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Abstract 
 

With the projected explosion of low-cost bandwidth 
availability, the intensive processing tasks and service 
hosting will move close to consumers on the "intelligent 
edge" of the network, where a significant portion of the 
future storage, processing and network management will 
take place. We address the rationale for this change, the 
characteristics of the network processor architecture 
required to address it, and the software development tools 
needed in order to improve time-to-market without 
sacrificing embedded software performance.   

 

1. Network Infrastructure Trends  
 
We have been studying the network infrastructure to 

understand the technologies required to participate in the 
considerable future market as the Internet and "Anywhere, 
Anyhow" communications spread across the globe over 
the next five years. If we look to a future network based on 
ultra-high bandwidth fibre communications this will 
radically shift our preconceptions about where 
computation and storage take place.  

Two simple facts illustrate this shift. In the labs of 
leading telecom companies, a throughput of 6.4 Terabits/s 
(6400 Gbit/sec) has been demonstrated using a single fibre 
strand by means of Wave Division Multiplexing (WDM). 
The world's total voice traffic in 1999 was 10 Terabits/sec, 
and the world's transoceanic cable capability will have 

grown 1000% between 1999 and 2001. In other words, 
communication bandwidth and the price of that bandwidth 
will become much less significant in the near future. 

This will have a dramatic effect on the complexity and 
protocols of today's networks. There will be a trend 
towards much greater simplification and efficiencies 
through the widespread use of WDM and IP. The "last 
mile" to the home will remain a challenge, but this is being 
addressed progressively by xDSL, cable modems, 
broadband wireless and satellite links. 

It is our contention that this bandwidth availability in 
the wider network will mean that the intensive processing 
tasks and service hosting will move close to  consumers on 
the "intelligent edge" of the network. It is proposed that 
this intelligent edge is where a significant portion of the 
future storage, processing and network management will  
take place. Therefore, we are actively working at the 
corporate level on the packet  processor core often called a 
"Network Processing Unit" – or NPU – that is the 
fundamental core of that intelligent edge. 

 

2. Network Processing Unit Architecture  
 
The projected explosive growth in network bandwidth 

and services has created the need for a new breed of 
processors.  The rapid introduction of new protocols and 
applications forces network designers to deal with fast 
"time -to-market" but also brief "time -in-market." An 
emerging approach to this challenge is the development of 



a programmable multi-processor solution that preserves 
customer investment by keeping up with ongoing changes. 

Packet processing poses some challenges in 
comparison to general data processing.  Locality can be 
poor in network applications.  The reason stems from the 
fact that packet data is essentially data flow.  One packet 
arrival has little in common, generally, with any other 
packet arrival.  This eliminates much of the utility of a 
traditional data cache for network processors.  
Furthermore, data structure access per packet also has poor 
locality.  For example, hash and longest prefix match 
searches are pointer tracing.  Thus, the memory data 
accessed has little necessary inter-relation.   Both memory 
capacity and bandwidth are demanding.  Routing look-up 
tables may not only be huge, but they must also be very 
fast.  Generally, in order to make the timing work, one or 
more forms  of latency hiding techniques are required.  

There are some general characteristics of network 
processors.  A network processor is a highly integrated set 
of micro-coded or hardwired accelerated engines, the 
memory sub-system, and high-speed interconnect and 
media interfaces to tackle packet processing close to the 
wire.  It uses pipelining, parallelism, and multi-threading 
to hide latency.  It has good data flow management and 
high-speed internal communications support.  It has the 
ability to access co-processors and is closely coupled with 
the media interface.   

Network processors present a whole new set of 
requirements.  In our bandwidth hungry world, OC-12 and 
OC-48 network speeds are becoming common.  On the 
horizon is OC-192 which allows for only 52ns of 
processing per packet received.  After that, OC-768 will 
soon follow, leaving us only 13ns of processing time per 
packet.  It is clear that traditional microprocessors cannot 
keep up with the speed and programmability requirements 
of network processors.   

2.1 Illustrative Commercial NPUs  
 
Seeing the unique needs of network processors, many 

companies such as Intel, MMC and IBM  have introduced 
new designs for this fast paced market.   

Intel’s IXP 1200 [1] is targeted at LAN-WAN 
switches operating at OC-48 speeds.  The architecture 
consists of 6 micro-engines sharing a bus with memory.  
The micro-engines are managed by a StrongARM core 
processor.  It has a PCI bus to communicate with the host 
CPU, memory controllers, and a bus interface to network 
MAC devices.  The device operates at 162MHz.  Each 
micro -engine supports 4 threads, which helps to eliminate 
micro -engines waiting for memory resources.  Micro-
engines have a large register set, consisting of 128 
general-purpose registers, along with 128 transfer 
registers.   Shift and ALU operations occur in a single 
cycle.  A hardware hash unit is responsible for the 

generation of 48 or 64-bit adaptive polynomial hash keys.  
Multiple IXP 1200’s can be aggregated in serial or 
parallel.   

MMC [2] developed the AnyFlow 5000 network 
processors.  These have five different stages:  ingress 
processing, switching, queuing, scheduling, and egress 
processing.  Per-flow queuing is used which allows each 
flow to be queued independently.  Other functions handled 
on a per-flow basis are queuing control and scheduling.  

MMC also developed the nP3400, which integrates a 
programmable packet processor, switch fabric, and 
multiple Ethernet interfaces on a single chip.  It contains 
two programmable 200-MHz RISC processors and a 4.4 
Gb/s switch fabric.  It has policy engines supporting 128 
rules.  

IBM developed the Rainier NPU [3].  It has sixteen 
programmable protocol processors and a PowerPC control 
processor.  It has hardware accelerators to perform tree 
searches, frame forwarding, filtering, and alteration.  Each 
processor has a 3-stage pipeline (fetch, decode, execute) 
and runs at 133 MHz.  Each processor has seven 
coprocessors associated with it, including one for 
checksum, string copy, and flow information.  Hardware 
accelerators perform frame filtering and alteration and tree 
searches.   

2.2  NPU Design at STMicroelectronics  
 
We are looking at processor design differently. First, 

networking is mostly data flow with some unique 
computational issues. Second, the nature of the 
computations, branches and pointers require a new set of 
instructions unique to this type of environment. We 
present the key characteristics of this configurable and 
scaleable multi-processor solution designed to address the 
rapid changes in networking needs and customer 
requirements. 

We address the required performance of network 
processors by attacking many different fronts. Instruction-
set definition, pipelining, parallelism, multithreading, fast 
interconnect, and semiconductor technology all combine 
to produce a network processor capable of OC-192 speeds 
and higher.  

Speedup is possible through an enhanced instruction-
set which is designed specifically for network-oriented  
applications.  There are specific instructions for field 
extraction, byte alignment, comparisons, boolean 
computations, endianess, conditional opcodes used to 
reduce branches, and more powerful network-specific 
computational instructions.   

Another form of speedup is achieved via pipelining.  
Our network processor has a chain of pipelined processing 
units and flexible programmable elements. 

A variety of accelerating techniques round out 
STMicroelectronic’s network processor.  These include: 



hardware multi-threading, which provides latency hiding; 
hardware accelerators for header parsing, checksums, and 
other intensive per-packet networking tasks; and finally, a 
world -class semiconductor technology.  

The way in which all the packet-processing engines in 
the network processor connect to outside resources is 
crucial.  If every packet processing engine is unable to 
continue work because it is limited by a slow interconnect, 
then much of the processing power is wasted.  To 
overcome this issue, we went to great lengths to ensure the 
fastest possible packet processor to resource interconnect.  
Whether the packet processor is sharing a memory bus 
resource or special hardware coprocessor, the octagon 
interface shown in Figure 1 insures that between any two 
nodes, only two hops are needed, and that multiple packet-
processing engines can talk to different resources 
simultaneously.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Octagon Interconnect 
 
It is readily apparent that no two network processors 

are alike.  There is still no definitive unified definition for 
network processors.  STMicroelectronics bases its network 
processor on the functions which it will perform.  From 
the moment a packet or cell arrives, and until it leaves the 
switch, many functions must be performed on each one.  
These include framing, classification, encryption, 
compression, virus scanning, and traffic queuing.  With 
these requirements in mind, STMicroelectronics designed 
a network processor capable of the task through a 
combination of speedup techniques, special-purpose 
instruction-set, and specialized hardware.  

Our network processor consists of a few key 
components, as shown in Figure 2.  First, packets arrive 
through a MAC and get stored into a packet buffer.  Only 
the header is stored here, and the rest of the packet 
payload is stored in a large external memory.  Each packet 
processing engine will process a packet.  When the packet 
processor is done, it will give back the packet header and 
pick up the next ready packet header to process.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 2. STMicroelectronics  

    NPU Architecture Overview 
 

3. Embedded Software Development 
Environment 
 
In order to best exploit the inherent capabilities of the 

optimized network processor architecture, a powerful 
embedded software development toolset is required in 
order to support high-level descriptions of the algorithms 
running on the processor. This ensures time-to-market, 
code readability and easy portability [4]. Perhaps more 
difficult is that must be achieved without compromising 
performance [5].  

In most of the current offerings on the market, the 
designer is forced to choose between two alternatives [4]:  
1.  A standard processor can be chosen in order to ensure 

good tool support. However, this precludes 
application-specific instruction-sets to obtain a higher 
performance solution. In some cases, a standard 
processor is adopted and extended with specific 
packet-oriented instructions. In this case, C intrinsics 
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or in-line assembly are necessary to exploit the new 
instructions, reducing productivity.   

2. Another alternative is a fully dedicated processor 
offering higher packet processing performance. In this 
case, only a minimal toolset is usually provided. This 
has a strong impact on productivity.  
Moreover, due to the rapidly evolving nature of the 

market, where new requirements emerge every few 
months, the toolset must support rapid processor 
configuration. Most commercial embedded software 
environments are developed for a fixed instruction-set 
architecture (ISA) and are not easily configured to support 
new instructions, datatypes, memory and/or register file 
configurations.  

3.1 FlexWare: A Retargetable Embedded 
Software Development Environment 
 
We have based the STMicroelectronics network 

processor's embedded software toolset on the FlexWare 
embedded software development environment [6], already 
used within the company for a wide range of general-
purpose and application-specific DSPs and MCUs. These 
are used in consumer audio, wireless telecom, video 
processing, digital imaging and other applications.  

The FlexWare environment is a retargetable suite of 
four tools:   
1. FlexCC: High-performance C compiler technology.  
2. FlexSim: High-speed instruction-set simulator model 

generator.  
3. FlexGdb: Source-level debug toolset.  
4. FlexPerf: Performance analysis of the embedded S/W 

and target processor pair.  
In addition to FlexWare, the C++-based SystemC 

simulation environment [14] is used for cycle-accurate 
micro -architecture models.  

In the next sections, we present an overview of the 
technical characteristics of the FlexWare technologies. In 
particular, we emphasize the wide range of architectures  
supported by the FlexWare tools. This allows us to fine 
tune the processor architecture to our customers’ specific 
needs. This flexibility is a key requirement in the fast 
changing network processor market environment.  

A block diagram of the FlexWare environment is 
given in Figure 3. A subset of the processor  ISA 
information is captured via the FlexSim tool’s graphical 
user interface. This defines the entire information needed 
for the instruction-set simulator. It also generates format 
information for the retargetable assembler/linker, and the 
performance evaluation tool. The compiler and debugger 
also require tool-specific targeting files. This targeting 
information is provided by the tool development experts.  

While this approach precludes fully automatic 
compiler and debugger generation from processor ISA 
databases, we have found that this is an acceptable price to 

pay for the resulting high-performance compilers and 
debuggers, as will be demonstrated in this paper.  

All the FlexWare tools are interoperable by 
construction, but individual tools can be, and have been, 
linked to other embedded software technologies.  

3.2 FlexCC: Compilation Technology 
 
The FlexCC technology is a retargetable C compiler 

and assembler/linker based on the rule-driven approach 
described in [7], [8]. The application of this technology to 
a videophone application [9] was presented in [10]. This 
involved an application-specific microcontroller and a 
large instruction word video processor. This technology 
has since been successfully applied to the following 
commercial products:  
1. A family of application-specific low-cost and low-

power DSP’s used in low-power telecom, motor servo 
control and digital consumer applications. Production-
strength C compilers have been developed for three 
members of this DSP family. This has led to the 
exclusive use of C for all software development. No 
assembly code has been required.  

2. Two generations of a high-performance audio DSP, the 
MMDSP [11] and the MMDSP+, used for high-volume 
applications like MP3 players, set-top box, DVD, and 
more recently, satellite digital radio. See [17] for a 
description of representative products using this DSP 
family (e.g STA013, STA014, STA015 audio decoders).  

A number of other projects involved the development 
of beta versions, prototypes and feasibility studies for low-
cost general-purpose microcontrollers, DSPs and RISC 
embedded processors, typically in the early product 
proposal phase.  

Finally, the FlexCC technology was used as a basis 
for a DSP architecture exploration study. A push-button 
configurable compiler was developed that supports a 
number of user-defined parameters. These include register 
file size and configuration, immediate value formats, and a 
restricted range of instruction-set permutations.  Close to 
500 compiler configurations were generated and 
benchmarked [19].  

These applications demonstrate the wide 
retargetability of the FlexCC technology. The 
development effort for a compiler ranges between three 
person-months and one person-year. The bulk of this effort 
is the validation of the resulting compiler, using industrial 
ANSI validation suites. The first functional retargeting 
requires one person-month typically.  

Retargetablility is essential, but the performance of 
the resulting compilers is even more important. A 
representative benchmark for the FlexCC1 technology is 
the ETSI C specification of the so-called Enhanced Full-
Rate (EFR) codec of the GSM wireless communication 
standard [15]. This is a complex DSP application of 



approximately fifteen thousand lines of C code. The ETSI 
EFR code was compiled, without  modifications, on the 
MMDSP+ single-MAC DSP.  The resulting code requires 
only 53 MIPS to run the application in real time. After 
seven person-days of optimization of the EFR C code 
source (without resorting to any assembly code), a figure 
of 25.5 MIPS was achieved. This is within 15 to 20% of 
the performance of hand-coded assembly, which can 
require two or more person years of effort.  

3.3 FlexSim: Instruction-Set Simulation 
 
The FlexSim tool takes a high-level specification of 

the instruction-set written in a proprietary language called 
IDL (Instruction Description Language), and generates a 
high-speed functional C model. It also generates the 
database information needed for the FlexCC assembler, 
and the instruction-format information needed by the 
FlexPerf performance evaluation tool. The generated C 
model is designed for seamless integration with the 
FlexGdb debugger.  

The FlexSim technology has been applied to a wide 
range of ST processors – close to a dozen in all – ranging 
from 8 bit microcontrollers to high-performance VLIW 
DSPs. Retargeting effort varies between two person-weeks 
for a simple microcontroller, to two person-months for a 
complex DSP. More importantly, the level of description 
supported by the IDL language is exactly that of the ISA 
functional specification. Changes in the ISA specification 
can be reflected rapidly in the IDL description. Typical 
model execution speed varies between 200K 
instructions/sec to over 1.5M instr./sec. These speeds are 
for an interpreted model, with full interactivity supported 
(as opposed to a compiled code model which limits 
interactivity and debug capabilities).  

The tool also generates a Tk-based graphical interface 
for instruction-level interaction with the C model (see 
Figure 4 in last section for an example). A well-defined 
API allows to link it with other tools, in particular the 
FlexGdb source-level debugger.  

FlexSim-based models have been used as the ‘golden’  
reference exe cutable specification in most design projects 
where it was adopted. In the case of an ST advanced DSP 
design, it was used to validate the C compiler, the 
applications running on the DSP under design, the 
hardware implementation in VHDL and was linked to an 
automatic functional test vector generation tool. Finally, it 
was linked to the CoWare codesign environment in the 
context of a rapid prototyping project [18].  

3.4 FlexGdb: Source-level Debug Environment 
 
The FlexGdb environment is a source-level debug 

technology built on the Free Software Foundation GNU 

public domain debugger [12]. It enriches this technology 
with support for common extensions needed for embedded 
processors. These include:  
- Multiple memory spaces, such as those used in Harvard-

class DSP architectures with X and Y memory spaces.  
- Arbitrary width memory addressing unit (MAU). The 

GNU version supports an 8 bit MAU width only.  
- Multiple MAUs on the same processor, for example one 

for each memory space.  
- Paged and segmented memories.  
- Special purpose register files, with arbitrary data widths, 

non-contiguous registers holding long operands, and 
other application-specific needs.  

- In conjunction with the debugger’s graphical user 
interface, support for special purpose datatypes used in 
embedded applications. An example is the fixed 
fractional datatype used commonly in DSP’s.  

The FlexGdb technology has been applied to the 
MMDSP+ audio DSP. It runs with both the instruction-set 
simulator and in-circuit emulator. The FlexGdb extensions 
for complex memories have also been applied to an 
STMicroelectronics general-purpose microcontroller.  

3.5 FlexPerf: Performance Evaluation 
 
The FlexPerf technology was developed to help 

optimize the embedded-software and  target-processor 
pair. It can be thought of as an instruction-set-aware 
performance and code profiler.  It provides in-depth 
feedback on the result of the embedded C compiled on the 
target processor’s instruction-set. Two classes of users are 
supported: the embedded software developer, who needs  
to understand the relation beween the high-level code and 
its mapping on the target processor; and the processor 
architect, in order to fine-tune the instruction-set.  

The FlexPerf tool is aware of all the instruction-set, 
including the instruction word format hierarchy. It is also 
linked with the debugger symbolic information database. 
All requests can be done from the C source or assembly 
source while maintaining the correspondence between the 
two. For a given program, selected procedure, or set of 
source code lines, the tool will generate a comprehensive 
set of information types. These include:  
- Instruction count 
- Cycle count (for cycle-accurate models) 
- Statistics on user-defined classes of instructions 
-  Waveform analysis  
-  Processor resource usage analysis  

A wide range of graphical feedback utilities have been 
developed: bar-charts, pie-charts, waveform viewers, and 
memory access display.  

The FlexPerf technology was introduced recently 
within ST and has been applied to the ST100 advanced 
DSP [17]. The tool is currently in use by the architecture 



team to help evaluate and define future evolutions of this 
DSP.  

3.6 Application of FlexWare to the 
STMicroelectronics Network Processor 
 
A FlexWare -based embedded software development 

toolset for the STMicroelectronics NPU is currently 
underway.  

A FlexSim-based model is used as the golden 
reference functional ISA model. It is the first executable 
specification of the processor and is used to validate the 
compiler and run representative applications. It also serves 
as a functional reference for the cycle-accurate model 
written in SystemC [14]. The FlexSim graphical front-end 
allowed to capture a first complete model in less than one 
person-month. This includes basic unit testing. 
Furthermore, the high-level constructs allow to track most 
architecture changes in a day or less.  After an additional 
person-month of validation, this has led to a model robust 
enough to be used for the evaluation, benchmarking and 
validation of the C compiler. The FlexSim-based model 
performance is over 200K instructions/second. In 
comparison, a hand-coded C++ model runs at 15K 
instructions/sec.  The FlexSim GUI is shown in Fig. 4.  

A FlexCC-based compiler has been developed and 
supports all integer datatypes used in the architecture, 
including all high-level ANSI C constructs (e.g. 
structures). An assembler was automatically generated 
from the FlexSim ISA database. The first working 
compiler version required less than one person-month 
effort. This was used as a basis for the first joint 
architecture-compiler evaluations. This led to a number of 
enhancements of the processor architecture, as explained 
below.  

The FlexGdb and FlexPerf retargeting process is 
currently underway.  
 
Lessons learned: 

A key lesson so far is that the concurrent development 
of the C compiler and the architecture has proven 
essential. This was our experience for other DSP and 
MCU architectures, and it is reconfirmed for the NPU 
class.  This is especially true when considered in the 
context of a high-level language driven embedded 
software development process, where the target is near 
100% C code usage.  

The early availability of a high-performance C 
compiler raised a lot of issues and allowed us to make the 
right decisions early on in the design. Many instructions 
that seemed essential in the specification phase were later 
demonstrated to be unexploitable by the compiler, or 
redundant from a compilation perspective.  

For example, when two or more code sequences 
performing the same function have the same performance, 

the compiler will systematically choose one of them. This 
often leads to instructions that are never used, and can 
therefore be removed from the instruction-set without 
performance penalty. Since instruction-word width has a 
determinant effect on cost and power, the effect of 
removing non-essential or redundant instructions can be 
considerable.  

Another change driven by compilation considerations 
was data memory access granularity. A byte-addressable 
scheme was chosen over a 32 bit word granularity, based 
on compiler-driven considerations.  

Finally, the key network-specific instructions, which 
are central to the processor’s packet processing 
performance, are carefully chosen and tuned for the 
combined compiler-processor performance. This involves 
many trade-offs, some of which are counter-intuitive. 
Once again the early availability of the compiler is 
essential in achieving these.   

3.6 FlexWare Outlook 
We are currently in the final phases of productization 

of the second generation of the FlexWare environment. On 
the compilation front, this involves new compilation 
optimization modules developed by STMicroelectronics.  
These modules are built on top of the CoSy compiler 
infrastructure of ACE Associated Compiler Experts bv [13]. 
The resulting FlexCC2 compiler technology is currently in 
the final productization phase.  

A significant benchmark result for the single MAC 
MMDSP+ was obtained using the FlexCC2 beta version 
currently under development.  FlexCC2 was applied to the 
ETSI EFR code example, without modifications to the 
source. The code generated requires 24.5 MIPS of the 
MMDSP+ to run the application in real time. This is 
already within 10~15% of the performance of hand-coded 
assembly on this class of DSP. Moreover, we are currently 
completing the development of a new register allocation 
module, which will improve on these already significant 
results.  

On average, for a large number of benchmarks, 
including those of the EEMBC [16], we have found a 1.4X 
to 2X performance improvement over FlexCC1, with a 
10% code size reduction.  

The FlexCC2 technology will be applied to the 
STMicroelectronics NPU in mid-2001.  

A new version of FlexSim is also currently under 
development. It will support cycle-accurate simulations of 
the processor micro-architecture and it’s peripherals.  We 
will evaluate the use of the FlexSim2 technology in 
comparison with the existing SystemC microarchitecture 
model.  



4. Conclusion 
The fast changing telecom networking environment 

requires high-performance yet flexible packet-oriented 
processing capabilities. We have presented the 
characteristics of some illustrative network processing 
units (NPU) currently available. We also presented the key 
features of the NPU developed in the Central R&D 
organization of STMicroelectronics, where the ISA was 
developed from the ground up for high-performance 
packet processing and complex software applications.  

The STMicroelectronics FlexWare embedded 
software environment was presented and it’s wide range of 
retargetability demonstrated – ranging from simple 
microcontrollers, to complex multimedia DSPs. In spite of 
the wide range of applicability, we have demonstrated 
state-of-the-art tool performance and functionality. This 
technology is the basis of our NPU embedded S/W toolset, 
which will allow us to address the rapid changes in 
networking needs and customer requirements.  
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