
Dynamic Management of Scratch-Pad Memory Space

M. Kandemir, J. Ramanujam�, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh
Microsystems Design Lab

The Pennsylvania State University
University Park, PA 16802

Abstract

Optimizations aimed at improving the efficiency of on-chip memories
are extremely important. We propose a compiler-controlled dynamic
on-chip scratch-pad memory (SPM) management framework that uses
both loop and data transformations. Experimental results obtained us-
ing a generic cost model indicate significant reductions in data transfer
activity between SPM and off-chip memory.

1 Introduction

Embedded systems are often designed as asystem-on-chip(SoC) archi-
tecture to cater to the demands of small form factors. An important
characteristic of a SoC design process is the design of the memory con-
figuration and the management of the flow of data. While it is very
important to select a correct memory configuration, it might be equally
important to choreograph the data flow between on-chip and off-chip
memories in an optimal manner. Many SoC applications have signifi-
cant data processing requirements. In particular, many codes from the
video processing and signal processing domains manipulate large arrays
of signals using multi-level nested loops. An important issue then is
maintaining good data locality; that is, satisfying a majority of data ac-
cesses from fast on-chip memories instead of slow off-chip DRAMs.

Unfortunately, a simple on-chip cache hierarchy may not be very
suitable for an embedded system where meeting hard real-time con-
straints is critical[7]. Such a constraint, in most cases, requires pro-
grammers to determine exactly how much processing time a given code
segment will take. Existence of a cache memory makes it nearly im-
possible to predict execution time accurately. Not being able to predict
the execution time of a given piece of code can also adversely affect the
scope and effectiveness of software optimizations.

Consequently, systems that contain asoftware managed scratch-pad
memory(called SPM henceforth) can be of great value as, in such sys-
tems, the software is in full control of the flow of data between on-
chip and off-chip memory, so it is relatively easy to predict data access
times. Previous work on SPM[10] investigates astatic data manage-
ment scheme in which program data structures are partitioned between
the off-chip memory and the SPM, and this data partitioning is valid
throughout the execution.In this scheme, the scalar variables are stored
in the SPM, and the large data arrays that do not fit in the SPM are stored
in the off-chip memory (and accessed through on-chip cache). Each of
the remaining arrays is stored in either SPM or off-chip memory so as
to minimize the conflict misses in the on-chip cache.

While several applications benefit from this static partitioning ap-
proach, in many codes, we may need to perform dynamic data transfers
between off-chip memory and on-chip SPM during the course of ex-
ecution. Important issues in such a dynamic scheme are determining
memory layouts and best loop access patterns, partitioning the available
SPM space between competing arrays, and restructuring the code for ex-

�Department of ECE, Louisiana State University, Baton Rouge, LA 70803.

plicit data transfers. This paper addresses these issues in the context of
SPM and array-based applications which are dominant in video and im-
age processing domains. The proposed compilation framework has been
tested using a suite of five applications. Experimental data and compar-
ison results with previous work show that our approach is very effective
in reducing the activity between on-chip SPM and off-chip memory. In
general, such reductions can lead to large savings in energy consump-
tion[8] and effective data access latency[14].

The remainder of this paper is organized as follows. Section 2 intro-
duces our memory system architecture and explains the programming
model. Section 3 presents our approach to the dynamic management of
data transfers between the off-chip memory and the SPM. The perfor-
mance numbers are given in Section 4. Section 5 discusses related work,
and Section 6 concludes the paper.

2 Memory Architecture and Execution Model

Our data memoryarchitecture consists of three components: a cache
memory, a scratch-pad memory (SPM), and a main memory. The cache
memory and the SPM are on-chip SRAMs (with the same access la-
tency), and the main memory can be assumed to be an off-chip DRAM
(with a higher access latency). As shown in Figure 1, the address space
is divided between off-chip memory and on-chip SPM, the former of
which is accessed through the on-chip cache.

Figure 1 also shows the necessary control signals to activate either
SPM or cache depending on the issued memory address. The same data
and address buses are fed into cache as well as the SPM. In this work,
we are interested in managing the data transfers between the off-chip
memory and the on-chip SPM in cases where total data size is larger than
SPM capacity. We assume the existence of a higher level mechanism
that decides which data accesses should bypass the SPM and be accessed
through cache (if it exists). Therefore, in the rest of the paper, we drop
the cache from consideration. It is assumed that the scalar variables are
stored in registers, so they do not interfere with array references.

In order to generate optimized code for a memory architecture that
contains an SPM, in addition to the conventional optimization steps, the
compiler also has toschedule explicit data transfersbetween the off-
chip memory and the SPM. To accomplish this, the compiler needs to
take into account the data layout in the off-chip memory, the applica-
tion access pattern, and the available memory space in the SPM.The
portions of arrays required by the current computation are fetched from
the off-chip memory to the SPM.Throughout this paper, these portions
are calleddata tilesor simplytiles. The data tiles brought into the SPM
should also have a high degree of reuse and should fit in the SPM. Note
that the SPM space should be divided suitably among the data tiles of
different arrays. Thus, during the course of execution, a number of data
tiles belonging to a number of different arrays are brought into the SPM,
the new values for these data tiles are computed, and the tiles are stored
back into appropriate locations in off-chip memory, if necessary.

As an example, let us consider the nest in Figure 3(i). A key aspect of
the compilation process is the use of a tiling-like transformation. When
applied to a loop, tiling replaces it (in the most general case) with two
loops: atiling loop and anelement loop[14]. The loop nest in Figure 3(i)
can be translated by the compiler into the code shown in Figure 3(ii); in
this translated code, the outer loopsit , jt , andkt are the tiling loops,
and the inner loopsi’ , j’ , k’ are the element loops.

The explicit data transfer calls,read tile andwrite tile, are inserted
at tile boundaries (outside the element loops). The transfer callread tile

Core
cache_hit SPM_hit

signals
control

address space

off-chip DRAM

on-chip cache on-chip SPM

Figure 1:System architecture and address space partitioning.

Sa-1

Sa-1

Sait+ -1

Sajt+ -1

0

0

it

jt

U

U’

data tile

SPM

off-chip memory

Figure 2:Reading anSa � Sa data tile from off-chip memory to SPM

U[it:it+ Sa-1,jt:jt+ Sa-1] ! U’[0: Sa-1,0: Sa-1] copies
the elements of the arrayU that satisfy the constraintf(it � i �
it+T-1) and (jt � j � jt+T-1 g) to arrayU’[0: Sa-1, 0: Sa-1] .
It should be noted that while arrayU resides in off-chip memory, array
U’ resides in the SPM. In other words,read tile indicates an explicit
copy operation from off-chip memory to SPM as depicted in Figure 2.
The implementation of thewrite tile call is similar except that the direc-
tion of the transfer is reversed. For the sake of clarity, we will write the
compiler-translated version as shown in Figure 3(iii), where all element
loops are omitted. Each reference is replaced by its corresponding sub-
matrix version (in terms of the original array). For example, a reference
such asU’[i’][j’] is replaced byU[it:it+ Sa-1,jt:jt+ Sa-1] ,
whereSa is the size (in array elements) of a dimension of a data tile
(calledtile sizeor blocking factor).

3 Management of Data Transfers

3.1 Overview

Efficient use of an SPM depends critically on an important factor:max-
imizing the reuse of data portions (tiles) brought from off-chip memory.
This is crucial because an item sitting in the SPM without reuse not only
occupies space that could have been used for some other array but also
wastes bandwidth (as it needs to be brought over the interconnect be-
tween SPM and off-chip memory). Our objective can be achieved by
(i) maximizing the number of accesses to the data in the SPM, and (ii)
minimizing the number of data transfers to and from off-chip memory.
Our approach follows three complementary steps:

�Memory Layout Detection and Loop Transformation:Maximizing
data reuse and minimizing the number of explicit data transfers between
off-chip memory and the SPM requires a good combination of loop ac-
cess pattern and off-chip memory layout.

� Memory Space Partitioning:Since the on-chip SPM space has a
limited capacity, its management is very important. A crucial issue here
is to determine how to partition the available SPM space dynamically
between competing arrays. We show that a simple strategy that divides
the available SPM space evenly between arrays may not work well in

practice.
� Code Modifications:After deciding a suitable partitioning of the

SPM space between arrays, the compiler needs to modify the code ac-
cordingly.

3.2 Cost Model

We assume ageneric cost modelwhich can be made to work with several
performance and/or energy metrics. Each data transfer from off-chip
memory to the SPM or vice versa is assumed to incur a fixedstartup
cost in addition to a cost proportional to the amount of data requested.
The startup cost for a data access (read or write),C, is assumed to in-
clude all the costs due to bookkeeping/handshaking activity between the
SPM and the off-chip memory and the software overhead involved (e.g.,
the runtime call activation to initiate the transfer). Let the cost of trans-
ferring a single data item (e.g., an array element) between the off-chip
memory and the SPM bet. Thus, the cost of transferring̀consecu-
tive elementsbetween the off-chip memory and the SPM can roughly be
modeled asT = C + `t. We refer to this cost asmemory access cost,
or simplyaccess cost. Note that the per item transfer cost does not in-
clude the cost incurred in accessing the off-chip memory circuitry itself.
While this model is highly simplified, it is useful for our purpose.

As an example, let us consider the matrix multiply code given in
Figure 3(i). We assume that the SPM has a memory of sizeM allocated
for a given computation. Let us also assume that (for simplicity) each
array is ofn�n, wheren is also assumed to be the number of iterations
of all the loops. We assume thatd � n � M � n2 for an integer
d. In cases wheren > M , we can apply the technique in this paper
recursively (which, in a sense, corresponds to multi-level tiling).

Suppose for now that the compiler works on square tiles of size
Sa � Sa as those shown Figure 4(i), and the default array layout is
row-major. The access cost of a tile of sizeSa � Sa is SaC + S2

at,
andn2=S2

a of these data tiles are read (for arrayU, assuming thatSa
dividesn evenly). Consequently, the totalread access costfor arrayU
is TU = (n2=S2

a)[SaC +S2
at]. The access costs for the other arrays can

be computed similarly. Therefore, the overall access cost for the nest
shown in Figure 3(iii) (T a

ov) consideringall three arraysand theread
activity alonecan be calculated as

T a
ov = TU+ TV + TW =

3n3

S2
a

C +
3n3

Sa
t

under the memory constraint3S2
a � M: Here,TU, TV, andTWdenote

the read access costs for arraysU, V, andW, respectively. Assuming that
the entire available SPM capacity (M) will be used for this computation
(i.e.,3S2

a = M), this last formulation above can be re-written in terms
of M as

T a
ov =

3n3

M=3
C +

3n3p
M=3

t:

This straightforward translation can be improved substantially by be-
ing more careful when choosing memory layouts, loop ordering, and
data tile allocations. First, we observe from Figure 3(iii) that it is not
necessary to perform alltile read andtile write activities inside thekt
loop. In particular, data tile of arrayUcan be read (and written) between
the tiling loopsjt andkt . Second, reading square tiles does not allow
the compiler to take advantage of the layout of data in off-chip memory.
For example, the arrayV is stored in row-major in off-chip memory and
instead of reading a square-chunk, reading a row-chunk should result
in fewer transfer calls in the code. Figure 3(iv) shows the code corre-
sponding to this scenario. Note that since the compiler reads data tiles of
sizesSb�n andn�Sb, for arraysV andW, respectively, the tiling loop
kt does not appear in Figure 3(iv). The corresponding tile allocation
is shown in Figure 4(ii). During the execution, tiles of sizesSb � Sb,
Sb � n, andn� Sb are accessed for arraysU, V, andW, respectively. In
addition to determining the tile allocation and loop order, our approach
assigns memory layouts to arrays. In the case of Figure 4(ii), it assigns

Figure 3:(i) The matrix multiply code. (ii-iii) A straightforward translation (for
SPM) using square data tiles for all arrays. (iv-v) Optimized codes.

(i)

i

j

i

k

k

j

= *

U V W

(ii)

i

j

i

k

k

j

U V W

*=

(iii)

i

j

i

k

k

j

U V W

*=

Figure 4:Different tile allocations in the SPM for the matrix multiply code.

a row-major layout forV and a column-major layout forW. The layout
of arrayUcan be either row-major or column-major (as we read square
tiles for this array). The overallread access costof this loop order,1

layout assignment, and tile allocation scheme is:

T b
ov =

n2

S2
b

�
SbC + S2

b t
�

| {z }
TU

+
n

Sb
(SbC + nSbt)| {z }

TV

+
n2

S2
b

(SbC + nSbt)| {z }
TW

=

�
2n2

p
n2 +M � n

+ n

�
C +

�
2n2 +

n3

p
n2 +M � n

�
t

under the assumption of2nSb +S2
b = M , and at mostn array elements

can be read with a singleread tile call from within the code. This as-
sumption is just for making the presentation clear. Actually, if we can
read/write more thann elements in a single call, the number of transfer
operations in the code can be reduced further. It should also be noted
that a single (data transfer) call in the code can correspond to multi-
ple transfer activities at the hardware level (depending on the bandwidth
between the off-chip memory and the SPM). A reduction in the num-
ber of transfer calls in the code also leads, in general, to a reduction in
hardware-level transfer operations. Note that althoughSb is different
from Sa, the total memory (SPM) space (M) used in both cases is the
same. Whenn = 128 andM = 8; 192 (for illustrative purposes only),
it can be shown that, as compared toT a

ov, T b
ov improves the coefficient of

C by 45%, and the coefficient oft by 12.2%. The memory access cost
of the code given in Figure 3(v) (and its corresponding tile allocation
depicted in Figure 4(iii)) is very similar to that in Figure 3(iv). In this
case however, the compiler selects a different loop order, and assigns
column-major memory layouts for bothUandV.

3.3 Desired Array Reference Forms

We want each reference to anm-dimensionalrow-majorarrayU to be
in either of the following two forms, wherefi andgj are subscript func-
tions:

� U[f1][f2]:::[fm]: In this form,fm is an affine function of all loop
indices with a coefficient of1 for the innermost loop index whereasf1

1Similar calculations can be done for write costs as well.

Figure 5:Optimization algorithm (single nest).2s alternatives are evaluated as
each array can have spatial or temporal reuse.

throughf(m�1) are affine functions of all loop indices except the inner-
most one.

� U[g1][g2]:::[gm]: In this form, allg1 throughgm are affine func-
tions of all loop indices except the innermost one.

In the first case, we havespatial reusefor the reference in thein-
nermost loop, and in the second case, we havetemporal reusein the
innermost loop. Note that the second case helps to reduce the coefficient
of bothC andt whereas the first case helps more to reduce the coeffi-
cient ofC. The compiler’s task, then, is to bring each array (reference)
to one of the forms given above.

3.4 Algorithm for Determining Memory Layouts and Loop Or-
der

We assume that the memory layout for anm-dimensional array can be
in one ofm! forms, each corresponding to the linear layout of data in
off-chip memory by a nested traversal of the array axes in some pre-
determined order. The innermost axis is called thefastest-changing
dimension. As an example, for row-major memory layout of a two-
dimensional array, the second dimension is the fastest changing dimen-
sion.

In our framework, each execution of ann-level nested loop is rep-
resented using aniteration vector�I = (i1; i2; :::; il), whereij cor-
responds tojth loop from the outermost position. We assume that the
array subscript expressions and loop bounds areaffine functionsof en-
closing loop indices and loop-independent variables. Each reference to
anm-dimensional arrayU is represented by anaccess(reference) matrix
Lu and anoffset vector�ou such thatLu�I+�ou is the element accessed by
a specific iteration�I[14].

The class of loop and data transformations we are interested in can
be represented using non-singular squaretransformation matrices. It
can be shown that, when both a loop transformation (represented byT)
and a data transformation (represented byMu) are applied together, a
referenceLu�I + �ou, becomesMuLuT �1�I0 + M�ou. Our algorithm
given in Figure 5 tries to selectT andMu such that the resulting refer-
ence fits in one of our desired forms. For now, we assume that there is a
singleuniformly generated reference set(UGR)[6] in the nest for a given
array. A UGR is a set of array references (to the same array) whose sub-
script functions differ in a constant term only. Therefore, in the follow-
ing, we use the terms ‘array’ and ‘reference’ interchangeably. Simply,
the algorithm in Figure 5 enumerates all possible combinations of spa-
tial/temporal locality alternatives for all arrays; for each combination,
it computes the coefficients ofC andt, and then selects the alternative
with the minimum cost (taking into account the actual values forC and
t). Note that if the reference is to be optimized for spatial locality, the
algorithm first uses loop transformation, and then data transformation.

For an example application of the algorithm of Figure 5, consider
once more the matrix multiply code in Figure 3(i). The access matrices
for arraysU, V, andWare

Lu =
h

1 0 0

0 1 0

i
;Lv =

h
1 0 0

0 0 1

i
;Lw =

h
0 0 1

0 1 0

i
:

In this nest, temporal locality can be exploited for only one of the three
arrays. The remaining two arrays can be optimized for spatial local-
ity. This gives us a total of three alternatives. To keep the presentation
simple, we focus on only one of them. In this alternative, we attempt
to optimize arrayWfor temporal locality and arraysU andV for spatial
locality. Consequently, the desired access matrices are of the form2

L0

u =
h
� � 1

� � 0

i
;L0

v =
h
� � 1

� � 0

i
;L0

w =
h
� � 0

� � 0

i
:

Here,� denotes ‘don’t care’. Now, usingLu, Lv, Lw, L0u, L0v , and

L0w, we can determineT �1 =

"
0 0 1

1 0 0

0 1 0

#
: If we transform this nest

using the inverse of this matrix, the new loop order isj , k , i from out-
ermost to innermost. Note that this new access pattern exploits temporal
locality for Win the innermost loop, and imposes a column-major mem-
ory layout forUandV. If the default memory layout is row-major, these
two arrays should be data-transformed using matricesMu = Mv =h

0 1

1 0

i
: Note that this version eventually transforms to the tiled code

given in Figure 3(v).

3.5 Memory Space Partitioning

Once a suitable loop order and memory layouts for the arrays are de-
termined, the compiler needs to partition the available SPM storage be-
tween the arrays accessed in the nest. Let us assume first that there is
a single reference per array. Assuming that the loops are tiled using a
blocking factor (tile size) ofSa, if the reference in question fits in the
first form desirable discussed in Section 3.3, the compiler accesses a data
tile of sizeSa�Sa�Sa�:::�Sa�n (assuming thatn is the number of
iterations of the innermost loop, and the memory layout is row-major as
in C). Note that accessing such a data tile tends to minimize the number
of transfer calls per tile. As for the arrays that fit in the second form, we
can access data tiles ofSa�Sa�Sa� :::�Sa�Sa as the loops whose
indices appear in some subscript function of this array are tiled. After
that, the data tiles can be hoisted into upper loop positions depending on
the loop indices used by their subscript functions.

If, however, we consider the entire UGR set (which might contain
multiple uniformly generated references to the same array), we use the
concept ofspreadof a UGR set[1]. Informally, it consists of all of the
elements that are accessed by the references in the set. If we have more
than one UGR set for a given array, our approach treats each UGR set
as if it belongs to a different array. The compiler performs this memory
space partitioning for each alternative (considered by the algorithm in
Figure 5); however, it doesnot generate code until it determines the
most suitable alternative.

3.6 Code Modi�cations

Another important issue is the placement of explicit data transfer calls
in a given tiled nest. In fact, there are two subproblems here: (i) the
insertion of the transfer calls in the code, and (ii) determination of the
parameters to be passed to them. In determining the insertion points,
the compiler looks at the indices used in the subscripts of the reference
in question, and inserts the transfer call associated with the reference in
between appropriate tiling loops. For handling the second subproblem,
we use the method ofextreme values of affine functions. Given an affine
function of a number of variables (in our case, a subscript expression)

2Other alternatives are also possible.

and inequalities that represent the bounds for the variables, the extreme
values method determines the maximum and minimum values of the
affine function in the bounded region.

3.7 Multiple Nests and Inter-Procedural Problem

Unlike loop transformations, the impact of a data transformation isglobal
in the sense that it affects locality properties of all references to the same
array in every loop nest and in every procedure. Here, we briefly discuss
our approach to this global optimization problem. First, we focus on the
intra-procedurallocality optimization problem and present an approach
to optimize a series of loop nests collectively. Given a series of nested
loops that access (possibly different) subsets of arrays declared in the
procedure, our algorithm first ranks the nests, then optimizes one nest at
a time determining memory layouts for its arrays, and propagates these
newly-found memory layouts to remaining nests to be optimized.

We have also implemented an inter-procedural optimization frame-
work on top of this. The current implementation performs two traversals
on thecall graph representation of the program. At the end of the first
traversal (bottom-up, from callees to callers), it collects all layout and
loop transformation constraints at the root procedure (main program),
and during the second traversal (top-down, from callers to callees), it
propagates down these constraints on the call graph allowing each pro-
cedure to determine suitable memory layouts for its local arrays.

4 Experiments

In this section, we present experimental results and compare our dy-
namic technique with four other approaches. Our experimental suite
consists of five benchmarks:int mxm, an integer matrix multiply pro-
gram (that contains one initialization and one multiplication nest);full
search andparallel hier , two different motion estimation codes;

rasta fft , a discrete Fourier analysis code; andrasta flt , a fil-
tering routine. The data set sizes (input sizes) forint mxm, full
search , parallel hier , rasta fft , andrasta flt are 196K,

71K, 71K, 224K, and 128K, respectively.
We use five different versions of each code:
� tiled is the version in which all arrays involved in the computa-

tion are accessed using square data tiles, and all array layouts are fixed
at row-major. At a given time, the SPM space is divided between the
involved arraysevenly.

� static is the version that allocates the entire SPM space for one
chunk of data throughout the execution. In order for this scheme to be
beneficial, we place the most frequently used data chunk in the SPM.

� c opt is the dynamic SPM management strategy proposed in this
paper.

� hand is anhand-optimizedversion. In selecting the tile shapes, it
considers not only the loop nest in question, but it takes into account the
opportunities for tile reuse between multiple nests.

� cacheis the version that uses the available SPM space as a con-
ventional cache; that is, the hardware controls the data transfers between
the on-chip memory and the off-chip memory.

Out of the five codes in our experimental suite, two codes (rasta
fft and rasta flt) benefited from the inter-procedural layout op-

timization part of our framework. We also collect statistics (by instru-
menting the code) during execution on how many data transfer calls are
executed (i.e., coefficient ofC), and how many data items are trans-
ferred between the off-chip memory and the SPM (i.e., coefficient oft).
For the experiments that involve thecacheversion, we employ a trace-
driven cache simulator (DineroIV) [5]. It should be noted that thec opt
andcacheversions useexactly the samememory layouts and loop op-
timizations to isolate the benefits that are solely due to the management
of the on-chip memory space.

Figure 6 gives thetotal data access costsfor four different versions.
The total data access cost hasfour components: transfer initiation cost
(C), per item transfer cost (t), off-chip memory access cost (Koff)

which doesnot include the per item transfer cost, and on-chip mem-
ory access cost (Kon). We present results for nine combinations of the
ratioC : t : Kon : Koff . For example, a ratio such as 5:5:1:10 indi-
cates that the data transfer initiation cost and per item transfer cost are
the same (5). At the same time, the cost of off-chip memory (circuitry)
access,Koff , is twice that ofC, and the cost ratio between the on-chip
and the off-chip memory is 1:10. Each combination differs from others
in relative costs ofC, t, Kon, andKoff . The performance of the ver-
sionstatic is assumed to be independent ofC andt as their contribution
to the overall cost (for that version) is negligible. From these results,
we can make two main observations. First, for almost all experiments,
the performance ofstatic is very poor, indicating the need for dynamic
management of the SPM space. We also performed another set of ex-
periments (withstatic) where the non-SPM data is accessed through an
on-chip cache. The experiments performed with 1K, 2K, and 4K direct-
mapped and set-associative caches showed that the performance of the
static version is improved by 8.1-10.2% (overstatic without cache sup-
port) which is still much lower than the performance of other versions.
Moreover, note that, in this second set of experiments, thestatic version
uses more on-chip storage space (i.e., cache+SPM) than others. An-
other observation from Figure 6 is thatc opt significantly improves over
tiled, and its performance is close to that ofhand. For example, when
C : t : Kon : Koff = 5:5:1:10, our approach reduces the total data
access cost overtiled by 26.3% on average. With the same parameters,
hand improves overtiled by 32.8%.

We also compared the performance of a dynamically managed SPM
with a traditional cache memory of the samesize using theint mxm
code. We fix3 C : t : Kon : Koff = 5:5:1:10, and assume that the block
size used in transfers between the cache/SPM and off-chip memory is
32 bytes. Our results (not presented in detail here) show that using a
conventional cache instead of dynamically-managed SPM increases the
total cost by 41.6% and 22.6% for write-through (WT) and write-back
(WB) cache, respectively, on the average. Note that similar cache re-
sults have also been reported by Benini et al[3]. We also observed that
increasing the associativity from 1 (direct-mapped case) to 2 improves
cache performance whereas going from 2 to 4 (except for one case) de-
grades the performance of thecacheversion (due to the overhead factor
we used and the lack of a significant drop in the number of conflict
misses as a result of increased associativity).

5 Related Work

Several strategies have been proposed to improve cache performance
(e.g.,[14]). While these techniques reduce the number of cache misses,
they do not completely eliminate them, and they do not solve the prob-
lem of unpredictable data access latency associated with cache memo-
ries. Memory optimizations for embedded systems are addressed, among
others, by Panda et al[11], Catthoor et al[4], and Shiue and Chakrabarti
[12]. Kolson et al[9] present a technique for memory access scheduling
in high-level synthesis. Wang et al[13] propose a framework for analyz-
ing the flow of values and data reuse for on-chip memories. They per-
form no inter-procedural analysis, and assume that the loops are perfectly-
nested. Panda et al[10] present an elegant static data partitioning scheme
for efficient utilization of scratch-pad memory. Their approach is ori-
ented toward eliminating the potential conflict misses due to limited as-
sociativity of on-chip cache. Benini et al[3] discuss a memory man-
agement scheme that is based on keeping the most frequently used data
items in a software-managed memory. This is a static management tech-
nique as it does not adapt the contents of on-chip memory to dynamically
changing working set.

3This is assuming a direct-mapped cache. For a two-way (resp. four-way) associative
cache, we assumeKon = 1:1 (resp. Kon = 1:2) to take into account the additional
overhead due to associativity.

Figure 6:Total data access costs (in millions) for different versions (M=4K).

6 Summary

This paper presents a compiler-directed approach for dynamic manage-
ment of SPM for array-based applications found in image and video
processing domains. Our approach uses a set of compiler optimizations
and an on-chip memory space partitioning strategy that aim at utilizing
the on-chip memory space as efficiently as possible.

References

[1] A. Agarwal, D. Kranz, and V. Natarajan. Automatic partitioning of paral-
lel loops and data arrays for distributed shared memory multiprocessors.
In Proc.International Conference on Parallel Processing,1993.

[2] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The
SUIF compiler for scalable parallel machines. In Proc.the Seventh SIAM
Conference on Parallel Processing for Scientific Computing,February,
1995.

[3] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy effi-
ciency of embedded systems by application-specific memory hierarchy
generation.IEEE Design & Test of Computers,pages 74–85, April-June,
2000.

[4] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle. Custom memory management methodology – explo-
ration of memory organization for embedded multimedia system design.
Kluwer Academic Publishers,June, 1998.

[5] Dinero IV Trace-Driven Uniprocessor Cache Simulator. URL:
http://www.cs.wisc.edu/�markhill/DineroIV/

[6] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local
memory management by global program transformations,Journal of Par-
allel and Distributed Computing, 5:587–616, 1988.

[7] J. Eyre and J. Bier. DSP processors hit the mainstream.IEEE Computer
Magazine,pp. 51–59, August 1998.

[8] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of
compiler optimizations on system power. In Proc.the 37th Design Au-
tomation Conference (DAC’00), Los Angeles, California USA, June 5–9,
2000.

[9] D. J. Kolson, A. Nicolau, and N. Dutt. Minimization of memory traffic
in high-level synthesis. In Proc.the 30th Design Automation Conference
(DAC,June 1994.

[10] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of scratch-
pad-memory in embedded processor applications. In Proc.European De-
sign and Test Conference (ED&TC’97),Paris, March 1997.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau. Architectural exploration and
optimization of local memory in embedded systems. In Proc.ISSS’97,
Antwerp, Sept 1997.

[12] W-T. Shiue and C. Chakrabarti. Memory exploration for low power, em-
bedded systems. In Proc.Design Automation Conference (DAC’99),New
Orleans, Louisiana, 1999.

[13] L. Wang, W. Tembe, and S. Pande. Optimizing on-chip memory usage
through loop restructuring for embedded processors. In Proc.9th In-
ternational Conference on Compiler Construction,March 30–31 2000,
pp.141–156, Berlin, Germany.

[14] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, CA, 1996.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

