstrated – ranging from simple
microcontrollers, to complex multimedia DSPs. In spite of
the wide range of applicability, we have demonstrated
state-of-the-art tool performance and functionality. This
technology is the basis of our NPU embedded S/W toolset,
which will allow us to address the rapid changes in
networking needs and customer requirements.

References
[1] see Intel web site: http://www.intel.com
[2] see MMC web site: http://www.mmc.com
[3] see IBM web site: http://www.ibm.com
[4] N. Cravotta, “OC-48, OC-192 and beyond”, EDN

Magazine, Nov. 9, 2000, pp. 61-68.
[5] L. Gwennap, “NPUs tease, don’t deliver”, Electronic

Engineering Times Magazine, Nov. 20, 2000, p. 49.
[6] P. .G. Paulin, C. Liem, T. May, S. Sutarwala, “FlexWare: a

Flexible Firmware Development Environment”, in Code

Generation for Embedded Processors, P. Marwedel, G.
Goossens (editors), Kluwer Academic Publishers, 1995.

[7] R. P. Gurd, “Experience Developing Microcode Using a
High-level Language”, Proc. of the 16th Annual
Microprogramming Workshop, Oct. 1983, pp.2-9.

[8] C. Liem, P. G. Paulin, “Compilation Techniques and Tools
for Embedded Processor Architectures”, in
Hardware/Software Co-Design: Principles and Practice, J.
Staunstrup, W. Wolf (editors), Kluwer Academic
Publishers, 1997.

[9] M. Harrand et al, “A Single Chip Videophone Video
Encoder/Decoder”, International Solid State Circuits
Conference, Feb. 1995, pp. 292-293.

[10] C. Liem, P. G. Paulin, A. Jerraya, “Industrial Experience
Using Rule-Driven Retargetable Code Generation for
Multimedia Applications”, Intl. Symposium on System-Level
Synthesis, Cannes, Sept. 1995.

[11] L. Bergher, X. Figari, F. Frederikson, M. Froidevaux,
“MPEG Audio Decoder for Consumer Applications”, Proc.
Of CICC, 1995.

[12] see Free Software Foundation website: http://www.fsf.org
[13] see ACE website: http://www.ace.nl
[14] see Open SystemC web site: http://www.systemc.org
[15] see ETSI web site: http://www.etsi.org
[16] see EEMBC web site: http://eembc.org
[17] see STMicroelectronics web site: http://www.st.com
[18] R. Hersemeule et al, “Fast Prototyping: A System Design

Flow Applied to a Complex SoC Multiprocessor Design”,
Proc. Design Automation Conf., Jun 2000.

[19] P. G. Paulin, “A Flexible HW/SW Development
Environment and its Application to Consumer Multimedia
Product Designs”, Pres.CODES/CASHE, Seattle, Jan. 1999.

Figure 3. FlexWare Overview

Processor Hardware Embedded Software

Compar
VHDL RTL
description

of processor

FlexGdb
debugger

FlexSim
model gen.

Object code

Proc. model

FlexWare
Processor
Targetting

Files

FlexCC
compiler

assembler

C code

 Figure 4. FlexSim user interface
for instruction-level debug

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

