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Abstract

In this paper we present a strategy for run-time profiling to op-
timize the configuration of a microprocessor dynamically so as to
save power with minimum performance penalty. The configuration
of the processor changes according to the parallelism in the run-
ning program. Experiments on some benchmark programs show
good savings in total energy consumption; we have observed a de-
crease of up to 23% in energy/cycle and up to 8% in energy per
instruction. Our proposed approach can be used for energy-aware
computing in either portable applications or in desktop environ-
ments where power density is becoming a concern. This approach
can also be incorporated in larger power management strategies
like ACPI.

1. Introduction

Power dissipation of microprocessors is becoming an impor-
tant concern for designers because of two factors: (1) the market
for mobile and embedded systems is expanding at a rapid rate and
in such systems, battery life is important and power is at a pre-
mium; (2) complex designs and large on-chip caches present in
modern chips require thermal management strategies to prevent
the chip from overheating; this is true not only for mobile comput-
ing, but for conventional processor design as well. In this paper we
present microarchitectural level control and scaling of resources to
address the issue of power consumption.

1.1. Prior Work

Although low-power design has been an active area of research
for the last decade or so, the problem of power modeling and opti-
mization at the microarchitectural level has only recently been ad-
dressed. An overview of various approaches to system level power
management, power optimization and efficient processor design is
given in [1]. The various approaches that have been proposed are
based on memory hierarchy [2, 3], dynamic power management
[4], dynamic supply voltage variation [5, 6], etc.

So far only a few microarchitectural level solutions to the
power problem have been proposed; for example [7] proposes a
technique that uses confidence estimation to gate the execution of
branches that are most likely to be mispredicted, and [8] presents a
new paradigm for adapting the execution of application programs
for low power using profiling. [9] presents an analysis of differ-
ent configurations of superscalar processors and derives the opti-
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Figure 1. Execution profile of the epic benchmark

mal “envelope” for energy-delay product; but their approach is not
adaptive. The work presented in [10] uses IPC values obtained
from profiling to characterize different portions of the code, and
uses a fixed window of instructions whose execution is monitored
in order to reduce the power consumption.

1.2. Motivation

Most solutions to the power problem are static in nature since
they do not allow for adaption to the application. It has been ob-
served [8, 11] that there is wide variation in processor resource us-
age among various applications. In addition, the execution profile
of most applications (for example the profile of the epic bench-
mark shown in Figure 1) indicate that there is also wide variation
in resource usage from one section of an application’s code to an-
other.

The quantity and configuration of the processor’s resources
will also affect the overall execution profile and the energy con-
sumption. Figure 2 shows the variation of the total energy con-
sumption of the lisp benchmark with variation in the register up-
date unit (RUU) size and the effective pipeline width. Low-end
configurations consume higher energy per instruction due to their
inherently high CPI; high-end configurations also tend to have
high energies in part due to resource usage and in part due to power
consumption of unused modules. The ideal operating point is
somewhere in between. Identifying the right configuration which
optimizes the energy consumed per instruction for each region of
code is the goal of our work.
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Figure 2. Energy variation of lisp

We use a hardware profiling scheme to identify tightly coupled
regions of code, and a hardware-based power estimation method
to judge the power requirements and tradeoffs for each region and
allocate resources at runtime depending on these estimates. Allo-
cating architectural resources dynamically based upon the needs of
the running program, coupled with aggressive clock-gating styles,
can lead to significant power savings.

1.3. Organization of this Paper

The rest of this paper is organized as follows. Section 2
presents the framework needed for hotspot detection. We present
in section 3 the methodology for finding the optimal configura-
tion. In section 4 we discuss some practical considerations. Sec-
tion 5 contains details of our implementation and results on a set
of benchmarks. In section 6 we conclude with some final remarks.

2. Detecting Hotspots

Let us use the term basic block to describe a straight execu-
tion path of code ending at any branch or jump instruction. A
typical mix of instructions contains one branch every five or six
instructions, so the average size of the basic block is also of the
order of five or six. In the ideal case, each basic block could be
characterized in terms of its parallelism and resource usage, and
the configuration of the processor could be changed dynamically
for each basic block. However in modern processors that would
require changing the configuration of the processor almost every
cycle, which is not feasible to implement. Hence we need to look
at collections of basic blocks executing together, called hotspots.
It has been shown that most of the execution time of a program
is spent in several small critical regions of code. These regions
or hotspots consist of a number of basic blocks exhibiting strong
temporal locality.

Since a hotspot is a collection of frequently executing basic
blocks, identifying hotspots involves keeping a count of all branch
instructions committed, and finding the most frequent branches.
We have implemented a modified version of the scheme proposed
by Merten et al [11].
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Figure 3. Hotspot detection hardware

We use a cache-like structure called the branch behavior buffer
(BBB) to keep track of branches. Each branch has an entry in the
BBB, consisting of an execution counter and a one-bit candidate
flag. The execution counter (9 bits wide as suggested in [11]) is
incremented each time the branch is taken, and once the counter
exceeds a fixed value, the branch in question is marked as a candi-
date branch by setting the candidate flag bit for that branch. A sat-
urating counter called the hotspot detection counter (HDC) keeps
track of candidate branches. Initially all bits of the counter are set;
each time a candidate branch is taken the counter is decremented
by D, and each time a non-candidate branch is taken, it is incre-
mented by I. When the HDC decrements down to zero, we are in a
hotspot. The BBB and HDC are left running even when execution
is inside the hotspot. When the code strays away from the hotspot,
non-candidate branches start to execute more frequently; the HDC
then increments to its upper limit eventually, and we say that we
are out of the hotspot.

The refreshing and flushing of the BBB, the replacement pol-
icy for BBB entries, etc. were all implemented as described in
[11]. The replacement policy is that if there is a conflict, the old
entry is retained and the new one discarded. Entries are not re-
placed; this is needed so that the BBB figures reflect the correct
execution statistics. Every 4096 cycles, BBB entries which are
non-candidate entries are flushed. Every 64K cycles, the entire
BBB is reset. These two mechanisms ensure that the replacement
policy we have adopted does not cause stagnation of entries in the
table. One possible implementation of the BBB entry is shown in
Figure 4.

The changes in our scheme from previous versions of this
hotspot detection scheme are twofold. In the BBB, we use the
target address of the branch instruction (or the starting address
of the basic block) to index the table, and not the address of the
branch instruction itself. While the scheme proposed in [11] used
a separate structure called a monitor table to detect that execution
has strayed away from a hotspot, we use the same BBB and HDC
structures to achieve this end since our scheme does not need the
extra functionality offered by the monitor table. As mentioned
above, straying of code away from hotspots is detected by keeping
the profiling hardware running at all times and by waiting for the
HDC to increment to its maximum value.
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Figure 4. Implementation of one BBB entry

Unit Power
Floating point ALU 9
Integer ALU 3
Register File 1
Instruction Window 2

Table 1. Relative power consumption of the four hottest
parts of the Simplescalar processor

3. The Energy-Optimal Configuration

Once a hotspot has been detected, we need to determine an
optimum configuration for that hotspot. By the term configura-
tion, we mean a unique combination of the parameters under con-
trol, which for our experiments were the RUU size and the ef-
fective pipeline width. To have a consistent flow of instructions
through the pipeline, the decode width, issue width and commit
width were all made equal in order to control the effective pipeline
width. Since less than half the instructions are memory access in-
structions, we set the size of the load-store queue (LSQ) to be half
the size of the RUU. We define the optimum as that configuration
which leads to the least energy dissipated per committed instruc-
tion.

3.1. Power Profiling in Hardware

To determine the optimum configuration, we need a way to
determine approximate energy dissipation statistics in hardware.
For this purpose, when a hotspot is detected, two counter registers
are set in motion: the power register and the instruction count
register (ICR).

The power register is used to maintain power statistics for the
four most power-hungry units of the processor. Using the orga-
nization and modeling of Wattch [12], in our processor model we
have identified these four units to be (1) floating point ALU (2)
integer ALU (3) register file (4) instruction window. The relative
per-access energy dissipation of each unit is shown in Table 1.
These figures are not exact but are rounded off for simple integer
arithmetic. Multiplying these power figures with the access counts
of the respective units provides a rough estimate of the energy
consumed in each cycle. These multiplications could be imple-
mented as integer shift and add operations, pipelined if necessary.
A schematic view of this process is shown in Figure 5. We point
out that depending on the implementation, the four hottest units
may be different from the units shown here or the weights used for
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Figure 5. Power profiling hardware

estimating power may be different. However the same scheme can
be implemented irrespective of the actual processor.

3.2. Optimizing the Configuration

The instruction count register (ICR) is used to keep a count of
the number of the number of instructions retired by the proces-
sor. When a hotspot is detected, the ICR is initialized with the
number of instructions to count (1024 in our experiments) and a
finite state machine (FSM) is activated, tracking the processor’s
configuration. During each cycle, it is decremented by the number
of instructions retired in that cycle. When the ICR reaches zero,
the power register is sampled to obtain a figure proportional to the
energy dissipated per instruction.

After every 1024 instructions, the FSM reads the power regis-
ter for an estimate of the power consumed and switches to a new
processor configuration. If there are n parameters of the processor
to vary, exhaustive testing of all configurations would mean test-
ing all points in the n-dimensional lattice for a fixed number of
instructions. In our experiments we varied the RUU size and the
fetch rate and ran 1024 instructions to test power usage. Since we
were testing configurations with RUU sizes of 16, 32, 48 and 64
and with fetch rates of 4, 6 and 8, we had a total of 4 � 3 = 12
configurations, requiring an FSM of only 12 states. A schematic
of the FSM is shown in Figure 6.

After the optimum configuration is found, it is stored inside
the hotspot table. The table contains one entry for each hotspot
which stores the RUU size and fetch rate which have been found
to be optimal for that hotspot. The next time the same hotspot is
encountered, the optimal values can be taken from the table. This
does not lead to much overhead since the size of the table is only
16 entries. In practice, in the programs we have tested, the number
of distinct hotspots was less than 16.
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4. Practical Considerations

4.1. Performance Overhead of Switching Configu-
rations

Many parts of the processor are implemented as circular queues
using head and tail pointers; eg. instruction issue queue, load-store
queue, etc. Each configurable unit has a maximum size (physical
capacity) and an active size (fraction of units which are enabled,
determined at runtime). The processor is said to switch configura-
tions when the active size of any unit changes.

Whenever a decision is made to change the configuration of
the processor (say to reduce the instruction window size from 64
to 32 or to reduce the fetch rate from 6 to 4) a flag is set and the
dispatch unit stops pumping instructions into the execution queue.
The instructions already in the queue are allowed to run to comple-
tion; after they are committed, the active sizes of the reconfigured
units are changed. The exact loss of CPU cycles incurred by this
pipeline flush done on every reconfiguration depends on the state
of the processor at the instant of the switch. Our experiments have
shown penalties as low as zero cycles (when the queue is nearly
empty) and as high as 30 cycles (for example when the queue is
nearly full, when long-latency instructions are already in pipeline,
or when we have a cache-miss on a load). However we do not
reconfigure the processor too often; in practice we find that the
number of cycles lost is less than 0.5% in the worst case and less
than this in most cases.

4.2. Performance and Power Overhead of
Profiling Hardware

The accesses to the BBB are done after the branch instructions
are retired; hence the hotspot detection scheme is not in the critical
path of the processor and does not bring about any delay overhead.
The profiling hardware is activated only once every branch instruc-
tion; hence the power overhead is also quite small. For example in

a typical run of gcc on Wattch [12] the BBB power is found to be
0.05W out of a total power of 20.9W.

4.3. Subbanking in the I-Cache

When the fetch width is scaled down, the required line size of
the instruction cache also changes. In this case and (also in gen-
eral) the instruction fetch stage may not be able to utilize all the
words available in one block. Accesses to the instruction cache
can be optimized using subbanking methods described in [3]. By
using an array of bit flags to indicate whether a particular word in
a line should be fetched or not, the array access stage can be pro-
grammed to selectively read out words from the cache. This leads
to a significant saving in the instruction cache power. This fine-
grained scaling of line size is in agreement with the methodology
of run-time resource scaling.

4.4. Maintaining Performance Levels

While resource scaling helps to operate the processor in an
energy-optimal mode, scaling down the effective pipeline width
during execution does lead to a fall in performance. A perfor-
mance monitoring counter along with the profiling hardware can
restrict this performance hit to acceptable levels. After hotspot
detection, while we evaluate the energy usage of each configura-
tion, the performance counter keeps track of the number of cycles
needed for the execution of 1024 instructions in each configura-
tion, thus providing a rough CPI estimate. The acceptable perfor-
mance hit we defined for our experiments was one-eighth (12.5%).
(In particular this figure was chosen because dividing by 8 can be
done by simple 3-bit shift operation.) If a particular configuration
takes more than 12.5% cycles above the baseline configuration, it
is rejected. This ensures that for each hotspot detected, the perfor-
mance hit is not more than 12.5%; hence the overall performance
hit for the application will be less than 12.5%.

Measuring CPI by counting the clock cycles needed for a fixed
number of instructions has its caveats. We have found that in the
event of an instruction cache miss, the number of cycles counted
goes up inordinately, and this distorts the CPI figures so that con-
figurations which are feasible in the long run are sometimes left
out of consideration. To minimize the chances of this, we discount
the cycles spent waiting on a cache miss. This technique gives
us a more realistic (though not completely accurate) estimate of
the CPI which we could have obtained if the cache miss had not
happened. It should be noted that cache misses do not distort the
power estimates since these estimates are determined only by us-
age of individual units of the processor.

4.5. Selective Dynamic Voltage Scaling

Buffered lines in array structures can be used to selectively en-
able some parts of the structure and disable others. Thus, scaling
down the resources of a processor can reduce the critical path de-
lay since the rename and window access stages which determine
the critical path to a large extent have latencies highly dependent
on the instruction issue rate and the RUU size [13]. We can exploit
this to dynamically scale the operating voltage while keeping the
clock frequency constant. Delays in some structures scale better
than others, and some delays do not scale at all. The structures
which scale well could be powered by dynamic supply voltages.



This would necessitate the use of level-shifters to pass data be-
tween different stages which operate at different voltages.

The dependence of path delay on supply voltage is given by the
following equation [14]:

D ∝
Vdd

(Vdd �Vt)2 (1)

If D0 is the delay of a structure in the default configuration, D
is the delay after scaling, and Dl is the delay introduced by the
level shifter logic, then the relationship between supply voltage
and delays is given by the following equation:

D
D0�Dl

=
(Vdd(new)�Vt )

2

(Vdd �Vt)2
Vdd

Vdd(new)
(2)

In practice, since supply voltages cannot be varied on a continuous
scale, the implementation should consist of a few supply voltage
rails with logic for switching between them as and when delays
reduce to appropriate values.

The delays of various structures inside a typical superscalar
processor have been studied by Palacharla et al [13]. They have
shown that to a good approximation, the delay of the rename logic
is linear in the issue width of the processor and the delay of the is-
sue logic is quadratic in issue width as well as in RUU size. When
the processor goes from its highest configuration we tested (RUU
size of 64 and issue width of 8) to the lowest (RUU size of 16 and
issue width of 4), the delay in issue logic reduces from 3369 ps to
1995 ps on a 0.8µm technology. If the supply voltage was 5V to
start with, scaling to the lowest configuration now allows the issue
logic to run at 3.6V. Assuming that energy dissipation is propor-
tional to CV2

dd , the savings in energy dissipated in the issue logic
amount to about 48%.

5. Implementation and Results
5.1. Implementation on SimpleScalar

The above ideas were implemented on the Simplescalar archi-
tecture [15]. Simplescalar is a popular industrial-strength simu-
lator which implements a derivative of the MIPS-IV instruction
set, and has various configuration options including a superscalar
out-of-order simulator which we used for our experiments. The
power modeling we used to report power figures was based on
Wattch [12], which is an extension to the Simplescalar simula-
tor. Wattch has various choices for power modeling; the one we
chose for our application assumes support for aggressive clock gat-
ing styles and parameterized power calculation. This implies that
power consumption is scaled according to the number of units (in
case of multiple functional units) or ports used (in case of register
files and caches). Unused units are modeled as consuming 10% of
their active power in the idle state; this is a good model for low
feature sizes of modern technologies. Wattch also uses the scheme
implemented in Cacti [16] for optimizing caches and cache-like
structures based on delay analysis.

In keeping with the existing implementation of Simplescalar,
the additional structures and options we introduced in the simula-
tor are set through command line options and their power overhead
is included in the total power estimates. The baseline configura-
tion of the processor we used for our tests is given in Table 2. The
schematic of the processor with the profiling hardware included is
shown in Figure 7.

Processor Core
RUU size 64 instructions
LSQ size 32 instructions
Fetch queue size 8 instructions
Fetch width 8 instructions/cycle
Decode width 8 instructions/cycle
Issue width 8 instructions/cycle
Commit width 8 instructions/cycle
Functional units 4 integer ALUs

2 integer multiply/divide units
2 FP ALUs
2 FP multiply/divide units

Branch Prediction
Predictor Bimodal, 2K table
BTB 2048 entry, 4-way
Return addr stack 8 entry
Mispredict penalty 3 cycles

Memory Hierarchy
L1 D-cache 64 KB 4-way LRU

64B blocks, 1 cycle latency
L1 I-cache 64 KB 2-way LRU

64B blocks, 1 cycle latency
L2 cache 256 KB 4-way LRU

64B blocks, 6 cycles latency
Memory latency 18 cycles

Table 2. Baseline configuration used for our experiments
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5.2. Experimental Results

We performed experiments with programs from the Spec95
CPU benchmark suite as well as the MediaBench suite [17]. The
power savings we obtained are summarized in Figures 8 and 9.
There are three values indicated for each application: the con-
strained figure represents the power consumption of the processor
with the constraint on performance not exceeding specified lim-
its; the unconstrained case represents the case in which the FSM
optimizes the processor for lowest energy regardless of the perfor-
mance hit involved; the last case shown, the fixed case, is the power
consumption for the baseline processor without any resource scal-
ing. The performance for each application under each mode of
execution is given in Figure 10.

For the Spec benchmarks, standard workloads were simulated,
and the figures given are for complete execution of the application.
For the MediaBench applications, we chose and ran appropriate
input vectors; for example we used the popular Lena image for
testing epic image compression, and used a short 320x200 movie
clip 68 frames long for testing mpeg2 decoding. We tested the
pegwit encryption program using a few paragraphs from the text
of this paper. Most applications show significant savings in the
average energy per cycle (average power) ranging from 2.6% to
26.3%. The savings in energy per instruction (total energy dis-
sipated) ranges from very low values to 8%. In the case of the
tomcatv benchmark, the energy is higher with dynamic resource
scaling. This could be because the window of instructions profiled
after the initial hotspot detection did not match the general execu-
tion profile, leading to a sub-optimal configuration being used.

The characteristics of each application have to be taken into
account while interpreting these results. For example, most of the
execution time of the mpeg2 decoder is inside a single hotspot, and
the optimal configuration derived for this hotspot by our scheme
is an RUU size of 16 and a fetch rate of 8 instructions. The par-
allelism of this application however appears to need a configura-
tion close to the default configuration we tested, since changing
the configuration drastically away from the default produces lit-
tle change in the energy consumption but significant decrease in
the IPC and power figures. Thus in mpeg2 the ALUs and execu-
tion units dominate the execution profile; changing the dynamic
scheduling in the processor does not save much energy. The same
is the case with other benchmarks like ijpeg and epic which show
only marginal savings in energy. However in the case of mpeg2,
since the entire 68-frame movie clip was decoded in about 72 mil-
lion cycles, we can safely conclude that run-time resource scaling
implemented in a real-world system running at say 500 MHz will
not bring about a noticeable performance hit during movie play-
back.

5.3. Dynamic Voltage Scaling

To test the dynamic voltage scaling scheme, we implemented
selective voltage scaling for the issue logic stage alone and ran the
gcc and go benchmarks. The saving in energy rose from 7% to
13.5% for gcc and from 7.5% to 16.5% for go with correspond-
ing reductions in average power. If other structures in the proces-
sor were also to incorporate dynamic voltage scaling, the savings
would increase.
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6. Conclusion

The techniques outlined in this paper for run-time profiling of
code and optimization of the processor configuration show good
promise for energy savings. Further extensions could be made to
our scheme. For instance, in our experiments we have coupled the
fetch width, decode width and issue width to the same value; there
may be more optimal ways of configuring the processor with dif-
ferent values for these parameters. Other resources which we have
not considered in our experiments may also lend themselves to
run-time scaling; for example, branch prediction tables, data and
instruction caches and TLBs. Selective traversal of possible con-
figurations could be done instead of exhaustive testing of all con-
figurations; in fact this will become a necessity when the parame-
ters under control increase in number. The performance monitor-
ing hardware could be used for more advanced power management
strategies as well; for example lack of usage of the floating point
units by integer applications could be detected and the power to
the FPU could be shut off entirely, providing more power savings.
Microarchitecture level scaling could be incorporated as a sepa-
rate state in ACPI-based power management, as shown in Figure
11. Overall, we believe that microarchitecture level resource scal-
ing and allocation can lead to a significant saving in power while
retaining reasonable performance levels.
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