
Testing TAPed Cores and Wrapped Cores With The Same Test Access
Mechanism�

Mounir Benabdenbiy Walid Maroufiz Meryem Marzouki
LIP6 Laboratory

Couloir 55-65, 4 Place Jussieu, 75252 Paris Cedex 05, France
Tel. (+33)1 44 27 39 67 - Fax. (+33)1 44 27 72 80

Mounir.Benabdenbi@lip6.fr Meryem.Marzouki@lip6.fr

Abstract

This paper describes a way of testing both wrapped cores
and TAPed cores within a System On a Chip (SoC) with the
same Test Access Mechanism (TAM). The TAM’s architec-
ture, which is dynamically reconfigurable, scalable and flex-
ible, is named CAS-BUS and have a central controller. All
the cores can be tested this way in the same session through
a modified Boundary Scan Test Access Port.

1 Introduction

Testing Systems on a Chip (SoCs) is one of the chal-
lenges of the new century. SoC test feature standards are
currently under development [1], such as core wrapper-
s (P1500 wrappers) and core test language (CTL). Given
the increasing density of integration in the new chips, it be-
comes harder to have access, for test purpose, to the core
I/Os because these cores are deeply embedded in the SoC.
Thus defining new Test Access Mechanisms (TAMs) for
SoCs becomes a common need. The TAM will not be s-
tandardized unlike the core wrapper or the test language.
Defining a test access mechanism is then left to the SoC
integrator depending on chip constraints.

A P1500 compliant reconfigurable TAM architecture
named CAS-BUS has been presented in [2]. This archi-
tecture is controlled through IEEE 1149.1 features [3] and
is both P1500 compliant (in its current status) at core level
and 1149.1 compliant at SoC level.

Some TAMs, like the CAS-BUS TAM, are integrated in
SoCs with wrapped cores, P1500 or proprietary wrappers
[4], [5], [6]. Some others are used for testing TAPed cores
[7], [8], [9]. But, to our knowledge, none of the existing

�This work has been partly supported by MEDEA-SMT Project
yCorresponding author
zNow with Nortel Networks, Ottawa

TAMs simultaneously deals with wrapped cores and TAPed
cores integrated in the same SoC. However, a system inte-
grator may need to use in a SoC some TAPed cores with
P1500 wrapped cores. These TAPed cores can be primarily
designed as stand-alone chips. In order to keep the time to
market of the SoC as short as possible, time cannot be spent
on redesigning each TAPed core giving away the boundary
scan features and replacing them with P1500 wrappers. On
the other hand, a TAPed core cannot simply be wrapped on
top of 1149.1 features, because of area overhead reasons as
well as problems with the hierarchical global test control,
which can lead to violations of the IEEE 1149.1 standard.

We present in this paper a way of testing SoCs includ-
ing both wrapped cores and TAPed cores with a unique
Test Access Mechanism. The CAS-BUS TAM, enhanced
for TAPed cores testing needs, keeps its capabilities. It re-
mains reconfigurable, scalable, flexible and compliant with
the P1500 and 1149.1 standards. After a brief reminder of
the architecture, the CAS-BUS TAM improvements will be
described. The control of the overall architecture, includ-
ing a modified boundary scan state machine, will then be
presented. Before concluding, some benefits of this archi-
tecture will be discussed.

2 The CAS-BUS TAM

2.1 The CAS-BUS TAM architecture

The CAS-BUS (figure 2) is a TAM which main function
is to provide access to embedded cores whatever the wrap-
per is. This TAM is made up of two main elements:

- a bus consisting of N wires,
- a Core Access Switch (CAS) (figure 1)
Each CAS selects from the N wires of the bus (ei) the P

ones that will be applied to the core wrapper inputs (o i). It
also connects the P outputs of the wrapper (i i) to the CAS
outputs (si). Unselected inputs (ei) are bypassed to the out-



c0 c1 ck

SWITCH N / P

1

0

SI SO

P1500 WRAPPER

Control

s0
s1

sn-2
sn-1

config
1

0

tck

update
config

config

cf

cf

e0
e1

en-1
en-2

o0 o1 op-1 i0 i1 ip-1

CAS Instruction Register (CIR)

Wrapper Instruction Register (WIR)

cf

PP

IP CORE

Figure 1. CAS architecture

puts (si). The CAS is composed of a Switch and a CAS In-
struction Register (CIR). It is controlled by several signals.
Signal cf can connect the CIR to the Wrapper Instruction
Register (WIR). Signals ci control the Switch.

Controlled by the CIR, the Switch is in charge of rout-
ing the test stimuli and the test responses to/from the core
wrapper. Two kinds of Switch implementation are possible:
the Switch can be made up of N decoders (one per input
wire) and some logic gates, but it can also be implemented
with only one decoder and some logic gates. The Switch
area and the length of the word control are different for the
two implementations.

The decoder controls the multiplexing of the N /P I/Os.
By selecting P wires among the N ones existing at the
Switch inputs, the decoder must be able to address all the
possible N /P combinations.

The number of combinations, as well as the Switch area,
obviously depend on N and P values and on the chosen
implementation. Results obtained for different values of N
and P can be found in [3] and are presented in table 1.

This CAS-BUS TAM architecture is independent from
any industrial proprietary SoC architecture. It can be used
with any kind of wrappers and thus gives the SoC integrator
more freedom for designing a SoC test architecture. The
CAS-BUS is scalable, flexible and reconfigurable. More
details on this architecture can be found in [2] [3].

2.2 The SoC Test control

The control of this TAM architecture must be simple
without degrading the TAM advantages. Two options have
been considered: defining an ad hoc test control mechanis-
m or reusing a standard control architecture. The decision
to reuse the IEEE 1149.1 Test Access Port (TAP) controller
naturally came to manage our TAM functionalities. This

solution fits well with our SoC test architecture, since it al-
lows TAM control, wrapper control and usual Boundary S-
can functionalities at the same time. The test control must
allow to manage three mandatory test steps: core wrapper
and CAS configuration, test vector application and test re-
sponse analysis.

The normal Boundary Scan architecture has been ex-
tended with a CAS-Wrapper Coupling Register (CWCR),
as shown in figure 2. The CWCR width is equal to the num-
ber of CASes. Each bit of this register corresponds to the
value of the configuration signal cf for each CAS. In our
modified TAP architecture, TDI and TDO is a bus. This
TDI /TDO bus width may vary from 1 (normal Boundary
Scan architecture) to N (width of the CAS bus).

Three new instructions are needed to control the three
mandatory test steps. They have been defined as Boundary
Scan optional instructions.

- the CAS-Wrapper COUPLING instruction defines
which CIR/WIR pairs must be connected in order to config-
ure at the same time a core wrapper and the corresponding
CAS. TDI1 and TDO1 are connected to the CWCR. Con-
figuration values are shifted in the CWCR to indicate which
WIRs will be connected to the CIRs.

- the CAS CONFIG instruction configures all the CAS-
es, together with the wrappers selected with the instruc-
tion CAS-Wrapper COUPLING. The config signals pro-
vide access to the CIR of each CAS. TDI1 and TDO1 are
respectively connected to first input of the first CAS and to
first output of the last one. The CIR and the WIR are then
loaded with the appropriate values, putting each CAS in the
correct scheme and each wrapper in the chosen mode.

- the CAS TEST instruction, when loaded, allows the
test vectors to be applied to the different cores and the test
stimuli to be propagated to the SoC test outputs. All TDIs
and TDOs are connected to the I/Os of the CAS-BUS. The
set of test vectors can be concurrently shifted in to the IP
cores inputs and the responses shifted out from the IP out-
puts.

As already said, the TDI /TDO bus width may vary
from 1 to N . This width can be chosen by the SoC in-
tegrator, depending on SoC pins availability. In case the
TDI /TDO bus width should remain equal to one, a com-
pression/expansion mechanism has been developed to solve
the SoC I/O bandwidth problem [10], [11].

Using the IEEE 1149.1 control part with scalable
TDI /TDO lets the CAS-BUS TAM keep its main benefits
and adds to it flexibility.

The global architecture is also dynamically reconfig-
urable. By correctly configuring the CASes, the test pro-
grammer can choose during each test session which core s-
can chains must be serialized in order to optimize their total
length. The goal is to have for each of the N wires the same
test length. If not, when testing the SoC, don’t care stimuli

2



�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

B
S

I
R

�
�
�
�

�
�
�
�

CORE 

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

CAS CAS 

TDI3
TDI2

TDI4

TDI1

TDO1

TDO3
TDO2

TDO4

DE
CO
DE

LO
GI
C

CORE 

C

R

C

W

Boundary Scan Register

TAP

CIR

CORE 

CAS 

CORE CORE 

TCK

TMS

TAP

SWITCH SWITCH

TDI1

TDO1 TMS2

TAP_configure
Config Config

TDI 2..N

TDO 2..N

CIR

Trst

TAP_configure

New
T
A
P

TDI TDO TDI TDO

N

TAPCAS

TAP_configure

TAP_configure TAP_configure

Figure 2. SoC Test architecture for TAPed and wrapped cores

must be applied at TDI inputs to complete the balance be-
tween scan chain lengths. Another advantage is that WIRs
whose mode remains unchanged between two test config-
urations can be bypassed during the CAS CONFIG phase.
Using this reconfigurability aspect, test time can be saved.

The CAS-BUS architecture is simple, allows trade-off
and provides a complete solution for testing SoCs. Its ad-
vantages over other approaches have been discussed in [3].

3 CAS-BUS architecture with TAPed cores

The test architecture presented above can be used when
the cores within the SoC are wrapped cores. Since TAPed
cores are not wrapped cores, they can only be tested through
their I/Os (TMS, TRST , TDI , TDO and TCK). Unlike
wrapped cores, these cores include a TAP controller. Ob-
viously this needs to define a hierarchical test architecture
able to drive these TAP controllers. Moreover, configur-
ing the TAPed cores in the chosen mode cannot be done in
the same way as wrapped cores. Direct access to the wrap-
per shift/update instruction register (WIR) can be enabled,
while the instruction register within the TAPed core can on-
ly be accessed through the TAP finite state machine. Thus
TAPed cores and wrapped cores cannot be configured seri-
ally in the same test step.

Our goal being to test both wrapped and TAPed cores
within the same test step and with the same TAM, some im-
provements must be made on the CAS-BUS architecture in
order to solve the problems induced by the TAP controllers.

The two main improvements consist of defining on the

one hand a special Core Access Switch for TAPed cores
and of modifying on the other hand the central TAP con-
troller of the CAS-BUS architecture in order to manage the
hierarchical aspect of the global control.

3.1 Core Access Switch for TAPed cores

Since TAPed cores cannot be serially configured with
the wrappers, a new Boundary Scan instruction named
TAP CONFIG has been added, which enables the config-
uration of the TAPed Cores. The configuration of the wrap-
pers is still made by the CAS CONFIG instruction. Fig-
ure 2 shows a SoC example containing both kind of cores.
This TAP CONFIG instruction serially connects CASes of
TAPed Cores (TAPCAS) one to the other and connects each
TAPCAS to its associated core. It also connects TDI1 and
TDO1 respectively to the first and the last TAPCAS.

The TAPCAS is slightly different from the normal CAS.
The CIR and the Switch remain the same, the tristates dis-
appear and multiplexers are added. However, two kinds of
TAPCAS architectures are needed, depending on the place-
ment of the TAPed core within the SoC. In the global chain-
ing of all the CASes, if the TAPCAS follows a CAS then the
TAPCAS must have a multiplexer at its inputs. In the other
cases this multiplexer is not needed.

Obviously, for the TAPCAS, P is equal to 1: the TAP-
CAS is connected to TDI /TDO pair of the TAPed core.
Depending on the boundary scan instruction, test data at
TAPCAS inputs can be routed differently. The different
multiplexers will route these data to:

3



1 or RESET2
RESET2

0 & RTI2 0

IN
IT

E
X

IT

1

ST
A

T
E

 1

or RESET

Sets to 1 the signal TAP_exit

0

First part

0 & TAP_configure

0 & TAP_exit 0 & TAP_configure

Second part Sets to 1 the signal RTI2

Sets to 1 the signal RESET2

TMS2

TMS

TAP_exit
TMS_enable

(a) The modified State Machine (c) Added logic to generate TMS2(b) The Counter

1 1 1

1 1

1

1

1 1

1

1

1 1

1 1

0

0

0

0

0 0

0

0

0

0

0 0

0

0

Capture DR

Exit1 DR

Shift DR

Pause DR

Exit2 DR

Update DR

Test Logic Reset

Run Test Idle Select DR Scan Select IR Scan

Capture IR

Shift IR

Exit1 IR

Pause IR

Exit2 IR

Update IR

1

Capture DR 2

Shift DR 2

Exit1 DR 2

Pause DR 2

Exit2 DR 2

Update DR 2

Capture IR 2

Shift IR 2

Exit1 IR 2

Pause IR 2

Exit2 IR 2

Update IR 2

1 1 1

1 1

1

1

1 1

1

1

1 1

1 1

0

0

0

0

0 0

0

0

0

0

0 0

0 0

0

Test Logic Reset 2

Run Test Idle 20

1

Select DR Scan 2 Select IR Scan 2

Figure 3. SoC Test architecture controller

- the TAPCAS instruction register (CIR). This is done
with the CAS CONFIG instruction. The switch is config-
ured like all the other switches.

- the internal instruction registers of the TAPed cores.
In that case the TAP CONFIG instruction must be loaded.
A configuration word is shifted in the internal instruction
registers of the TAPed cores, these registers being daisy
chained. The data skip the Switch in the TAPCAS and are
directly applied to the TDI input of the TAPed core. The
different operations like shifting, updating, etc., are execut-
ed thanks to the TMS2 signal that drives the internal TAP
controller. This signal TMS2, described in the next section,
is generated from the central TAP controller. Once the in-
ternal instruction registers are updated, the TAPed cores are
then in the correct test mode (bypass, INTEST, etc.) and
ready for test vectors application.

- the internal data registers of the TAPed cores. When
the CAS TEST instruction is loaded, test vectors are routed
from one of the N wires of the TAPCAS inputs to the TDI
input, through the Switch. The test vectors are shifted in the
internal test data registers (boundary scan register, bypass
register...). The responses to the stimuli are then shifted
out to the next core or to the SoC outputs. Here also the
shift/update operations are controlled through TMS2.

3.2 The New Central TAP Controller (CFSM)

The new central TAP controller (figure 3) is made up of a
1149.1 like TAP Finite State Machine (FSM) and a counter.

This Central FSM (CFSM) is in charge of controlling the
global architecture as a classical boundary scan feature but

must also drive the different Internal Finite State Machines
(IFSM) of the TAPed cores. To do that, it was decided to
add to the usual 16 states of a TAP, a second set of 16 new
states corresponding to the states of the TAPed cores. Ex-
cept Test logic 2 and Run Test Idle 2, the added states do not
drive any signal and only are transition states. Depending
on the instruction loaded, TMS will control the CFSM and
the IFSMs or only the CFSM.

The test instructions to be loaded in the BS IR should
respect the following chronological sequence:

� CAS WRAPPER COUPLING to define which CIRs
and WIRs will be connected during the configuration
step. This instruction operates only on CASes and
wrapped cores.

� CAS CONFIG to configure the CASes and the TAP-
CASes. The routing scheme of the overall Switches is
defined.

� TAP CONFIG to configure the test mode of the
TAPed cores.

� CAS TEST to apply test stimuli and shift out the test
responses. The TAPed cores and the wrapped cores are
tested concurrently through the same bus.

- TAP CONFIG
This instruction is needed to shift values in the instruc-

tion registers of the TAPed cores.
When this instruction is loaded and updated, the signal

TAP configure is set to one. Leaving the Run Test Idle state
(figure 3 (a)) we enter then in the second part of the CFS-
M in the Test Logic Reset 2 state. This state sets to 1 the

4



RESET2 signal that sets the counter (figure 3 (b)) in the s-
tate INIT. The counter is initialized, the signal TAP exit is
set to 0. TMS2 (figure 3 (c)) will then have the same value
as TMS. To synchronize the CFSM and the IFSM, which
states must be equivalent to those of the second part of the
CFSM, TMS must be held at 1 during five cycles to reset
the IFSM.

When entering in the Run Test Idle 2 state, the signal
RTI2 is set to 1, Reset2 is set to 0 and if TMS is held at 0
during two cycles, the counter is put in the state EXIT. The
TAP exit signal is set to 1. This sets TMS2 to 0 and the
IFSMs are no more controlled by TMS. The IFSMs are and
stay in the Run Test Idle state. The counter is used not only
to enable and disable IFSMs control but also to leave the
second part of the CFSM.

If TMS is not held at 0 during two cycles, when the
CFSM is in the Run Test Idle 2 state, the counter stays in
the INIT state. The IFSMs are controlled by TMS and their
current state is equivalent to the current state of the second
part of the CFSM. The instruction words can be shifted in
the TAPed core as they would be if placed in a classical
boundary scan board.

- CAS TEST
This instruction is used to shift in, apply and shift out

test vectors to and from all the cores within the SoC. With
the right configuration of the CASes and the TAPCASes, all
the test data registers are connected as multiple scan chain-
s. Internal test data registers of the TAPed cores (boundary
scan or bypass registers) can be considered as internal s-
can chains of the P1500 wrapped cores. When updated this
CAS TEST instruction sets to 1 the signal TMS enable and
sets to 0 the signal TAP configure. TMS controls the IFSMs
through TMS2 (figure 3 (c)). During this test step the cur-
rent state of the CFSM cannot be one of those of the second
part.

When leaving the Update IR state (figure 3 (a)), the nex-
t state must be Run Test Idle. The configuration step of
the TAPed cores having left the IFSMs in the Run Test I-
dle state, the synchronization of the CFSM and the IFSMs
is done thanks to this state. By this way, the current state
of all the finite state machines of the SoC being exactly the
same, shifting and applying test vectors within wrapped and
TAPed cores can be made at the same time.

The IFSMs remains controlled by the CFSM until a new
instruction is loaded in the Boundary Scan Instruction Reg-
ister (BS IR) of the SoC. This new instruction will set to 0
the signal TMS enable. This is equivalent to setting TM-
S2 to 0 and the IFSMs are left in the state Run Test Idle.
However, while shifting this new instruction in the BS IR,
unknown values are concurrently shifted in the internal in-
struction registers of the TAPed cores. This is not impor-
tant because the test responses have already been shifted

out from the internal test data registers and because the next
test session will reset these instruction registers. The nex-
t TAP configuration step will load these registers with the
right values.

4 Benefits and Experimental Results

The main benefit of this new CAS-BUS architecture is
that TAPed cores do not need to be tested apart from the
other wrapped cores, using added test resources and hence
increasing the test area overhead. TAPed cores can be tested
with the CAS-BUS TAM taking advantage of the possible
optimizations provided by this TAM. Test time can still be
optimized through correct configuration of all CASes and
TAPCASes.

With this architecture it is also possible to test only
TAPed cores with the TAP CONFIG instruction. The cores
can be tested as stand-alone chips on a boundary scan board,
controlled by the CFSM, because direct test access is pro-
vided to their I/Os, skipping the wrapped cores. Howev-
er BIST testing can not be processed within these TAPed
cores. During the TAP CONFIG step the second part of
the CFSM is active. If the RUN BIST instruction is loaded
in the TAPed core, to execute the self test, the current state
must be Run Test Idle 2 during many cycles, with TMS held
at 0. With this CFSM, this cannot be done. In that case, af-
ter TMS is held at 0 during two cycles, the next state is Run
Test Idle, in the first part of the CFSM, and then the IFSMs
stop being controlled by the CFSM. If really needed, a so-
lution could be to add a register that would be concurrently
loaded with the internal instruction registers of the TAPed
cores. If the RUN BIST instruction is detected in this new
register, the current state remains in the Run test Idle 2 state
without exiting to the main part of the CFSM.

As for the previous CAS-BUS architecture, interconnec-
t testing can be performed, between wrapped cores and
TAPed cores, assuming that the EXTEST instructions are
loaded.

The main features of the new TAM have been synthe-
sized and simulated using the Synopsys tools. Some results
are presented in table 1. CAS (a) corresponds to a CAS
which Switch is implemented by N decoders and CAS (b)
a CAS with a Switch including only one decoder. The CAS
Instruction Register width (k) and the area in terms of tran-
sistors (tr) are presented. A trade-off must be made be-
tween CAS (a) and CAS (b) depending on the area con-
straints and the scan cycles overhead needed for CAS con-
figuration. For high values of N and P (great number of
combinations) CAS (b) cannot be used because the area
grows quickly with N and P . However TAPCASes (b) are
more interesting than TAPCASes (a) since they are smaller
and need fewer bits control. The area overhead induced by
this CAS-BUS architecture is not significant since the TAP-

5



CASes are very small and the new TAP controller is imple-
mented with 1264 transistors. However configuring TAPed
cores, in comparison with wrapped cores, needs 27 extra s-
can cycles (loading the TAP CONFIG instruction, entering
and leaving the second part of the central controller).

This new CAS-BUS TAM architecture does not degrade
the characteristics of the previous architecture but offers a
solution for testing SoCs with TAPed cores. If the SoC does
not have any TAPed cores included, the integrator can use
the previous CAS-BUS architecture.

CAS (a) CAS (b) TAPCAS (a) TAPCAS (b)
N P k tr k tr k tr k tr
5 1 5 696 3 626 5 684 3 614
5 3 10 1.224 6 2.026 – – – –
5 4 15 1.636 7 2.634 – – – –

8 1 8 1.084 4 912 8 1.072 4 900
8 3 16 1.952 9 7.286 – – – –
8 4 24 2.548 11 39.990 – – – –
8 6 24 2.948 15 >100.000 – – – –

10 1 10 1.338 4 1.044 10 1.326 4 1.032
10 4 30 3.236 13 >100.000 – – – –

Table 1. CAS synthesis results

5 Conclusion

The architecture presented in this paper offers a com-
plete solution for testing both wrapped and TAPed cores
within a SoC, concurrently if needed. With the same test
access mechanism, wrapped and TAPed cores can be tested,
thanks to a hierarchical test control. In order to manage the
TAPed cores testing, new CASes have been designed and
the central TAP controller has been modified. This upgrad-
ed CAS-BUS TAM remains flexible, scalable and dynami-
cally reconfigurable. It allows multiple trade-off regarding
the choice of Nmax, the number of TDI /TDO couples,
the kinds of CASes implementation and the CASes config-
urations. The area overhead induced by the TAPed core test-
ing is not significant. The control of the global architecture
is easy through a simple test access port. The architecture is
both compatible with the direction of P1500 (as published
so far) at core level and 1149.1 compliant at SoC level. The
SoC integrator has the choice of using this architecture or
the previous CAS-BUS TAM depending on the presence of
TAPed cores in its SoC.

References

[1] E.J. Marinissen, Y. Zorian, R. Kapur, T.Taylor, and
L.Whetsel. Towards a standard for embedded core
test: An example. In IEEE International Test Confer-
ence (ITC), pages 616–627, Atlantic City, NJ, Septem-
ber 1999.

[2] M. Benabdenbi, W. Maroufi, and M. Marzouki. Cas-
bus: A scalable and reconfigurable test acces mecha-
nism for systems on a chip. In IEEE Design Automa-
tion and Test in Europe (DATE), pages 141–145, Paris,
France, March 2000.

[3] W. Maroufi, M. Benabdenbi, and M. Marzouki. Con-
trolling the cas-bus tam with ieee 1149.1 tap: A solu-
tion for systems on a chip testing. In 4th IEEE Inter-
national Workshop on Testing Embedded Core-Based
System-Chips, pages 4.5.1–4.5.6, Montreal, Quebec,
Canada, May 2000.

[4] E. J. Marinissen and al. A structured and scal-
able mechanism for test access to embedded reusable
cores. In International Test Conference, Washington,
DC, October 1998.

[5] L. Whetsel. Addressable test ports an approach to
testing embedded cores. In IEEE International Test
Conference (ITC), pages 1055–1064, Atlantic City, N-
J, September 1999.

[6] P. Varma and S. Bhatia. A structured test re-use
methodology for core-based system chips. In Inter-
national Test Conference, Washington, DC, October
1998.

[7] D. Bhattacharya. Hierarchical test acces architecture
for embedded cores in an integrated circuit. In IEEE
VLSI Test Symposium (VTS), pages 8–14, Dana Point,
CA, April 1998.

[8] B. Dervisoglu and J.Swamy. A novel approach for
designing a hierarchical test access controller for em-
bedded core designs in an soc environment. In 4th
IEEE International Workshop on Testing Embedded
Core-Based System-Chips, pages 1.4.1–1.4.7, Montre-
al, Quebec, Canada, May 2000.

[9] L. Whetsel. An ieee 1149.1 based test acces architec-
ture for ics with embedded cores. In IEEE Internation-
al Test Conference (ITC), pages 69–78, Washington,
DC, November 1997.

[10] W. Maroufi. A new compression/decompression
method for non correlated test patterns: Application
to test pins expansion. In IEEE European Test Work-
shop (ETW), Cascais, Portugal, May 2000.

[11] W. Maroufi, M. Benabdenbi, and M. Marzouki. Solv-
ing the i/o bandwith problem in system on a chip test-
ing. In XIII Symposium on Integrated Circuits and
System design (SBCCI2000), Manaus, Brazil, Septem-
ber 2000.

6


	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


