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Abstract plicit data transfers. This paper addresses these issues in the context of
SPM and array-based applications which are dominant in video and im-

Optimizations aimed at improving the efficiency of on-chip memoriesge processing domains. The proposed compilation framework has been
are extremely important. We propose a compiler-controlled dynantiested using a suite of five applications. Experimental data and compar-
on-chip scratch-pad memory (SPM) management framework that ugssh results with previous work show that our approach is very effective
both loop and data transformations. Experimental results obtained insreducing the activity between on-chip SPM and off-chip memory. In
ing a generic cost model indicate significant reductions in data transfeneral, such reductions can lead to large savings in energy consump-
activity between SPM and off-chip memory. tion[8] and effective data access latency[14].

The remainder of this paper is organized as follows. Section 2 intro-
duces our memory system architecture and explains the programming
model. Section 3 presents our approach to the dynamic management of
Embedded systems are often designed system-on-chigSoC) archi- data transfers between the off-chip memory and the SPM. The perfor-
tecture to cater to the demands of small form factors. An importaf@nce nl_meers are given in Section 4. Section 5 discusses related work,
characteristic of a SoC design process is the design of the memory &l Section 6 concludes the paper.
figuration and the management of the flow of data. While it is very
important to select a correct memory configuration, it might be equally Memory Architecture and Execution Model
important to choreograph the data flow between on-chip and off-chip
memories in an optimal manner. Many SoC applications have signifiur data memoryarchitecture consists of three components: a cache
cant data processing requirements. In particular, many codes from ithemory, a scratch-pad memory (SPM), and a main memory. The cache
video processing and signal processing domains manipulate large arragsnory and the SPM are on-chip SRAMs (with the same access la-
of signals using multi-level nested loops. An important issue then tisncy), and the main memory can be assumed to be an off-chip DRAM
maintaining good data locality; that is, satisfying a majority of data agwith a higher access latency). As shown in Figure 1, the address space
cesses from fast on-chip memories instead of slow off-chip DRAMSs. is divided between off-chip memory and on-chip SPM, the former of

Unfortunately, a simple on-chip cache hierarchy may not be vewhich is accessed through the on-chip cache.
suitable for an embedded system where meeting hard real-time con-Figure 1 also shows the necessary control signals to activate either
straints is critical[7]. Such a constraint, in most cases, requires p®PM or cache depending on the issued memory address. The same data
grammers to determine exactly how much processing time a given cegel address buses are fed into cache as well as the SPM. In this work,
segment will take. Existence of a cache memory makes it nearly ime are interested in managing the data transfers between the off-chip
possible to predict execution time accurately. Not being able to predisémory and the on-chip SPMin cases where total data size is larger than
the execution time of a given piece of code can also adversely affect M capacity. We assume the existence of a higher level mechanism
scope and effectiveness of software optimizations. that decides which data accesses should bypass the SPM and be accessed

Consequently, systems that contaspéiware managed scratch-padthrough cache (if it exists). Therefore, in the rest of the paper, we drop
memory(called SPM henceforth) can be of great value as, in such syhe cache from consideration. It is assumed that the scalar variables are
tems, the software is in full control of the flow of data between orstored in registers, so they do not interfere with array references.
chip and off-chip memory, so it is relatively easy to predict data access In order to generate optimized code for a memory architecture that
times. Previous work on SPM[10] investigatestatic data manage- contains an SPM, in addition to the conventional optimization steps, the
ment scheme in which program data structures are partitioned betweempiler also has techedule explicit data transfetsetween the off-
the off-chip memory and the SPM, and this data partitioning is valichip memory and the SPM. To accomplish this, the compiler needs to
throughout the executiorin this scheme, the scalar variables are storedke into account the data layout in the off-chip memory, the applica-
inthe SPM, and the large data arrays that do not fit in the SPM are stofieth access pattern, and the available memory space in the SRé.
in the off-chip memory (and accessed through on-chip cache). Eacpeftions of arrays required by the current computation are fetched from
the remaining arrays is stored in either SPM or off-chip memory so @ off-chip memory to the SPNIhroughout this paper, these portions
to minimize the conflict misses in the on-chip cache. are calleddata tilesor simplytiles. The data tiles brought into the SPM

While several applications benefit from this static partitioning agshould also have a high degree of reuse and should fit in the SPM. Note
proach, in many codes, we may need to perform dynamic data transteest the SPM space should be divided suitably among the data tiles of
between off-chip memory and on-chip SPM during the course of edifferent arrays. Thus, during the course of execution, a number of data
ecution. Important issues in such a dynamic scheme are determiniitgs belonging to a number of different arrays are brought into the SPM,
memory layouts and best loop access patterns, partitioning the availahtenew values for these data tiles are computed, and the tiles are stored
SPM space between competing arrays, and restructuring the code fortgek into appropriate locations in off-chip memory, if necessary.

As an example, let us consider the nestin Figure 3(i). A key aspect of
the compilation process is the use of a tiling-like transformation. When
applied to a loop, tiling replaces it (in the most general case) with two
loops: atiling loop and arelement loofiL4]. The loop nest in Figure 3(i)
can be translated by the compiler into the code shown in Figure 3(ii); in
this translated code, the outer lodps, jt , andkt are the tiling loops,
and the inner loops ,j ,k’' are the element loops.

The explicit data transfer callegad_tile andwrite _tile, are inserted
at tile boundaries (outside the element loops). The transferezailtile

1 Introduction
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practice.
| off-chip DRAM | e Code Modifications:After deciding a suitable partitioning of the
SPM space between arrays, the compiler needs to modify the code ac-
F cordingly.
control
[on-eip cacheJ<"={on-rip sow | 3.2 Cost Model

We assume generic cost modethich can be made to work with several
performance and/or energy metrics. Each data transfer from off-chip
SPM_hit memory to the SPM or vice versa is assumed to incur a fstatup
costin addition to a cost proportional to the amount of data requested.
) ) o The startup cost for a data access (read or writg)is assumed to in-
Figure 1:System architecture and address space partitioning. clude all the costs due to bookkeeping/handshaking activity between the
SPM and the off-chip memory and the software overhead involved (e.g.,
the runtime call activation to initiate the transfer). Let the cost of trans-
U 1 _ ferring a single data item (e.g., an array element) between the off-chip
N O to memory and the SPM be Thus, the cost of transferringconsecu-
- _J \ tive elementbetween the off-chip memory and the SPM can roughly be
modeled ag” = C + ¢t. We refer to this cost amemory access cgst
or simply access costNote that the per item transfer cost does not in-
‘ SPM clude the cost incurred in accessing the off-chip memory circuitry itself.
. I 0 While this model is highly simplified, it is useful for our purpose.
,,,,,,,,,,,, Sa1 As an example, let us consider the matrix multiply code given in
Figure 3(i). We assume that the SPM has a memory of/&fzalocated
0 st for a given computation. Let us also assume that (for simplicity) each
array is ofn x n, wheren is also assumed to be the number of iterations
of all the loops. We assume thdtx n < M < n? for an integer
d. In cases where > M, we can apply the technique in this paper
recursively (which, in a sense, corresponds to multi-level tiling).
Ulitit+ S,-1,jtijt+ Su-1] — U0: S.-1,0: S,-1] copies Suppose for now that the comp_iler works on square tiles of siz_e
the elements of the array that satisfy the constrainf(it < i < Sa X Sa @s those shown Figure 4(i), and the default array Ia2yout IS
itV\T-1 ) and ft <] <j+T-1 })toarayl’[0: S,-1, 0: S,-1] _row-n;ajog. The access cost of a tile of si&, x S, is Sa_C + S;t,
It should be noted that while arrayresides in off-chip memory, array @1dn"/Sa of these data tiles are read (for arfdyassuming thas,

U’ resides in the SPM. In other wordgad.tile indicates an explicit dividesn evenly). Consequently, the totaad access cosor arrayU

H 2 2 2
copy operation from off-chip memory to SPM as depicted in Figure £ Tv = (n°/52)[SaC + S.t]. The access costs for the other arrays can

The implementation of therite _tile call is similar except that the direc- P& computed similarly. Therefore, the overall access cost for the nest
tion of the transfer is reversed. For the sake of clarity, we will write theghoWn in Figure 3(ii)) 5,) consideringall three arraysand theread
compiler-translated version as shown in Figure 3(iii), where all elemeftivity alonecan be calculated as

cache_hit

jt jt+Sg1

Figure 2:Reading ar, x S, data tile from off-chip memory to SPM

loops are omitted. Each reference is replaced by its corresponding sub- 303 33
matrix version (in terms of the original array). For example, a reference T, =Ty+Tv+Tw = > C + t
such asJ'[i'][j’] is replaced byJ[it:it+ Sa-1,jt:jt+ Sa-1] Sa Sa

where S, is the size (in array elements) of a dimension of a data ti|?nder the memory constraiBS2 < M. Here,T{, Ty, andTiydenote
(calledtile sizeor blocking facto}. the read access costs for arraysZ andW respectively. Assuming that
the entire available SPM capacity/() will be used for this computation

3 Management of Data Transfers (i.e.,3S2 = M), this last formulation above can be re-written in terms
. of M as - -

3.1 Overview TS = ]\;30 i n_,

Efficient use of an SPM depends critically on an important factax- / M/3

imizing the reuse of data portions (tiles) brought from off-chip memory  This straightforward translation can be improved substantially by be-
This is crucial because an item sitting in the SPM without reuse not orihg more careful when Choosing memory |ayoutsv |00p Ordering‘ and
occupies space that could have been used for some other array but @8 tile allocations. First, we observe from Figure 3(iii) that it is not
wastes bandwidth (as it needs to be brought over the interconnect fgcessary to perform dlle_read andtile_write activities inside thét
tween SPM and off-chip memory). Our objective can be achieved [B6p. In particular, data tile of arrdycan be read (and written) between
(i) maximizing the number of accesses to the data in the SPM, and ffip tiling loopsjt andkt . Second, reading square tiles does not allow
minimizing the number of data transfers to and from off-chip memornihe compiler to take advantage of the layout of data in off-chip memory.
Our approach follows three complementary steps: For example, the arrayis stored in row-major in off-chip memory and

e Memory Layout Detection and Loop Transformatidfieximizing  instead of reading a square-chunk, reading a row-chunk should result
data reuse and minimizing the number of explicit data transfers betwggfewer transfer calls in the code. Figure 3(iv) shows the code corre-
off-chip memory and the SPM requires a good combination of loop agponding to this scenario. Note that since the compiler reads data tiles of
cess pattern and off-chip memory layout. sizesS, x n andn x Sy, for arraysV andW respectively, the tiling loop
e Memory Space PartitioningSince the on-chip SPM space has &t does not appear in Figure 3(iv). The corresponding tile allocation
limited capacity, its management is very important. A crucial issue hgeeshown in Figure 4(ii). During the execution, tiles of siZ&sx Sy,
is to determine how to partition the available SPM space dynamically x n, andn x S, are accessed for arraysV, andW respectively. In
between competing arrays. We show that a simple strategy that dividgiition to determining the tile allocation and loop order, our approach
the available SPM space evenly between arrays may not work wellgBsigns memory layouts to arrays. In the case of Figure 4(ii), it assigns
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for(i=0si<n;i++)
for(j=0sj<n;j++)
for(k=0;k<n;k++)
UILN1 = ULEG] + VEIK] * WIK][j]

(i)
for(it=0;it<n;it=it+S,)
for(jt=0;jt<n;jt=jt+S,)
for(kt=0;kt<n;kt=kt+S,)
{
read_tile Ulit:it+S5,-1,jt:;jt+S,-1] = U’[0:5,-1,0:5,-1]
read_tile V[it:it+S,-1,keke+S,-11 2 V'[0:S,-1,0:5,-1]
read_tile W[ktkt+S,-1,jt;jt+S,-1] > W’[0:5,-1,0:5,-1]
for(i’=0;1"<S ;1" ++)
for(j°=0;j"<S,;j"++)
for(k’=0;k’<S ;K ++)
U 1=UF1G 1+ VKT * WK'T[’]
write_tile U[0:S,-1,0:5,-1] 2 Ulitit+S,-1,jt:jt+S,-1]
}

(iii)
for(it=0;it<n;it=it+S,)
for(jt=0sjt<rm;jt=jt+S,)
for(kt=0;kt<n;kt=kt+S,)
{

read_tile Ulit:it+S,-1,jt:;jt+S,-1]

read_tile V[itit+S,-1,kt:kt+S,-1]

read_tile W[ktkt+S,-1,jt:jt+S,-1]

Ulitit+S,-1,jtjt+S,-1] = Ulitit+S,- 1 jt:je+S,-1]
+ VI[itit+S,- 1 ktkt+S,-1] * Wktkt+S,-1,jt:jt+S,-1]

write_tile Ulit:it+S,-1,jt:jt+S,,-1]

@v)

for(it=0;it<n;it=it+S;)

read_tile V[itit+S,-1,1:1]
for(jt=0;jt<n;jt=jt+Sy)
{

read_tile Ulitit+S,-1,jtji+S,-1]
read_tile W[1:n,jt:jt+S,-1]
Ulit:it+S,- 1,jt:jt+S,- 1] = Ulitit+S,-1,jt:jt+S,-1]
+ V[itit+S,-1,1:2] * W[Ln,jt;je+S,-1]
write_tile Ulitit+S,-1,jt;jt+S,-1]
}

)
for(jt=0;jt<n;jt=jt+S.)

read_tile Ull:n,jt;jt+S,-1]
for(kt=0;kt<n;ki=kt+S,.)
{
read_tile V[1:n2 ktkt+S.-1]
read_tile Wkt:kt+S,-1,jt;jt+S.-1]
Ull:n,jtjt+S.-1]1 = Ul Lin,jtjt+S.-1]
+ V[L:nkt:kt+S.-1] * Wlktkt+S,-1,jt:;jt+S.-1]
}
write_tile Ul 1:n,jt;jt+S,-1]

}

SPM) using square data tiles for all arrays. (iv-v) Optimized codes.
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Figure 4:Different tile allocations in the SPM for the matrix multiply code.

a row-major layout foV and a column-major layout foN The layout

of arrayU can be either row-major or column-major (as we read square
tiles for this array). The overatiead access cosif this loop order,
layout assignment, and tile allocation scheme is:

2

2

n > n n

G (SoC + Sit) + S, (SyC + nSpt) + o (SyC + nSpt)

—_— Y —--(—
u v W

b
To'u =

= ( 2n” +n>C+ <2n2+ " >t
vn24+ M —n vn2+M—n

under the assumption k.S, + S7 = M, and at most array elements
can be read with a singlead_tile call from within the code. This as-
sumption is just for making the presentation clear. Actually, if we can
read/write more than elements in a single call, the number of transfer
operations in the code can be reduced further. It should also be noted
that a single (data transfer) call in the code can correspond to multi-
ple transfer activities at the hardware level (depending on the bandwidth
between the off-chip memory and the SPM). A reduction in the num-
ber of transfer calls in the code also leads, in general, to a reduction in
hardware-level transfer operations. Note that althofglis different
from S,, the total memory (SPM) spac@/) used in both cases is the
same Whenn = 128 and M = 8,192 (for illustrative purposes only),
it can be shown that, as comparedif, T, improves the coefficient of
C by 45%, and the coefficient a¢fby 12.2%. The memory access cost
of the code given in Figure 3(v) (and its corresponding tile allocation
depicted in Figure 4(iii)) is very similar to that in Figure 3(iv). In this
case however, the compiler selects a different loop order, and assigns
column-major memory layouts for bothandV.

3.3 Desired Array Reference Forms

We want each reference to am-dimensionakow-majorarrayU to be
in either of the following two forms, wherg andg; are subscript func-
tions:

e U f1][f2]...[fm]: Inthis form, f,, is an affine function of all loop
indices with a coefficient of for the innermost loop index whereds

! Similar calculations can be done for write costs as well.



INPUT: A nested loop and the access matrices for the references in the nest
OUTPUT: A loop transformation matrix 7and a data transformation matrix M ; for cach
array {

For an example application of the algorithm of Figure 5, consider
once more the matrix multiply code in Figure 3(i). The access matrices

for arraysy, V, andWare
1: determine the access matrix Z;for each array i (1 <i<s)

2: for each of the 2" alternatives do L |: 1 0 0 :| L. = [ 1 0 0 :I_E _ |: 0 0 1 ]
2.1: determine target 'y, L'3,...., L’g v 0O 1 0 [~y — 0o 0 1 |~w— 0O 1 0 |
2.2: using 7, T 1 = 1’:determinca T
2.3: for each array j with the spatial reuse at some loop level do In this nest, temporal locality can be exploited for only one of the three
2:3.1: let v, be the row (if any) containing the only non-zero element in arrays. The remaining two arrays can be optimized for spatial local-

the last column for 7

2.3.2: find an M; such that 7.”; = M; 7.”; will be in the desired form (i.e.,
vi will be the last row)

ity. This gives us a total of three alternatives. To keep the presentation
simple, we focus on only one of them. In this alternative, we attempt

2.4: endfor to optimize arrayWfor temporal locality and arrayld andV for spatial
2.5: record the current alternative with the computed coefficients of C and ¢ locality. Consequently, the desired access matrices are of thé form
3: endfor
4: select the most suitable alternative (see the explanation in the text) ’ x x 1 ’ x x 1 ’ x X 0
§: apply tiling (see the explanation in Sections 3.5 & 3.6) Eu = [ X x 0 :|;Ev = [ X X 0 :|§£w = |: X X 0 ]
Figure 5:Optimization algorithm (single nestp* alternatives are evaluated asHere, x denotes ‘don’t care’. Now, using., Ly, L, £'w, £ », and
each array can have spatial or temporal reuse. 00 1
L', wecandeterming ' = | 1 0 0 [.Ifwe transform this nest
0 1 0
throughf,,,_1) are affine functions of all loop indices except the innerusing the inverse of this matrix, the new loop ordey j«, i from out-
most one. ermost to innermost. Note that this new access pattern exploits temporal
e Ulg1][g2]...[gm]: In this form, allg: throughg,, are affine func- locality for Win the innermost loop, and imposes a column-major mem-
tions of all loop indices except the innermost one. ory layout forU andV. If the default memory layout is row-major, these

In the first case, we havgpatial reusefor the reference in th&én-  two arrays should be data-transformed using matriees = M, =

nermost loop and in the second case, we haeenporal reusen the e[n[l) L1 Note that this version eventually transforms to the tiled code
innermost loop Note that the second case helps to reduce the coefficignt 0

of both C' andt whereas the first case helps more to reduce the coefiven in Figure 3(v).
cient of C. The compiler’s task, then, is to bring each array (reference)
to one of the forms given above. 3.5 Memory Space Partitioning

. . Once a suitable loop order and memory layouts for the arrays are de-

3.4 Algorithm for Determining Memory Layouts and Loop Or-  termined, the compiler needs to partition the available SPM storage be-

der tween the arrays accessed in the nest. Let us assume first that there is
We assume that the memory layout forardimensional array can be & Single reference per array. Assuming that the loops are tiled using a
in one ofm! forms, each corresponding to the linear layout of data i _Iocklng fact_or (tile §|ze) OS“.’ if the _reference In question fits in the
off-chip memory by a nested traversal of the array axes in some phi st form desirable discussed in Section 33, the compller accesses a data
determined order. The innermost axis is called thstest-changing UI€ Of SiZ85a X Sa X Sa X ... X Sa x n (assuming that is the number of
dimension As an example, for row-major memory layout of a two-terations of the innermost loop, and the memory layout is row-major as
dimensional array, the second dimension is the fastest changing dim& C)- Note that accessing such a data tile tend_s'to minimize the number
sion. of transfer calls per tile. As for the arrays that fit in the second form, we

In our framework, each execution of anlevel nested loop is rep- C&n access datatiles §f x Sa x Sa x ... x Sq x S, as the loops whose
resented using aiteration vectorT = (i, is, ..., 1), wherei; cor- indices appear in some subscript function of this array are tiled. After

responds tg*" loop from the outermost position. We assume that thtﬁat’ the _dat_a tiles can be hoi_sted into_ upper Ipop positions depending on
array subscript expressions and loop boundsaffiee function®f en- € lfoohp indices used by'ghelrrs]ubscr_lpt functions. hich migh .
closing loop indices and loop-independent variables. Each reference to!f: owever, we consider the entire UGR set (which might contain
anm-dimensional arrayis represented by arcesgreference matrix multiple uniformly generated references to the same array), we use the

., and aroffset vectot, such that’, I +1, is the element accessed byconcept ofspreadof a UGR set[1]. Informally, it consists of all of the

a specific iteratiorf[14]. elements that are accessed by the references in the set. If we have more

The class of loop and data transformations we are interested in 37 one UGR set for a given array, our approach treats each UGR set
be represented using non-singular squesesformation matrices It 2 If itbelongs to a different array. The compiler performs this memory
can be shown that, when both a loop transformation (represent@d byspace pa-rtltlonlng for_ each alternative (conS|dere_d _by the al_gorlthm in
and a data transformation (represented\dy,) are applied together, a ©19ure 5); however, it doesot generate code until it determines the
referencel. T + 1., becomesM, £, 7T T + M,. Our algorithm MOst suitable alternative.
given in Figure 5 tries to selegt and M, such that the resulting refer-
ence fits in one of our desired forms. For now, we assume that there 3@ Code Modifications
singleuniformly generated reference $&IGR)[6] in the nest for a given

array. A UGR is a set of array references (to the same array) whose @Bg)ther important issue is the placement of explicit data transfer calls

wna given tiled nest. In fact, there are two subproblems here: (i) the

script functions differ in a constant term only. Therefore, in the follo i f the t f lls in th d d (in) determinati £ th
ing, we use the terms ‘array’ and ‘reference’ interchangeably. Simp| sertion o ebrans er ga S 'rr]' € co de’ an .('.') eherr_nlna lon of the
the algorithm in Figure 5 enumerates all possible combinations of s ﬁ?_ramete_rls t? E passhe _tg_t em. 'g. ethermlnl;ng the |nfs?]rt|onf points,
tial/temporal locality alternatives for all arrays; for each combinatior e compiler looks at the indices used In the subscripts of the reference
in question, and inserts the transfer call associated with the reference in

it computes the coefficients @ and¢, and then selects the alternativebetween aporopriate tiling loons. For handling the second subproblem
with the minimum cost (taking into account the actual values’d@nd pprop g 100ps. 1dling the Se P! '
thyve use the method @itreme values of affine functior@iven an affine

). Note that if the reference is to be optimized for spatial locality, unction of a number of variables (in our case, a subscript expression)
algorithm first uses loop transformation, and then data transformation. ' Pt exp

20ther alternatives are also possible.



and inequalities that represent the bounds for the variables, the extremch doesnot include the per item transfer cost, and on-chip mem-
values method determines the maximum and minimum values of ey access costi,,). We present results for nine combinations of the
affine function in the bounded region. ratioC : t : Kon : Kopp. For example, a ratio such as 5:5:1:10 indi-
cates that the data transfer initiation cost and per item transfer cost are
the same (5). At the same time, the cost of off-chip memory (circuitry)
accessK,yy, is twice that ofC, and the cost ratio between the on-chip
Unlike loop transformations, the impact of a data transformatigtoisal and the off-chip memory is 1:10. Each combination differs from others
in the sense that it affects locality properties of all references to the saimeelative costs of”, ¢, K,,, andK,s. The performance of the ver-
array in every loop nest and in every procedure. Here, we briefly discuyssnstatic is assumed to be independentandt as their contribution
our approach to this global optimization problem. First, we focus on the the overall cost (for that version) is negligible. From these results,
intra-procedurallocality optimization problem and present an approacive can make two main observations. First, for aimost all experiments,
to optimize a series of loop nests collectively. Given a series of nest@ performance atatic is very poor, indicating the need for dynamic
loops that access (possibly different) subsets of arrays declared in tir@nagement of the SPM space. We also performed another set of ex-
procedure, our algorithm first ranks the nests, then optimizes one negiéfiments (withstatic) where the non-SPM data is accessed through an
a time determining memory layouts for its arrays, and propagates thesechip cache. The experiments performed with 1K, 2K, and 4K direct-
newly-found memory layouts to remaining nests to be optimized. = mapped and set-associative caches showed that the performance of the

We have also implemented an inter-procedural optimization framstatic version is improved by 8.1-10.2% (ovetatic without cache sup-
work on top of this. The current implementation performs two traversaert) which is still much lower than the performance of other versions.
on thecall graphrepresentation of the program. At the end of the fird¥loreover, note that, in this second set of experimentsstiitic version
traversal (bottom-up, from callees to callers), it collects all layout angkes more on-chip storage space (i.e., cache+SPM) than others. An-
loop transformation constraints at the root procedure (main prograrojher observation from Figure 6 is thabpt significantly improves over
and during the second traversal (top-down, from callers to callees)tiliéd, and its performance is close to thathaind. For example, when
propagates down these constraints on the call graph allowing each @o: ¢ : K,, : K,f; = 5:5:1:10, our approach reduces the total data
cedure to determine suitable memory layouts for its local arrays. access cost oveiled by 26.3% on average. With the same parameters,
hand improves ovetiled by 32.8%.

We also compared the performance of a dynamically managed SPM
with atraditional cache memory of the sarsize using thent _mxm

In this section, we present experimental results and compare our 8gde. We fiX O : ¢ : Ko, : Ko7y = 5:5:1:10, and assume that the block

namic technique with four other approaches. Our experimental sufig€ used in transfers between the cache/SPM and off-chip memory is
consists of five benchmarkit _mxm an integer matrix multiply pro- 32 bytes. Our results (not presented in detail here) show that using a
gram (that contains one initialization and one multiplication nést); conventional cache instead of dynamically-managed SPM increases the

search andparallel  _hier ,two different motion estimation codesotal cost by 41.6% and 22.6% for write-through (WT) and write-back
rasta _fft , a discrete Fourier analysis code; amdta _flt , a fil- (WB) cache, respectively, on the average. Note that similar cache re-

3.7 Multiple Nests and Inter-Procedural Problem

4 Experiments

tering routine. The data set sizes (input sizes)ifdr _-mxm full _sults he}ve also been_re_p(_)rted by Ber_1ini et al[3]. We also obSt_erved that

_search ,parallel _hier ,rasta fft ,andrasta flt are196K, increasing the associativity from 1 (direct-mapped case) to 2 improves

71K, 71K, 224K, and 128K, respectively. cache performance whereas going from 2 to 4 (except for one case) de-
We use five different versions of each code: grades the performance of thacheversion (due to the overhead factor

e tiled is the version in which all arrays involved in the computaWeé used and the lack of a significant drop in the number of conflict
tion are accessed using square data tiles, and all array layouts are fiRE$ES as a result of increased associativity).
at row-major. At a given time, the SPM space is divided between the
involved arraysvenly 5 Related Work
e static is the version that allocates the entire SPM space for one
chunk of data throughout the execution. In order for this scheme to 8everal strategies have been proposed to improve cache performance
beneficial, we place the most frequently used data chunk in the SPM(e.qg.,[14]). While these techniques reduce the number of cache misses,
e c_opt is the dynamic SPM management strategy proposed in thisey do not completely eliminate them, and they do not solve the prob-
paper. lem of unpredictable data access latency associated with cache memo-
¢ hand is anhand-optimizedrersion. In selecting the tile shapes, itries. Memory optimizations for embedded systems are addressed, among
considers not only the loop nest in question, but it takes into account dteers, by Panda et al[11], Catthoor et al[4], and Shiue and Chakrabarti
opportunities for tile reuse between multiple nests. [12]. Kolson et al[9] present a technique for memory access scheduling
e cacheis the version that uses the available SPM space as a comhigh-level synthesis. Wang et al[13] propose a framework for analyz-
ventional cache; that is, the hardware controls the data transfers betwiagrthe flow of values and data reuse for on-chip memories. They per-
the on-chip memory and the off-chip memory. form no inter-procedural analysis, and assume that the loops are perfectly-
Out of the five codes in our experimental suite, two codasté nested. Panda et al[10] present an elegant static data partitioning scheme
fit andrasta _fit ) benefited from the inter-procedural layout opfor efficient utilization of scratch-pad memory. Their approach is ori-
timization part of our framework. We also collect statistics (by instruented toward eliminating the potential conflict misses due to limited as-
menting the code) during execution on how many data transfer calls gegiativity of on-chip cache. Benini et al[3] discuss a memory man-
executed (i.e., coefficient af’), and how many data items are transagement scheme that is based on keeping the most frequently used data
ferred between the off-chip memory and the SPM (i.e., coefficieft of items in a software-managed memory. This is a static management tech-
For the experiments that involve teacheversion, we employ a trace- nique as it does not adapt the contents of on-chip memory to dynamically
driven cache simulator (DinerolV) [5]. It should be noted thatthept  changing working set.
andcacheversions usexactly the samenemory layouts and loop op- o
timizations to isolate the benefits that are solely due to the managemen{l Nis is assuming a direct-mapped cache. For a wo-way (resp. four-way) associative
. cache, we assuml,, = 1.1 (resp. K,, = 1.2) to take into account the additional
of the On-ChIp memory space. ) . overhead due to associativity.
Figure 6 gives théotal data access cosfer four different versions.
The total data access cost Hasr componentstransfer initiation cost
(C), per item transfer costt), off-chip memory access cosk{ )
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Figure 6:Total data access costs (in millions) for different versiah5<4K).

6 Summary

(7]

This paper presents a compiler-directed approach for dynamic managerg;
ment of SPM for array-based applications found in image and video
processing domains. Our approach uses a set of compiler optimizations
and an on-chip memory space partitioning strategy that aim at utilizing
the on-chip memory space as efficiently as possible.
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