
lti
rs
red
tly
the
is
re

aral-
k
of

ro-
is
hro-
er
ral
a

s-
o-
ce
o
us

ous
lly-
le-
e
-
a-

n
l-
ls
e
i-
s.

all
c
d
-

le
ty.
ay

ity
gic
ed-

Static Scheduling of Multiple Asynchronous Domains
For Functional Verification

Murali Kudlugi Charles Selvidge
Emulation Systems Group

IKOS Systems Inc.
Waltham, MA

{murali,selvidge}@ma.ikos.com

Russell Tessier
Dept. of Electrical and Computer Engg.

University of Massachusetts
Amherst, MA

tessier@ecs.umass.edu
Abstract

While ASIC devices of a decade ago primarily contained synchro-
nous circuitry triggered with a single clock, many contemporary
architectures require multiple clocks that operate asynchronously to
each other. This multi-clock domain behavior presents significant
functional verification challenges for large parallel verification sys-
tems such as distributed parallel simulators and logic emulators. In
particular, multiple asynchronous design clocks make it difficult to
verify that design hold times are met during logic evaluation and
causality along reconvergent fanout paths is preserved during signal
communication. In this paper, we describe scheduling and synchro-
nization techniques to maintain modeling fidelity for designs with
multiple asynchronous clock domains that are mapped to parallel
verification systems. It is shown that when our approach is applied
to an FPGA-based logic emulator, evaluation fidelity is maintained
and increased design evaluation performance can be achieved for
large benchmark designs with multiple asynchronous clock
domains.

1. Introduction
To meet the need for more complete functional coverage, many
ASIC designers are turning to parallel verification platforms which
perform many logical evaluations concurrently. These systems,
which include logic emulators [6,7,8] and parallel cycle-based
simulators, often contain special-purpose logic processors or
FPGAs which evaluate logic and communicate results using a high-
speed system clock. Since numerous logic evaluations are required
per user design clock cycle, a fixed relationship must be created
between the behavior of the system and design clocks. This
relationship can then be used to determine when specific logic
functions should be evaluated inside logic processors and when
data should be communicated between processors. Multiple design
clocks with known phase relationships can also easily be handled
by deriving a base frequency which can be used for logic and
communication scheduling.

A significant problem arises when ASIC designs with multiple
asynchronous timing domains are mapped to parallel logic
verification hardware [6]. The unknown phase relationship between
domains can make it difficult to determine when individual logic
functions should be evaluated (the hold-time problem), and when

inter-processor communication should be performed (the mu
domain transport problem). As an example, for logic emulato
[1,3], special compilation and/or manual steps have been requi
to isolate individual asynchronous domains in hardware by direc
mapping communication paths to special system hardware at
expense of performance and mapping flexibility. Not only has th
approach been difficult and time-consuming, but often results a
unpredictable, leading to verification flaws.

In this paper, we present a general approach to address the p
lel verification of designs with multiple asynchronous cloc
domains. The basis of this approach is the formulation of a set
constraints which can be integrated into logic evaluation and p
cessor communication scheduling. It will be shown that th
approach can be scaled to handle an unlimited number of async
nous domains and can achieve provable modeling fidelity. Aft
formulating the scheduling problem and describing our gene
approach, a discussion of the integration of our algorithms with
commercial FPGA-based logic emulation system from Ikos Sy
tems is provided [7]. It is shown that the new constraints and alg
rithms achieve modeling fidelity and overall system performan
improvement versus a previous "hard-wired" approach for tw
large commercial ASIC designs that contain multiple asynchrono
clock domains.

2. Background
The approach described in this paper can be applied to numer
logic emulation and parallel cycle-based systems that statica
schedule logic computation and signal communication at compi
time. Example verification architectures that fit this model includ
Quickturn CoBalt [8] and Arkos emulators [6], and Ikos Virtua
Logic emulators. The target system for this paper is an Ikos Virtu
Logic emulation system that contains 384 Xilinx XC4062XL
FPGAs.

Inter-FPGA communication in VirtuaLogic systems is based o
Virtual Wires technology, an inter-FPGA communication schedu
ing technique. This approach pipelines multiple logical signa
called Virtual wires across single inter-FPGA wires to overcom
FPGA pin limitations[3, 4]. Logic designs are mapped to mult
FPGA VirtuaLogic systems through a series of compilation step
These steps include design partitioning into logic blocks sm
enough to fit within FPGAs, placement of logic blocks onto specifi
FPGAs, and scheduling of both intra-FPGA logic evaluation an
inter-FPGA communication. Both logic evaluation and signal com
munication are controlled by a high-speed clock called aVirtual
Clock which serves as a discrete timebase, providing a reliab
mechanism for controlling the order of events at a fine granulari
Since many combinational evaluations and signal transfers m
occur in a single design clock cycle, the virtual clock by necess
runs at a much higher frequency than the design clock. For lo
emulation systems, inter-FPGA (processor) communication sch
uling is based on the virtual clock.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

ted
ys
1)
in2
n.
of

ent

of
re-

als
the
ld
l
rs
on
n
d
nd
ure
at

nt of
re
se
in
”
old

te
3. Multi Domain Problems
There are a number of problems that make multi domain circuits
interesting and challenging from a functional modeling point of
view.

Modeling Logic In Multiple Domains
Functional Axiom 1: Timing Closure

Combinational logic plus transmission delay plus setup time
between two sequential elements in the same domain takes less than

one clock period of the fastest clock attached to either of the

sequential elements.

Consider the circuitry shown in Figure 1 where two asynchronous
clocks CLK1 and CLK2 drive state elements (FF1,FF3) and (FF2,
FF4) respectively. This circuit contains two same domain paths,
FF1.Q-N3-N5-FF3.D in the domain of CLK1 and FF2.Q-N4-N5-
FF4.D in the domain of CLK2. Note that the net N5 transitions and
is sampled in both clock domains. It is called aMTSD (Multi Tran-
sition and Sample Domain)net. The correct functional model of
this circuit must simultaneously satisfy the timing closure axiom in
each constituent domain. This means the data at FF1.Q must reach
FF3.D in exactly one cycle of CLK1 and data at FF2.Q must reach
FF4.D in exactly one cycle of CLK2 irrespective of combinational
delays or multi domain segments in the paths.

Transporting Multi Domain Values
Functional Axiom 2: Causality

The occurrence times of combinational logic form a partial order
based on causality. If part A feeds part B, events on A must have

occurred before events on B.
Another verification issue involves the transport of multi value sig-
nals in a system where inter-FPGA communication needs to be syn-
chronous to a system clock (e.g. virtual clock). Previous work
suggests that we either avoid such a situation by limiting the size of
asynchronous-domain logic to one FPGA or dedicate special inter-
FPGA wires to transport the values (hard-wiring) [3]. Since hard-
wired signals cannot be multiplexed to carry non-MTSD nets, pin
limitation problems [2] can result leading to reduced system perfor-
mance. To avoid this problem, it is desirable to split multi domain
values into constituent domain values and to route (schedule) them
in respective domains and recover the multi-domain value at the
destination FPGA or processor. This solution poses another prob-
lem because of unpredictable route timing that is inherent in stati-
cally routed systems. Consider a situation where the circuit in
Figure 1 is partitioned such that the multi domain value N5 needs to

cross over an FPGA boundary to another FPGA that may be loca
some routing distance away. Due to unpredictable routing dela
such as routing congestion, it is possible for the domain1 (D
value of N5 to start from the source FPGA sooner than the doma
(D2) value but still arrive after the D2 value reaches its destinatio
This can break the causality principle and cause the clobbering
the D2 value. Figure 2 illustrates such a case. One key requirem

in transporting multi-domain signals is to ensure that causality
events is guaranteed within each of the constituent domains ir
spective of routing delays.

Hold Time Problem in Multi Domains

The correct functioning of state elements requires that data sign
arrive at an element a certain period of time (setup time) before
triggering signal and are held steady for certain period of time (ho
time) after the triggering signal arrives. If the triggering signa
arrives at a time when the data signal is invalid, a violation occu
and causes incorrect operation of the circuit. This is a very comm
problem in delay sensitive circuits. Consider a simple latch show
in Figure 3, which has combinational logic sourcing it’s Gate an
Data inputs, and the waveforms shown in Figure 4. Here D, G a
Q represent Data, Gate and Output waveforms of the latch. Fig
4(a) shows an ideal condition where the edge on user clock CLK
t=t1 causes a change in Gate and Data values at the same insta
time and the old value “A” gets stored in the latch as a result. Figu
4(b) shows more realistic waveforms where routing delays cau
the Gate and Data to arrive at the latch inputs at different points
time in response to CLK. A problem arises if the new data “B
reaches the latch sooner than the new gate and clobbers the
value “A”. This can happen if the routing delay on the Clock/Ga

 D Q D Q

 D Q D Q

CLK1

CLK2

FF1

FF2

FF3

FF4

G1

N1

N2

N3

N4

N5

N6

N7

Figure 1: A Multi Transition and Sample Domain (MTSD) Example.

N1-N3-N5-N6

N2-N4-N5-N7
TIME

N3

N4 N4

N5

N5 N5

N5

 D1 Delay=5

D2 Delay=2

(k-1)

(j)
 (j, k-1)

 (k)

(j,k)(j,k)

(j, k-1)

(j, k-1)

N5

Figure 2: Transporting Multi Domain Values.

t=2 t=7 t=8t=6t=4t=3t=1

N5 (D1)

N5 (D2) N5 (MTSD)
N5(MTSD)

N3(D1)

N4(D2)

 FPGA
PARTITION

D Q

G

DATA

GATE

LATCH

MTSD PARTITION
COMBINATIONAL LOGIC

Figure 3: MTSD Latch Example.

GA

a-
ing
in-

hat
ual
be

re
t.

la-
if
not

he
is

th

n
-

to

la-
he
n
to
me
nst

ver
rive
path is greater than the routing delay on the Data path due to combi-
national logic in those paths. In a case where both Gate and Data

paths are in the same domain, it is easy for a scheduler to compute
regions of time when Gate is invalid and mask those regions so that
latches are not evaluated. This solution fails if Data and Gate nets
are multi domain nets because regions of validity for latch evalua-
tion in one domain may conflict with regions of invalidity in other
domains. The key challenge here is to satisfy hold time require-
ments for every (D,G) pair in each of the constituent domains.

4. Definitions
MTSD Net. A net which transitions (changes value) and is sampled
(read) by more than one clock domain. In Figure 1, net N5 is a
MTSD net.

MTSD Gate.Any combinational gate whose output is connected to
an MTSD net. In Figure 1, gate G1 is a MTSD gate.

MTSD State.A latch/flip-flop whose gate/clock input is sourced
by a multi transition net.

MTSD Block. The MTSD logic is partitioned into chunks of size
that are small enough to fit into a FPGA. It is at the block boundary
all the inter-FPGA communication (routing) takes place.

5. The Approach
Observation 1:

For any relationship Ri(A, B) in a multi domain circuit containing
domains A and B, it is sufficient to satisfy Ri(A) and Ri(B) for cor-

rect functional verification.

For example, in the circuit showing Figure 1, we only need to sat-
isfy the timing closure property for the same domain paths FF1.Q-
N3-N5-FF3.D and FF2.Q-N4-N5-FF4.D but not for the cross
domain paths FF1.Q-N3-N5-FF4.D or FF2.Q-N4-N5-FF3.D. Simi-
larly hold time must be satisfied for each same domain (D,G) pairs.
Essentially, the multi domain problem reduces to satisfying func-
tional requirements within each of the constituent domains simulta-
neously.

Multi-Domain Data Transport
Inter-FPGA data transport of an MTSD net can be decomposed into
the independent transport of a set of signal components from each
domain which are causally merged at the destination. We represent
these flows by adding FORK/MERGE operator pairs at FPGA

boundaries, resulting in a set of same domain signals on FP
boundaries. FromObservation 1, notice that flow and dependence
relationships on intra-FPGA paths only need to consider combin
tionally connected signals from the same domain. Causal merg
can be accomplished by dynamically selecting an appropriate s
gle domain signal at a MERGE point. Our scheduler ensures t
the transport delays of paths from independent domains are eq
so that the value arriving at the merge point is guaranteed to
causally correct.

Hold Time Constraints on a MTSD Latch
Observation 2:

For a multi domain latch, instantaneous Setup time violations a
correctable whereas instantaneous Hold time violations are no

The basis ofObservation 2stems from the fact that when a latch is
evaluated with OLD data against a new gate, (a Setup time vio
tion), new data arrival results in re-evaluation of the latch output
the latch gate is open. If the latch gate is closed, OLD data does
corrupt the output. Alternatively, if a latch is evaluated with NEW
data against an OLD gate that is open (a Hold time violation), t
correct latch value may be irretrievably lost since the OLD data
no longer available.

We will use notation V(Ai,Bk) to indicate the value of signal V
which occurs in response to the ith clock edge of domain A and k
clock edge of domain B.

For any latch with Data D(Ai, Bk) and Gate G(Aj, Bk) on some
clock edge k in Domain B, we have three possible conditions:

• (i < j) => instantaneous Setup time violation.
• (i == j) => both Setup and Hold Time satisfied
• (i > j) => instantaneous Hold time violation

Observation 1implies that every edge k in domain B requires a
evaluation of the latch with D(Ai, Bk) against G(Aj, Bk) which sat
isfies both setup and hold time with respect to B.Observation 2
implies that when performing such an evaluation, it is legitimate
have i < j or i == j but not legitimate to have i > j. Thesymmetrical
relationship holds with respect to evaluations against A. This re
tionship can be extended to an arbitrary number of domains.T
implication of this is that every edge for any domain results in a
evaluation which satisfies both setup and hold time with respect
that domain and any evaluation not satisfying setup against so
domain is subsequently followed by a correcting evaluation agai
that domain.

Our new static scheduler algorithm ensures that the Data ne
arrives before Gate for any edge on any domain and that both ar
prior to subsequent edges from that domain.

A B C

CLK

G

D

A B C

CLK

G

D

(a) Ideal condition: No violation

A CQ ? B CQ

(b) Hold time violation: Value “A” is lost

 t1
 t1

 t2 INVALID REGION

Figure 4: Hold Time Violation in MTSD States

A

MTSD
MERGE

Figure 5: Multi-Domain Data Transport.

MTSD
FORK

N5 (D1)

 N5 (D2) N5 (MTSD)
N5(MTSD)

N3(D1)

N4(D2)

 FPGA
PARTITION

es,

se
to
ns.
e
e

t
hs

d
ut
is

we
r of
ch
r

s
t).

an
en

ich
ar-

ts
ip
D-
lu-

of
the
en-
en
of
Transforming MTSD flip-flops
MTSD flip-flops are not covered by Observation 2and are more
difficult to address than MTSD latches. Our approach to handle
MTSD flip-flops is to transform them into master slave latch pairs
and then subject them to the same processing as other MTSD
latches.

6. Static Scheduling
We have used a modified TIERS scheduling algorithm to route
communication paths between blocks[4]. This is a reverse schedul-
ing algorithm in that it routes paths starting from primary outputs to
primary inputs. Note that the techniques explained are also applica-
ble to forward routing. In this section we describe the basic steps
involved in static routing. In the next section we describe in detail
the specific steps involved in MTSD latch scheduling.

A route-link (Pi, Pj) represents a logical connection from block
output terminal Pi to block input terminal Pj located on a different
FPGA. A route-link often has to cross multiple FPGAs before
reaching its destination. We calculate link depths that represent the
longest time required to propagate through the network from the
source FPGA to the destination FPGA. We create a partial order by
sorting route-links by depth to ensure that all the route-links upon
which a given route-link depends are scheduled before the route-
link itself. The core scheduling algorithm involves the following
steps:

For each route-link(Pi,Pj),

1. Find the latest time, calledReadyTimeat which a value must
arrive at its destination for further evaluation. For Pj terminat-
ing at design primary output k, ReadyTime is Delay(Pj to k).
2. Find the shortest path ‘sp’ from Pi to Pj such that data
arrives by ReadyTime(Pj). We use a modified Dijkstra’s algo-
rithm[6].
3. Reserve wiring resources along the path sp.
4. ComputeDepartureTime(Pi) at the source Pi:

DepartureTime(Pi) = ReadyTime(Pj) - PathLength(sp)
5. Update input ReadyTimes at the block,

for each terminal Pk in Parent(Pi)
 ReadyTime(Pk) = DepartureTime(Pi) - Delay(Pk to Pi)

7. MTSD Scheduling
In this section we focus on how MTSD paths are scheduled such
that we satisfy hold time requirements on every MTSD latch in
each of the constituent domains.

MTSD Dependency and Depth
The key issue here is to ensure that we create a causally correct

order of route-links such that when scheduled, the order satisfies
the dependency between route-links in a given combinational path.
The MTSD paths between fork and merge are split into a group of
route links that belong to different domains which collectively
transport the MTSD value across FPGAs. If the scheduler can
ensure that these route-links are scheduled such that they all take an
equal number of virtual clocks to propagate the value, the causally
correct value can be easily regenerated at the destination.

To aid scheduling, we compute two types of dependency class
SameDomainDependencywhich tracks link dependencies within a
single domain andAllDomainDependencywhich tracks link depen-
dencies within all domains including cross domain paths. We u
AllDomainDependency to sort all route links in all domains and
produce a partial order that is consistent in each of the domai
During scheduling, we are only interested in following sam
domain paths to compute an optimal schedule[4]. In addition w
compute MinDelay(i, L) and MaxDelay(i, L) for each block inpu
terminal i to latch L as there can be multiple combinational pat
from a block input terminal to a latch.

MTSD Latch Ordering

As noted earlier, to satisfy the hold time of a MTSD latch, we nee
to schedule such that Gate signal information from output to inp
arrives at the latch at or before the time the Data arrives. Th
imposes an additional ordering requirement on route-links. Here
describe the scheme that helps to compute the evaluation orde
route-links and latches. To aid in latch ordering, we analyze ea
MTSD partition and create the following block terminal sets fo
each latch as shown in Figure 6:

• D-INPUT Set: Group of all MTSD Block terminals that com-
binationally reach the Data terminal of the latch. This include
any input that reaches both Data and Gate (called DG inpu

• G-INPUT Set: Group of all Gate only inputs to a latch.
• D-OUTPUT Set: Group of all block terminals which are

dependent children of terminals in D-INPUT set.

Latch Groups
Since the same block terminal can combinationally reach more th
one latch, it is necessary to analyze evaluation order betwe
latches. This imposes additional constraints on the order in wh
block terminals need to be scheduled. We analyze each MTSD p
tition and compute the following latch relationships:

• DD-type: When a block terminal is connected to Data inpu
of two or more latches, it represents a sibling relationsh
between latches. We combine such latches by merging their
INPUT and D-OUTPUT sets so that these latches are eva
ated together.

• DG-type: If a block input reaches Data of latch L1 and Gate
latch L2 then the latch L2 needs to be scheduled before
latch L1, since Gate terminals are evaluated first. This ess
tially forms a Parent-Child dependency relationship betwe
L2 as parent and L1 as child. DGChild(L) contains a set

D Q

G

D-OUTPUT SET

D-INPUT SET

G-INPUT SET

LATCH L1

Figure 6: MTSD Latch Ordering.

Combinational Path Inter FPGA RouteLinks

MTSD BLOCK
BOUNDARY

)

he
m

xi-

n

)

at

ta

ich

))

es
ve
es
es.
ot

er-
to
at
latches which must be evaluated after latch L.
• DG-Cycle: When we have a cyclical DG relation involving

two or more latches, the only way to satisfy DG constraints on
all latches is to evaluate all of them simultaneously. We treat
this case the same as DD-types by combining latch D-INPUT
and D-OUTPUT sets.

Computing MTSD Latch Dependency
The DG constraint implies that: D-INPUT terminals must be evalu-
ated after all of the dependent G-INPUT terminals are evaluated but
before the latch itself is evaluated. This constraint must hold valid
in each of the same domain (Di,Gj) pairs for Di in the D-INPUT Set
and Gj in the G-INPUT set. Essentially we are introducing two
types of dependencies into the system:

• Dependency introduced between terminals in the D-INPUT set
and terminals in the G-INPUT set.

• Dependency introduced between latches/latch groups due to
DG relationships.

We use these dependencies to order latch route-links with other
route-links.

Latch Evaluation

Figure 7 illustrates the basic steps involved in Latch scheduling.
Due to the latch order described earlier, by the time a latch gets
evaluated, we know theDepartureTimesof all the terminals in it’s
D-OUTPUT set. Note that in the above diagram arrows indicates
the flow of ReadyTime, the time at which the value must be ready
for consumption by dependent logic. The ready-time evaluation
sequence is indicated by the numbers in the parenthesis. This algo-
rithm computes the final ready time on D-INPUTs and the lower
bound for the ready times on G-INPUTs.

For each latch L,

1. Compute the initial ReadyTimes for each terminal Di in D-
INPUT(L) set based on the DepartureTimes of their
fanouts(D-OUTPUTs). Note that these are not final Ready-
Times because they do not take into account the latch’s Ready-
Time.

For each output terminal Oj in DependChild(Di),

 ReadyTime(Di) = MAX (DepatureTime(Oj) - MaxDelay(Di to Oj)

2. Evaluate the difference between each ReadyTime(Di) with t
ReadyTime(L) and if the difference is less than the minimu
delay from Di to the latch L, then update the ReadyTime(L).

For each Di in D-INPUT(L),

 ReadyTime(L) = MAX (ReadyTime(Di) + MinDelay(Di to L))

3. If latch L has DG relationship on other latches, take the ma
mum ReadyTime of child latches:

For each child latch Lc in DGChild(L),

ReadyTime(L) = MAX (ReadyTime(L), ReadyTime(Lc))

4. For each Di in D-INPUT(L),

4.1. Compute the RequiredReadyTime. The value is called
required ReadyTime because, if data arrives any sooner tha
that time, there is a risk of violating DG Constraint.
RequiredReadyTime(Di) = ReadyTime(L) - MinDelay(Di to L

4.2. Compute the final ReadyTime. This is the ReadyTime th
is used by parent links of Di for further computation
ReadyTime(Di) =
 MAX (ReadyTime(Di), RequiredReadyTime(Di))

4.3. If ReadyTime(Di)is greater thanRequiredReadyTime(Di),
add delay compensation in the Di to L path to ensure that Da
does not arrive at the latch sooner than required.
DelayCompensation(Di, L) =

 ReadyTime(Di) - RequiredReadyTime(Di)

A delay equal toDelayCompensation(Di,L) is injected in the
path from Di to latch L by adding a chain of Virtual Clock trig-
gered flip-flops.

5. PropagateReadyTime(L)to each of the terminals in G-
INPUT(L) as initialReadyTime(Gi). This is initial ReadyTime
because there could be other dependent children on Gi wh
can further alter its ReadyTimes.

 For each Gi in G-INPUT(L),

 ReadyTime(Gi) =

 MAX (ReadyTime(Gi, ReadyTime(L)) - MaxDelay(Gi to L

With the above algorithm it is guaranteed that theReadyTime(Gi)is
always less than or equal toReadyTime(Dj)for any (Gi, Dj) pair on
a given latch which ensures that the Gate value always arriv
before the Data value on any MTSD latch. Notice that in the abo
equations, we have used MinDelay from Data terminals to Latch
but instead have used MaxDelay from Gate terminals to Latch
This is to ensure that the delay from any Gi to a Latch does n
exceed the delay from Di to the Latch after compensation (p
formed in step 4.3). Without this compensation it is still possible
violate hold time requirements at the latch even if DG constraints
the block boundary are met.

SETS INITIAL READY TIMES

(2)FIXES LATCH
 RDY TIMES

(3) SETS FINAL Di
RDY TIMES

D Q

G

(4) SETS
INITIAL Gi
RDY TIMES

(1)

 D-OUTPUT
D-INPUT
SET

G-INPUT
SET

Figure 7: MTSD Latch Evaluation.

Block Boundary

 SET

ere
SD
s
ch.

ing
n.
ted
o
r-
ts.
in-
a

ary
his
to

ling
al
ly
ng
as
ge
the
a

r-

est
cks

-

-

.

8. Experimental Results

We have implemented the algorithms described in this paper and
integrated them into the Ikos VirtuaLogic Compiler[8] for the
VStation-5M Emulator. We have taken two industrial designs con-
taining asynchronous domains and compiled them using the Virtua-
Logic compiler. Design1 has a smaller percentage of MTSD logic

when compared to Design2 and has fewer memory modules. Table
1 compares the results of scheduled MTSD Virtual routing to hard-
wire routing. Note that Virtual routed wires and pins are multi-
plexed to achieve better FPGA pin utilization while hard routed
wires require dedicated physical wires and pins. To determine the
results for hard routing experiments we ran a pre-routing step
which reserved physical pins between source and destination
FPGAs for each MTSD wire and removed those pins from consid-
eration during virtual routing of non-MTSD wires. Note that the
number of Virtual clocks in the critical path for Design2 is much

higher than Design1. This is because experiments for Design2 w
dominated by memory transactions. It can be seen that the MT
routing results in a slightly smaller number of Virtual clock
(hence faster execution) as compared to the hard wired approa
This is because if some physical wires are removed, the remain
wires have to carry a greater load of non-MTSD communicatio
Maximum emulation clock speeds in rows 10 and 11 are estima
based on a 34 MHz Virtual clock on a VStation-5M Emulator. T
further illustrate the usefulness of virtual routing, we varied the pa
tition sizes for Design1 and compared the resulting IO pincoun
Figure 8 shows the number of FPGAs needed vs. per-FPGA P
counts. Since there is a hard limit on the number of pins on
FPGA, unless time scheduled Virtual routing is used, it is necess
to reduce the partition size in order to keep the pincount below t
hard limit. This results in a need for substantially more FPGAs
fit the same design for hard routing versus Virtual routing.

9. Conclusions

In this paper we have described a new, general approach for dea
with multiple asynchronous clock domains in parallel function
verification systems. The goal of this work was to automatical
handle multi domain asynchronous designs with higher modeli
accuracy while maintaining high performance. The approach h
been demonstrated on a VirtuaLogic emulation system for two lar
commercial benchmark designs. Experimental results show that
approach is scalable and provides good modeling fidelity. As
result of this scalability, an improvement in overall system perfo
mance was also obtained.

We plan to extend this approach to deal with memories under t
and hard-wired cores. The heterogeneous nature of these blo
presents special considerations for scheduling and interfacing.

10. Acknowledgments

We thank Ken Crouch and Matt Dahl for many insightful discus
sions on scheduling and routing.

11. References

[1] Gopi Ganapathy, et al., "Hardware Emulation for Functional
Verification of K5", Proceedings, 33rd Design Automation
Conference, June 1996.

[2] J. Babb, R. Tessier et al. “Virtual Wires: Overcoming Pinlimi
tations in FPGA based logic emulators”. In Proceedings of
IEEE Workshop on FPGA based Custom Computing
Machines, pages 142-151, Napa, CA, April 1993.

[3] J. Babb, R. Tessier, et al. “Logic Emulation and Virtual
Wires”. In IEEE Transactions on CAD, June 1997, Vol 16,
No.6, Pages 609-626.

[4] C. Selvidge, et al. “TIERS: Topology Independent Pipelined
Routing and Scheduling for VirtualWire Compilation”. In Pro-
ceedings of FPGA’95, pages 25-31, Berkeley, CA, Feb 1995

[5] Corman et al. Introduction to Algorithms, MIT Press, 1992.
[6] Shekhar Patkar and Pran Kurup, "ASIC Design Flow Scores

on First Pass", Integrated Systems Design Magazine, Aug
1997.

[7] IKOS Systems Inc, VirtuaLogic Datasheet, http://
www.ikos.com/products/vsli/index.html

[8] Quickturn Design Systems, Cobalt Data Sheet, http://
www.quickturn.com/products/cobalt.htm

Testcase Design1 Design2

1. Num. Total Modules 543000 57000

2. Num. MTSD Modules 3100 7400

3. Num. Clock Domains 3 2

4. Num. MTSD Paths 173 213

5. Num. MTSD FPGAs 23 24

6. Clock Domains d1 d2 d3 d1 d2

7. Num. Non MTSD FPGAs 11 43 180 4 7

8. Critical Path (Virtual-
Clocks) MTSD Hard Routed

 42 47 49 85 131

9. Critical Path (Virtual-
Clocks)MTSD VirtualRouted

 37 38 46 68 108

10. Est. Max Speed
MTSD HardRouted

 346 KHz 129 KHz

11. Est. Max Speed
MTSD VirtualRouted

 369 KHz 157 KHz

Table 1: MTSD Virtual Routing vs. Hard Routing

 3000

 2000

 1000

400 800 1200 1600

For Xilinx 4062 FPGAs
UserIO Pincount is 352

Pin Count

Fpga

 PinCount FpgaCount

 120 3492
 287 1702
 657 735
 727 430
 1047 331
 1780 280

Figure 8: Hard Routing Vs. Virtual Routing.

Count

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

