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Abstract

Efficient circuit partitioning is gaining more importance
with the increasing size of modern circuits. Conventionally,
circuit partitioning is solved by modeling a circuit as a hy-
pergraph for the ease of applying graph algorithms. How-
ever, there exist rooms for further improvement on even op-
timum hypergraph partitioning results, if logic information
can be applied for perturbation. In this paper, we present a
multi-way partitioning framework which can couple any ex-
cellent hypergraph partitioner and a noval logic perturba-
tion based (GBAW) technique for further improvement over
very excellent partitioning results. Our approach can inte-
grate with any graph partitioner. We performed experiments
on 2-, 3-, 4-, and 5-way partitionings for various circuits of
different sizes from MCNC benchmarks. We have chosen
the state-of-the-art hMetis-Kway to obtain high quality ini-
tial solutions for the experiments. Our experiments showed
that this partitioning approach can achieve a further 15%
reduction in cut size for 2-way partitioning with an area
penalty of only 0.33%. The good results demonstrated the
effectiveness of this new partitioning technique.

1. Introduction

Traditionally, circuit partitioning is done by simply mod-
eling the circuit as a graph (or hypergraph). Graph parti-
tioning problems are known to be NP-hard [1]. A com-
prehensive survey [2] has presented the recent directions of
partitioning. Commonly used partitioning algorithms can
be categorized into three classes. The first class strictly
abides by the modeling graph, with no attempt to change
the graph. High quality results have been reported by
several algorithms which include iterative improvement
based [1, 3], clustering based [4], and spectrum (eigenvec-
tor) based [5, 6]. The second class of algorithms may mod-
ify the graph through node replications [7, 8]. Improvement

is achieved by sacrificing some area due to node replica-
tions. These two classes both perform the partitioning task
on the graph without considering the logic function of the
circuit. The third class [9, 10, 11] couples the graph domain
(nodes and their connections) and logic domain (function
perform by each node). The tradeoff of improving the parti-
tioning results is the expensive computational cost [10, 11].

Recently, many research works on multi-level partition-
ing are proposed [12, 13, 14, 15]. The general idea behind
multi-level partitioning is to first cluster the whole problem
by some useful algorithms to reduce the size, then apply
a well-known graph domain partitioner on the coarsened
graph to get a good initial solution. The graph is then un-
clustered and a suitable partitioning refinement algorithm is
applied in order to adjust the cut edge between partitions.
The quality and the runtime by multi-level partitioning are
very encouraging. In particular, Karypis and Kumar [15]
proposes a particular called hMETIS-Kway. It first coarsens
the hypergraph, then recursively bisects the graph into k-
parts, followed by uncoarsening the hypergraph with refine-
ment algorithms. More recent research works [16, 17], in
comparison with hMetis-Kway, showed that the solution by
hMetis-Kway is of high quality that the cut size cannot be
further reduced greatly.

Alternative wiring (rewiring) is the technique of adding
single or multiple redundant wires or gates to a circuit such
that other wires or gates become redundant and thus remov-
able. This logic domain technique has been widely used for
solving many logic level and physical level design problems
[9, 18, 19, 20]. Circuit performance can be improved by re-
moving a wire on the critical path and adding its alternative
wire elsewhere. Circuit routability can also be improved
by substituting an unroutable wire in congested area by a
routable alternative wire in some other circuit part. The cut
size of a partition can be reduced by replacing the wires
crossing the cut line.

Figure 1 illustrates how rewiring can be used to further
improve an already optimum partition result obtained by a
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(a) Partition before applying alternative wiring

(a) Partition after applying alternative wiring

Figure 1. Circuit partitioning by rewiring

typical graph domain partition algorithm. The global opti-
mum partition result in the graph domain, with a cut size of
3, is shown in Figure 1(a). However, if we apply the logic
domain rewiring technique to replace a target wire (thick
wire) crossing the cut line by its alternative wire (dotted
wire), the cut size can be reduced to 2, as shown in Fig-
ure 1(b) (without injecting area increase). From this exam-
ple, we can see that rewiring can be applied to partitioning
to further improve upon even optimum solution in the graph
domain.

To investigate the possibility of perturbing the circuit
without applying any Boolean operations, minimal circuit
structures yielding rewiring patterns have been studied [21].
Based on benchmark circuits, we observe that the nearest
existing alternative wire is quite close to its target wire. As
a result, instead of applying the ATPG-based logic implica-
tions repeatedly for a same pattern, the Graph-Based Al-
ternative Wire (GBAW) technique [21] employs a more
efficient graph pattern matching operation to locate alter-
native wires. The basic idea of GBAW is to match the
sub-circuit with some “pre-specified” patterns. Rewiring by
GBAW can be done without doing any logic implication or
redundancy check, hence it runs very fast. Besides consid-
ering the alternative wire which is close to the target wire
from those small “pre-specified” patterns, distant alterna-
tive wires can also be located by propagating the matchings
in a cascading way.

To expand the optimization space, we applied the cou-
pling notion between graph and logic domain into our
GBAW-Partitioner (GP). In graph domain, we chose the
well-known Fiduccia-Mattheyses (FM) partitioning algo-
rithm [3] as the iterative move-based engine for its sim-
plicity. In logic domain, we applied an augmented GBAW,
which enhances the ability to locate more 2-local alterna-

tive wires, as a greedily guided perturbation engine. In
our experiments, near optimum partition results were firstly
obtained from the pure graph domain partitioner hMetis-
Kway. Then the coupling graph and logic domain optimiza-
tion by GP engine, was followed. Note that our logic per-
turbation process can be coupled with any powerful graph
domain partitioning tool, and GBAW itself is able to handle
patterns with multiple-input gates. We experimented this
partition flow for 2-, 3-, 4-, and 5-way partitionings on var-
ious MCNC benchmarks ranging from small to fairly large
circuits. The results showed that such a graph-logic domain
coupled partitioning approach can further cut down the cut
size effectively with small CPU overhead. The results also
showed that it is a very promising direction for circuit par-
titioning.

This paper is organized as follows. The background and
definition are introduced in Section 2. In Section 3, a brief
introduction on Graph-based Alternative Wire technique is
described. In Section 4, the details of repartitioning by
rewiring is shown. In Section 5, experimental results are
presented. Conclusions are drawn in Section 6.

2. Background and Definitions

A combinational circuit can be represented by a DAG
where vertices correspond to the primary inputs (PI), pri-
mary outputs (PO) and the internal gates of the circuit. PI
and PO are nodes which have only outgoing edges and in-
coming edges respectively. An internal node has at least
two incoming edges and one outgoing edge and is associ-
ated with a Boolean function. Inverters are not considered
as internal nodes, but as polarity of edges during logic do-
main perturbation. In a Boolean network, the in-degree of
node y, denoted by d�(y), is defined as the number of edges
entering y. The out-degree of node y, denoted by d+(y), is
defined as the number of edges leaving y. We also define
a node y by a triplet (op; d�(y); d+(y)), where op is the
Boolean operator of y which can be AND, OR, NAND, or
NOR.

We use a graph configuration D to map the logic func-
tion from a Boolean Network G. For each node ni in
sub-network S in network G, ni is mapped to a triplet
(op; i1; i2) in D where op denotes the operator represent-
ing the Boolean function of ni and i1, i2 are non-negative
integers. All edges inside S are preserved, while the edges
outside S are omitted in D. In most cases, i1 equals
d
�(ni) and i2 equals d

+(ni). The element of a triplet
(op; d�(y); d+(y)) can also be don’t care. For the first el-
ement, don’t care means any operator. For the other ele-
ments, don’t care can be any positive integers. We use a
configuration to denote a minimal pattern containing both
the target and its alternative wire. The mapping is illus-
trated in Figure 2. S is a sub-network of G. D1 and D2
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are two mappable configurations of S. A k-local pattern
denotes a minimal sub-graph with the distance between the
alternative wire and its target wire being k. The distance
between two wires is defined as the difference of maximum
path length from any primary input to each of the wires. A
wire is defined as a 2-point connection between a pair of
source and sink nodes. When a larger circuit is partitioned
into two sub-circuits, we define the wires crossing the par-
titioning cut line as cut wires. We also define a cut net as
a hyperedge connecting partitions and the cut cost as the
number of partitions that the hyperedge connects.
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Figure 2. Configuration of a sub-network

3. Graph-Based Alternative Wire Technique
(GBAW)

Graph-Based Alternative Wire (GBAW) is a newly pro-
posed and efficient rewiring technique. It models a circuit
as a directed acyclic graph (DAG) and searches alterna-
tive wires by checking graph matching between local sub-
networks and the pre-specified minimal sub-graph configu-
rations. A configuration is a minimal circuit pattern contain-
ing alternative wires within a given distance. Experiments
showed that the number of all such local minimal sub-graph
is limited. Most of the alternative wires are located topo-
logically “near” to their target wires. It has been shown that
about 96% of the closest alternative wires are only 2-edge

distant from their target wires. When sub-network matches
a pattern, GBAW can quickly determine the target wire and
the corresponding alternative wires. Obviously, if wr is an
alternative wire of wt, then wt is also an alternative wire of
wr. Bothwt and wr are presented in a pattern. But in a sub-
network, only one of them exists. In [21], it has shown that
by using GBAW as a random perturbation engine, a compet-
itive logic optimization result is obtained when comparing
to RAMBO while the runtime is greatly reduced.

There are 0-local, 1-local and 2-local patterns in GBAW.
In this paper, we apply an augmented GBAW, which is a
much extended scheme improved from the GBAW shown
in [21], to improve the effectiveness of identifying alter-
native wires of a given circuit for repartitioning. Figure 3
shows some new 2-local patterns used in GBAW, with the
target wire and its alternative wire shown as the thick line
and dotted line respectively. The position of the target wire
and alternative wire can be swapped. GBAW is able to find
the alternative wire of the target wire within a limited dis-
tance, also it is able to locate distant alternative wire by
waveform propagations. This paper applies the GBAW as
the perturbation engine in logic domain.
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Figure 3. Some new 2-local patterns in GBAW

There are more than 40 different patterns in the imple-
mentation of GBAW. GBAW does handle the case of adding
one wire and removing another one, the cases of adding one
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AND, OR, NAND or NOR gate so as to remove one target
wire. It also handles the cases of simultaneously adding two
wires and removing two other wires as well.

4. Partitioning using Alternative Wiring

Assume that one pin is used in a partition for a net. The
objective of a multi-way partition is essentially to minimize
the number of pins required to connect all partitions. Since
some of the wires may have alternative wires, if we replace
some cut wires by their alternative wires that are not cut
wires, cut size can be reduced. The rewiring process may
lead to some new circuit graph, and in turn help escaping
from local minima led by graph domain partitioning pro-
cess.

A perturbation refers to the replacement of a target wire
by its alternative wires. Figure 4 illustrates the gains regard-
ing various perturbations in a circuit. Thick lines represent
the target wires and dotted lines refer to their alternative
wires. As shown in the example, we may have positive,
zero and negative gains.

(a) perturbations (b) gain = 2
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Wa

(c) gain = 1

Wt

Wa

(f) gain = -2

Wt

Wa

(e) gain = -1

Wt
Wa

(d) gain = 0

Wt

Wa

Figure 4. Perturbations and gains

We use the hMetis-Kway partitioning tool to provide a
fast and near optimum solution as our initial partition. We
select the well-known FM partitioning algorithm [3] as our
graph domain partitioner for its simplicity and efficiency. In
fact, we can apply any other graph domain partitioner. Then
we apply our rewiring technique, GBAW, to perform logic
perturbations aiming for further improvements. Figure 5
gives the algorithm of GP.

During the perturbation process GP, only cut wires will
be selected as target wires for perturbations. We first ran-

Algorithm GP (best partition, m, k, t)f
search limit = 0;
n perturbations = 0;
curr partition = best partition;
last partition = best partition;
for i=1 to m f

while((n perturbations < k) && (exit == false))f
search limit = 0;
while(search limit < t)f

search limit ++;
randomly select a cut wire Wt;
use GBAW to find all alternative wires SWa for Wt;
if (SWa == �)f

search limit ++;
continue;

gelse
break;

g
if (SWa = �)f

pick alternative wire W
1

with the largest gain;
replace Wt with W

1
in curr partition.

curr partition = FM(curr partition);
n perturbations = n perturbation + 1;
if (cost(curr partition) < cost(last partition))

last partition = curr partition;
g
for each wire wf

use GBAW to find all alternative wires SWa for w;
do random perturbation on SWa in curr partition;

g
curr partition = FM(curr partition);
if (cost(curr partition) < cost(last partition))

last partition = curr partition;
g

g
g

Figure 5. Algorithm of GBAW-Partitioner (GP)

domly select a cut wire as the target wire. Then, GBAW
is used to find the alternative wire set SWa of the target
wire. Finally, among the wire set SWa, the alternative wire
with the highest gain is selected for perturbation. When the
SWa of the target cut wire is empty, GP may randomly
select another cut wire for another trial. The number of it-
erations is set by m. The number of trials is limited by t

times. k is the limit of perturbations. These limits serve to
set some bounds for improving performance. Some (hill-
climbing) perturbations with negative-gain perturbation are
allowed. Therefore we can increase the chance of obtaining
better solutions. By integrating GBAW to GP, our parti-
tioner can locate nearly all the alternative wires of multi-
input gate circuits.

5. Experimental Results

The algorithm GBAW-Partitioner (GP) was implemented
in C and the experiments were conducted on Sun Enterprise
E4500 workstation with 8 GB memory in a single-processor
configuration for MCNC benchmarks of various sizes . The
large benchmark circuits used in ISPD98 [22] are not appli-
cable for our experiments due to the lack of logical domain
informations. Since the rewiring engine GBAW [21] is able
to locate alternative wires of multiple input gates as well as
2-input gates, thus the circuit simplification SIS [23] done
by [9, 24] can be skipped.

In our experiments, we set the tolerance of area imbal-
ance of GP to be �20% of the average area in each par-
titioned block. Therefore the maximal ratios are 40%:60%

4



and 16%:24% in 2-way and 5-way partitioning respectively.
In order to explore the graph domain optimization, hMetis-
Kway [15] was firstly run for each circuit. As a result, a
nearly optimum partition solution was obtained. The next
step is to select the best solution applying GP for logic per-
turbation to further improve the quality of the partitioning
with k = 60 and t = 50. Table 1 to 4 list the experimental
results for the 2- to 5-way partitionings respectively. Col-
umn “area” lists the area of the sub-circuit in terms of the
number of gates. “#lits” lists the total number of literals of
the partitioned circuits. From the results, the area penalties
for 2- to 5-way are 0.33%, 0.53%, 0.61% and 0.71% respec-
tively. Column “cut cost” lists the total number of cut pins
obtained for all partitioned blocks. Column “cut wire” lists
the number of cut wires of the partitioning. Column “cpu”
lists the cpu time (in seconds). From the results, we can
see that applying logic perturbation can further cut down
the cut size of the good partitionings produced by purely
graph domain based partitioner. The total number of literals
is slightly increased because of the area cost of the added
gates during perturbation. We obtained 14.48%, 10.18%,
9.08% and 9.24% reduction in cut size for the 2-, 3-, 4- and
5-way partitionings. The last 2 columns showed that the
quality and cpu time of GP are both much better than the
results obtained by simply running FM for 250 times.

6. Conclusion and Future Work

In this paper, a scheme coupling the graph and logic do-
main partitioners to explore a larger optimization room of
circuit partitioning is proposed. The scheme is shown to be
very efficient in terms of CPU expenditure and is also quite
capable in bringing further improvements on good partition
results produced by the state-of-the-art partitioner hMetis-
Kway. Without the integration with RAMBO, the input cir-
cuits is no longer limited to 2-input simple gate circuits. We
conducted experiments on 29 MCNC benchmark circuits
for 2- to 5-way partitionings, and obtained further reduc-
tions from 14.48% to 9.24% upon the good results produced
by hMetis-Kway. Moreover, the partitions quality and CPU
expenditure of GP are both better than simply running FM
for 250 times. As GP can be integrated with any newly de-
veloped powerful graph partitioner, this partitioningscheme
should be very practical and useful for many partition tasks.
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Circuit hMetis-Kway GP 250 FM
area #lits cut cut cpu area #lits cut cut cpu cut cpu

cost wire cost wire cost

5xp1 61:71 235 30 31 0.33 73:63 239 28 39 34 28 38
9sym-hdl 67:74 232 16 8 0.36 64:77 232 10 8 14 10 42
C1355 331:269 1055 44 35 0.65 338:266 1059 36 35 74 46 266
C1908 260:256 883 82 55 0.64 271:251 889 62 55 61 62 238
C2670 516:527 1444 42 23 0.78 517:531 1449 34 23 112 126 427
C3540 615:648 2267 132 93 1.77 614:663 2280 112 100 357 180 692
C432 119:119 392 44 27 0.46 118:130 402 36 27 33 28 78
C499 231:272 854 46 47 0.46 232:272 855 36 47 59 54 214
C5315 918:1044 3282 104 71 1.98 919:1047 3286 100 69 493 234 1232
C6288 1297:1559 5195 80 270 2.33 1309:1561 5209 78 189 960 430 1708
C7552 1281:1141 4105 18 65 1.93 1286:1142 4111 18 64 727 228 1731
C880 261:222 780 54 30 0.57 260:234 791 38 30 58 38 200
alu2 190:232 777 84 93 0.81 190:236 781 80 95 115 88 150
alu4 428:357 1470 140 106 1.16 438:360 1481 120 104 223 160 322
apex6 435:473 1417 18 11 0.79 436:473 1418 16 11 109 36 370
b9 n2 87:70 208 16 13 0.32 64:93 208 12 10 16 10 41
comp 93:91 270 6 4 0.32 93:90 269 6 3 35 6 51
des 1727:2112 6655 236 221 3.99 1565:2282 6663 146 331 752 332 2338
duke2 175:211 676 80 61 0.7 162:233 684 74 72 98 82 128
f51m 72:65 244 28 32 0.37 77:65 247 26 33 35 26 41
misex3 293:245 990 80 69 0.88 301:250 1003 76 70 149 76 198
my adder 106:106 339 4 2 0.28 107:105 339 2 2 22 2 72
pcler8 58:72 174 8 14 0.27 58:72 174 8 14 22 8 31
rot 441:383 1251 54 38 0.80 442:384 1253 46 38 95 66 322
sao2-hdl 136:114 439 26 16 0.47 128:123 440 16 16 31 16 89
term1 124:148 439 28 14 0.53 130:148 445 24 14 62 28 88
ttt2 120:107 376 10 11 0.39 102:125 376 8 11 27 8 72
x3 471:384 1334 22 16 0.84 461:396 1336 20 16 4 40 321
too large 2161:1913 7723 318 563 5.58 2162:1917 7728 308 544 699 1210 1995

Total 45506 1850 45656 1576 5476 3658 13495
Average +0.33% -14.48%

Table 1. Comparison of 2-way partitioning between hMetis-Kway & FM & GP

Circuit hMetis-Kway GP 250 FM
area #lits cut cut cpu area #lits cut cut cpu cut cpu

cost wire cost wire cost

5xp1 37:43:52 235 53 51 0.67 40:47:50 240 49 50 36 45 50
9sym-hdl 43:44:54 232 32 19 0.67 43:44:55 233 22 19 15 20 49
C1355 217:196:187 1055 84 95 1.19 217:204:189 1065 80 93 157 143 269
C1908 148:186:182 883 115 82 1.10 146:191:185 889 98 98 127 134 226
C2670 400:329:314 1444 85 59 1.34 402:337:312 1452 71 59 119 247 411
C3540 376:464:423 2267 175 172 2.88 361:506:413 2284 165 224 357 413 664
C432 67:92:79 392 56 46 0.67 72:95:83 404 54 70 67 50 91
C499 193:169:141 854 82 64 0.84 195:173:136 854 64 64 62 108 188
C5315 556:692:714 3282 117 114 3.31 521:709:739 3289 100 122 510 564 1125
C6288 810:1086:960 5195 148 429 3.98 827:1061:978 5198 165 555 704 712 1697
C7552 745:923:754 4105 94 129 3.42 750:941:739 4113 86 136 747 490 1271
C880 139:178:166 780 80 58 1.06 145:182:163 787 61 58 60 103 202
alu2 124:133:165 777 140 144 1.23 134:143:167 795 127 159 122 152 178
alu4 230:307:248 1470 214 203 2.06 218:314:268 1489 194 211 231 283 361
apex6 257:302:349 1417 75 47 1.59 243:321:358 1431 63 70 223 113 447
b9 n2 45:53:59 208 21 17 0.51 44:54:60 209 21 17 32 25 52
comp 57:62:65 270 16 8 0.59 57:62:66 271 14 7 37 20 56
des 1107:1512:1220 6655 322 342 7.06 1089:1535:1216 6656 236 628 776 657 2761
duke2 113:147:126 676 128 107 1.18 106:143:154 693 116 112 103 121 162
f51m 42:53:42 244 58 54 0.68 46:54:44 252 56 62 37 49 51
misex3 153:209:176 990 128 114 1.50 154:208:192 1006 113 162 157 139 252
my adder 80:65:67 339 8 4 0.60 79:65:68 339 4 4 23 10 72
pcler8 41:49:40 174 17 20 0.47 42:49:39 174 15 20 25 15 37
rot 245:268:311 1251 85 68 1.44 233:272:330 1262 77 77 195 120 368
sao2-hdl 95:83:72 439 62 46 0.86 95:94:68 446 56 57 65 56 112
term1 77:88:107 439 54 38 0.88 78:91:108 443 44 38 32 54 111
ttt2 64:89:74 376 33 34 0.78 66:90:75 380 33 34 55 37 86
x3 271:262:322 1334 78 65 1.38 276:259:340 1354 67 65 106 130 419
too large 1562:1198:1314 7723 779 976 10.46 1606:1201:1284 7740 747 1096 734 1761 2602

Total 45506 3339 45748 2999 5914 6761 14370
Average +0.53% -10.18%

Table 2. Comparison of 3-way partitioning between hMetis-Kway & FM & GP

[23] E. M. Sentovich, K. J. Singh, L. Lavagno, and et. al., “SIS: A system
for sequential circuit synthesis,” ERL Memorandum No. UCB/ERL,
vol. M92/41, 1992.

[24] Y. L. Wu, X. L. Yuan, and D. I. Cheng, “Circuit partitioning with
coupled logic restructuring techniques,” Proc. Asia South Pacific De-
sign Automation Conf., 2000.
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Circuit hMetis-Kway GP 250 FM
area #lits cut cut cpu area #lits cut cut cpu cut cpu

cost wire cost wire cost

5xp1 34:27:31:40 235 66 63 0.68 38:29:29:39 239 60 78 37 58 52
9sym-hdl 36:38:31:36 232 48 26 0.80 37:40:32:32 232 29 26 16 26 52
C1355 174:158:130:138 1055 110 90 1.59 164:164:125:165 1073 96 108 166 185 305
C1908 122:125:126:143 883 137 114 1.53 126:128:121:149 890 114 126 67 184 259
C2670 262:257:262:262 1444 125 82 1.75 264:251:274:262 1452 91 114 122 274 481
C3540 324:285:356:298 2267 245 211 3.36 337:280:378:281 2278 230 286 385 458 791
C432 65:53:63:57 392 75 62 0.95 72:55:70:56 407 67 73 71 66 107
C499 122:148:116:117 854 92 77 1.26 123:150:112:120 856 81 81 131 145 218
C5315 532:511:460:459 3282 201 152 3.91 537:510:461:461 3289 192 161 523 633 1325
C6288 627:670:856:703 5195 186 582 4.52 627:678:842:716 5200 210 585 482 848 2051
C7552 537:605:647:633 4105 66 153 4.37 511:634:648:638 4114 44 153 388 732 1551
C880 108:113:136:126 780 82 58 1.33 109:123:138:123 790 69 121 124 107 230
alu2 101:128:96:97 777 178 171 1.51 99:126:103:111 794 171 193 128 190 212
alu4 162:197:204:222 1470 285 240 2.35 157:191:224:236 1493 257 308 123 352 452
apex6 233:200:261:214 1417 75 45 1.91 231:209:276:208 1433 65 77 233 139 555
b9 n2 41:48:35:33 208 36 23 0.76 46:43:36:35 209 32 23 17 31 58
comp 48:43:47:46 270 14 8 0.91 47:44:47:46 270 12 8 20 28 62
des 938:1160:947:794 6655 359 515 7.51 889:1144:953:864 6665 295 713 774 716 3322
duke2 116:95:96:79 676 159 127 1.33 113:82:115:89 698 147 137 112 158 183
f51m 37:35:36:29 244 67 67 0.75 41:39:36:28 251 65 68 40 63 55
misex3 157:138:132:111 990 188 177 1.70 160:149:143:107 1006 169 192 166 180 295
my adder 52:54:52:54 339 12 6 0.81 52:53:52:55 339 6 6 24 23 81
pcler8 30:28:33:39 174 24 25 0.57 31:28:32:39 174 22 25 26 20 40
rot 193:191:208:232 1251 98 75 1.86 187:193:210:240 1256 93 91 205 166 457
sao2-hdl 75:60:63:52 439 93 60 1.08 69:64:73:51 446 76 60 35 74 117
term1 67:56:67:82 439 59 36 1.14 77:57:69:85 454 55 37 68 68 118
ttt2 54:66:59:48 376 51 44 0.85 55:69:60:49 382 46 46 59 48 94
x3 191:193:236:235 1334 78 52 1.86 190:196:249:244 1358 71 111 225 164 504
too large 862:1059:964:1189 7723 1041 1345 11.58 823:1082:961:1221 7736 999 1685 756 2206 3281

Total 45506 4250 45784 3864 5523 8342 17308
Average +0.61% -9.08%

Table 3. Comparison of 4-way partitioning between hMetis-Kway & FM & GP

Circuit hMetis-Kway GP 250 FM
area #lits cut cut cpu area #lits cut cut cpu cut cpu

cost wire cost wire cost

5xp1 26:21:23:31:31 235 78 71 0.89 23:22:32:29:31 237 73 77 37 69 60
9sym-hdl 32:30:24:24:31 232 57 31 0.96 32:27:28:25:30 233 33 31 16 35 55
C1355 142:113:100:130:115 1055 122 97 1.95 142:115:95:144:123 1074 109 110 175 222 369
C1908 91:111:93:117:104 883 153 111 1.70 84:118:84:123:112 888 119 131 72 206 313
C2670 221:221:174:207:220 1444 133 95 2.26 186:229:195:217:229 1457 106 135 129 314 578
C3540 214:258:223:307:261 2267 312 268 4.07 224:239:237:301:284 2288 265 341 206 551 990
C432 42:46:43:59:48 392 80 74 1.25 47:48:41:57:57 404 77 88 75 73 126
C499 107:104:85:103:104 854 107 95 1.45 111:101:81:108:105 857 93 102 138 173 245
C5315 371:315:370:497:409 3282 244 193 4.92 372:315:383:471:428 3289 232 268 558 706 1650
C6288 517:496:525:651:667 5195 222 601 5.21 508:498:532:659:669 5204 241 601 820 876 2340
C7552 568:504:396:533:421 4105 152 169 4.84 554:528:388:504:447 4095 135 220 787 836 1901
C880 104:95:82:111:91 780 104 84 1.58 107:91:86:107:100 787 94 157 131 155 293
alu2 71:78:79:95:99 777 209 198 1.92 67:93:88:89:99 791 192 228 130 227 245
alu4 150:127:143:183:182 1470 310 291 3.05 147:130:171:181:173 1487 279 375 129 399 554
apex6 205:205:148:157:193 1417 132 91 2.39 206:206:199:145:171 1436 125 112 249 165 656
b9 n2 25:30:28:39:35 208 36 27 0.84 24:29:33:39:39 214 36 32 36 39 65
comp 39:42:30:41:32 270 24 15 0.97 30:42:31:42:38 269 20 15 21 36 73
des 682:711:683:919:844 6655 484 382 10.03 667:699:667:954:889 6692 386 564 785 689 4246
duke2 73:70:71:94:78 676 175 148 1.69 88:77:65:89:89 696 164 168 115 183 217
f51m 27:21:24:35:30 244 81 78 0.93 32:30:21:27:32 249 77 86 39 76 59
misex3 86:103:111:133:105 990 216 215 2.23 95:96:127:107:129 1006 203 276 173 240 364
my adder 52:41:41:39:39 339 16 8 1.12 51:41:42:39:39 339 10 8 26 30 87
pcler8 26:22:24:28:30 174 29 29 0.68 27:25:25:24:32 177 26 30 28 27 48
rot 145:147:150:209:173 1251 127 97 2.20 160:151:142:197:190 1266 121 123 217 184 543
sao2-hdl 63:51:45:43:48 439 109 74 1.46 61:60:46:44:48 448 97 93 66 93 145
term1 66:55:48:56:47 439 71 44 1.34 66:58:45:65:55 453 66 59 71 79 146
ttt2 46:55:35:45:46 376 59 58 1.15 47:53:36:51:45 383 56 72 62 65 112
x3 193:190:136:152:184 1334 122 91 2.23 193:195:170:139:199 1375 112 171 243 173 605
too large 1003:851:661:782:777 7723 1221 1477 14.62 975:879:723:765:743 7734 1159 1806 802 2503 4478

Total 45506 5185 45828 4706 6309 9324 21563
Average +0.71% -9.24%

Table 4. Comparison of 5-way partitioning between hMetis-Kway & FM & GP
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