Static Scheduling of Multiple Asynchronous Domains
For Functional Verification

Murali Kudlugi Charles Selvidge Russell Tessier
Emulation Systems Group Dept. of Electrical and Computer Engg.
IKOS Systems Inc. University of Massachusetts
Waltham, MA Amherst, MA
{murali,selvidge}@ma.ikos.com tessier@ecs.umass.edu
Abstract inter-processor communication should be performed (the multi

domain transport problem). As an example, for logic emulators
While ASIC devices of a decade ago primarily contained synchroq{1,3], special compilation and/or manual steps have been required
nous circuitry triggered with a single clock, many contemporaryto isolate individual asynchronous domains in hardware by directly
architectures require multiple clocks that operate asynchronously tmapping communication paths to special system hardware at the
each other. This multi-clock domain behavior presents significanexpense of performance and mapping flexibility. Not only has this
functional verification challenges for large parallel verification sys-approach been difficult and time-consuming, but often results are
tems such as distributed parallel simulators and logic emulators. lanpredictable, leading to verification flaws.
particular, multiple asynchronous design clocks make it difficult to In this paper, we present a general approach to address the paral-
verify that design hold times are met during logic evaluation andlel verification of designs with multiple asynchronous clock
causality along reconvergent fanout paths is preserved during signdbmains. The basis of this approach is the formulation of a set of
communication. In this paper, we describe scheduling and synchrazonstraints which can be integrated into logic evaluation and pro-
nization techniques to maintain modeling fidelity for designs with cessor communication scheduling. It will be shown that this
multiple asynchronous clock domains that are mapped to paralledpproach can be scaled to handle an unlimited number of asynchro-
verification systems. It is shown that when our approach is appliethous domains and can achieve provable modeling fidelity. After
to an FPGA-based logic emulator, evaluation fidelity is maintainedformulating the scheduling problem and describing our general
and increased design evaluation performance can be achieved fapproach, a discussion of the integration of our algorithms with a
large benchmark designs with multiple asynchronous clockcommercial FPGA-based logic emulation system from lkos Sys-

domains. tems is provided [7]. It is shown that the new constraints and algo-
rithms achieve modeling fidelity and overall system performance
1. Introduction improvement versus a previous "hard-wired" approach for two

) large commercial ASIC designs that contain multiple asynchronous
To meet the need for more complete functional coverage, many|qck domains.

ASIC designers are turning to parallel verification platforms which
perform many logical evaluations concurrently. These system
which include logic emulators [6,7,8] and parallel cycle-basejz' BaCkground
simulators, often contain special-purpose logic processors oOThe approach described in this paper can be applied to numerous
FPGAs which evaluate logic and communicate results using a hightogic emulation and parallel cycle-based systems that statically-
speed system clock. Since numerous logic evaluations are requireghedule logic computation and signal communication at compile-
per user design clock cycle, a fixed relationship must be createime. Example verification architectures that fit this model include
between the behavior of the system and design clocks. Thiguickturn CoBalt [8] and Arkos emulators [6], and Ikos Virtua-
relationship can then be used to determine when specific logi¢ogic emulators. The target system for this paper is an Ikos Virtua-
functions should be evaluated inside logic processors and whepogic emulation system that contains 384 Xilinx XC4062XL
data should be communicated between processors. Multiple desigFPGAs.
clocks with known phase relationships can also easily be handled Inter-FPGA communication in VirtuaLogic systems is based on
by deriving a base frequency which can be used for logic andvirtual Wires technology, an inter-FPGA communication schedul-
communication scheduling. ing technique. This approach pipelines multiple logical signals
A significant problem arises when ASIC designs with multiple called Virtual wires across single inter-FPGA wires to overcome
asynchronous timing domains are mapped to parallel logicFPGA pin limitations[3, 4]. Logic designs are mapped to multi-
verification hardware [6]. The unknown phase relationship betweelFPGA VirtualLogic systems through a series of compilation steps.
domains can make it difficult to determine when individual logic These steps include design partitioning into logic blocks small
functions should be evaluated (the hold-time problem), and whernough to fit within FPGAs, placement of logic blocks onto specific
FPGAs, and scheduling of both intra-FPGA logic evaluation and
inter-FPGA communication. Both logic evaluation and signal com-
munication are controlled by a high-speed clock callediréual
Permission to make digital or hard copies of all or part of this work for c|ock which serves as a discrete timebase, providing a reliable
personal or classroom use is granted without fee provided that copies are, e chanism for controlling the order of events at a fine granularity.
not made or distributed for profit or commercial advantage and that copiesg; o many combinational evaluations and signal transfers may
bear this notice and the full citation on the first page. To copy otherwise, or . . - . .
republish, to post on servers or to redistribute to lists, requires prior specificoCCur in a single (_jeS|gn clock cycle, the virtual _ClOCk by neceSSIty
permission and/or a fee. runs at a much higher frequency than the design cl(.)ck.l For logic
DAC 2001 June 18-22, 2001, Las Vegas, Nevada, USA. emulation systems, inter-FPGA (processor) communication sched-
Copyright 2001 ACM 1-58113-297-2/01/0006...$5.00. uling is based on the virtual clock.

3. Multi Domain Problems cross over an FPGA boundary to another FPGA that may be located
) ~__some routing distance away. Due to unpredictable routing delays

There are a number of problems that make multi domain circuitsy;,ch as routing congestion, it is possible for the domainl (D1)

interesting and challenging from a functional modeling point of yajye of N5 to start from the source FPGA sooner than the domain2

view. (D2) value but still arrive after the D2 value reaches its destination.
)]) . This can break the causality principle and cause the clobbering of
Modeling Logic In Multiple Domains the D2 value. Figure 2 illustrates such a case. One key requirement
Functional Axiom 1Timing Closure
Combinational logic plus transmission delay plus setup time <l
between two sequential elements in the same domain takes less than N5(MTSD) N5 (02)
one clock period of the fastest clock attached to either of the Ni@
sequential elements.
FPGA
7 \ PARTITION * \
NL L |< <. N6 4
s \\—//J D i / \ / AN
7 N1-N3-N5-N6
CLK1
—‘ N3
FF1)_Ns_ FF3
‘ N7
N2fD q Gl D Q— N) ®
\ P TIME
CLK2 N2-N4-N5-N7 t=1 t=2 t=3 t=4 t=6 t=7 t=8
T T
- 2 7 ~ ,:,:4/ Figure 2: Transporting Multi Domain Values.
- -~ - in transporting multi-domain signals is to ensure that causality of

Figure 1: A Multi Transition and Sample Domain (MTSD) Example. events is guaranteed within each of the constituent domains irre-

Consider the circuitry shown in Figure 1 where two asynchronousSpeCtNe of routing delays.

clocks CLK1 and CLK2 drive state elements (FF1,FF3) and (FF2
FF4) respectively. This circuit contains two same domain patthOId Time Problem in Multi Domains
FF1.Q-N3-N5-FF3.D in the domain of CLK1 and FF2.Q-N4-N5-

FF4.D in the domain of CLK2. Note that the net N5 transitions and — L

is sampled in both clock domains. It is calledd@SD (Multi Tran- |
sition and Sample Domaimet. The correct functional model of DATA | b |
this circuit must simultaneously satisfy the timing closure axiom in

each constituent domain. This means the data at FF1.Q must reach GATE L G |
FF3.D in exactly one cycle of CLK1 and data at FF2.Q must reach —? o |
FF4.D in exactly one cycle of CLK2 irrespective of combinational

delays or multi domain segments in the paths. /(M?SD_PAR_TWEN__—_f

COMBINATIONAL LOGIC

Transporting Multi Domain Values Figure 3: MTSD Latch Example.

Functional Axiom 2Causalit - . .
y The correct functioning of state elements requires that data signals

The occurrence times of combinational logic form a partial order arrive at an element a certain period of time (setup time) before the
based on causality. If part A feeds part B, events on A must have P P

occurred before events on B. triggering signal and are held steady for certain period of time (hold

Another verification issue involves the transport of multi value sig-“me) after the triggering signal arrives. If the triggering signal

el na ysemwhersirFPGA communcaton nees 0 b 155 2 1S T 1 e 0T T < O s
chronous to a system clock (e.g. virtual clock). Previous work P ’ y

suggests that we either avoid such a situation by limiting the size oﬁwroFti)leuTelg dv?/ﬁli)éhs fwgzltlcvoemctl)rircwglttiznglo Irc]) S'S:e;(?ufémpli,?ggtzh:mn
asynchronous-domain logic to one FPGA or dedicate special inter- 9 ! 9 9

FPGA wires to transport the values (hard-wiring) [3]. Since hard-Data inputs, and the waveforms shown in Figure 4. Here D, G and

wired signals cannot be multiplexed to carry non-MTSD nets pinQ represent Dgta, Gate gr)d Output waveforms of the latch. Figure
limitation problems [2] can result leading to reduced system perfor-4(a) shows an ideal condition where the edge on user clock CLK at

mance. To avoid this problem, it is desirable to split multi domaint.:tl causes a change in Gate and Data values at the same instant of

values into constituent domain values and to route (schedule) the |r(rl1)¢)e zﬂgvt/zerﬁlc?rgarhejgigicg\?\/tjvset% rr?rgsmv;rngrlgtfgu%ia :je;:"fégﬂ;i
in respective domains and recover the multi-domain value at th%h . . 9 ys cau
T . . e Gate and Data to arrive at the latch inputs at different points in
destination FPGA or processor. This solution poses another prot%.- . to CLK. A bl . it th data “B”
lem because of unpredictable route timing that is inherent in stati-rgih'gsr?ﬁgﬂztsfh gooner. tharl)wrotheer;]eavivnsiel anc‘zls ;i\gbe?sathe old
cally routed systems. Consider a situation where the circuit invalue “A" This can happen if the routin gela on the Clock/Gate
Figure 1 is partitioned such that the multi domain value N5 needs to) pp 9 Y

path is greater than the routing delay on the Data path due to combBoundaries, resulting in a set of same domain signals on FPGA
national logic in those paths. In a case where both Gate and Dataoundaries. Fron®bservation 1notice that flow and dependence

' X X relationships on intra-FPGA paths only need to consider combina-
LK ok tionally connected signals from the same domain. Causal merging
can be accomplished by dynamically selecting an appropriate sin-
gle domain signal at a MERGE point. Our scheduler ensures that
the transport delays of paths from independent domains are equal
so that the value arriving at the merge point is guaranteed to be
causally correct.

' D

.

p—

o XX
o
¢
.
.

Q A A X' [« Q
t ! K N3(D1)
I "2 lt1 Ny _INVALID REGION — N5 (B1)
(@) Ideal condition: No violation (b) Hold time violation: Value “A” is lost D |
NS (D2i N5 (MTSD

Figure 4: Hold Time Violation in MTSD States N4(D2)
—|
paths are in the same domain, it is easy for a scheduler to compute CAREON \MTSD
regions of time when Gate is invalid and mask those regions so that prse MERGE
latches are not evaluated. This solution fails if Data and Gate nets Figure 5: Multi-Domain Data Transport.

are multi domain nets because regions of validity for latch evalua-
tion in one domain may conflict with regions of invalidity in other

domains. The key challenge here is to satisfy hold time requireg|d Time Constraints on a MTSD Latch

ments for every (D,G) pair in each of the constituent domains. .
Observation 2:

4. Definitions For a multi domain latch, instantaneous Setup time violations are

. . . correctable whereas instantaneous Hold time violations are not.
MTSD Net. A net which transitions (changes value) and is sampled

(read) by more than one clock domain. In Figure 1, net N5 is alhe basis oDbservation Ztems from the fact that when a latch is
MTSD net. evaluated with OLD data against a new gate, (a Setup time viola-
o) tion), new data arrival results in re-evaluation of the latch output if
MTSD Gate. Any combinational gate whose output is connected t0y,q |4¢ch gate is open. If the latch gate is closed, OLD data does not
an MTSD net. In Figure 1, gate G1is a MTSD gate. corrupt the output. Alternatively, if a latch is evaluated with NEW
MTSD State.A latch/flip-flop whose gate/clock input is sourced data against an OLD gate that is open (a Hold time violation), the
by a multi transition net. correct latch value may be irretrievably lost since the OLD data is
no longer available.
MTSD Block. The MTSD logic is partitioned into chunks of size .)) Lo .
We will use notation V(Ai,BK) to indicate the value of signal V

that are small enough to fit into a FPGA. It is at the block boundary” ", . . ;
all the inter-EPGA communication (routing) takes place. which occurs in response to the ith clock edge of domain A and kth

clock edge of domain B.

5. The Approach For any latch with Data D(Ai, Bk) and Gate G(Aj, Bk) on some

] clock edge k in Domain B, we have three possible conditions:
Observation 1:

. .)) o ~« (i<])) =>instantaneous Setup time violation.
For any relationship Ri(A, B) in a multi domain circuit containing (i == j) => both Setup and Hold Time satisfied

domains A and B, it is sufficient to satisfy Ri(A) and Ri(B) for cor-, ;> j)" => instantaneous Hold time violation

rect functional verification. Observation limplies that every edge k in domain B requires an

For example, in the circuit showing Figure 1, we only need to sat-evaluation of the latch with D(Ai, BK) against G(Aj, Bk) which sat-
isfy the timing closure property for the same domain paths FF1.Qisfies both setup and hold time with respect to(bservation 2
N3-N5-FF3.D and FF2.Q-N4-N5-FF4.D but not for the crossiMmPplies that when performing such an evaluation, it is legitimate to
domain paths FF1.Q-N3-N5-FF4.D or FF2.Q-N4-N5-FF3.D. simi-have i <j or i ==j but not legitimate to havi > j. Thesymmetrical
larly hold time must be satisfied for each same domain (D,G) pairs(elationship holds with respect to evaluations against A. This rela-
Essentially, the multi domain problem reduces to satisfying func-{ionship can be extended to an arbitrary number of domains.The
tional requirements within each of the constituent domains simultaimplication of this is that every edge for any domain results in an

neously. evaluation which satisfies both setup and hold time with respect to
that domain and any evaluation not satisfying setup against some

Multi-Domain Data Transport domain is subsequently followed by a correcting evaluation against
that domain.

Inter-FPGA data transport of an MTSD net can be decomposed into

the independent transport of a set of signal components from each Our new static scheduler algorithm ensures that the Data never
domain which are causally merged at the destination. We represeairives before Gate for any edge on any domain and that both arrive
these flows by adding FORK/MERGE operator pairs at FPGAPrior to subsequent edges from that domain.

Transforming MTSD flip-flops To aid scheduling, we compute two types of dependency classes,
SameDomainDependenasich tracks link dependencies within a

MTSD flip-flops are not covered by l83ervation 2and are more . . . - .)
difficult to address than MTSD latches. Our approach to handleSIngle domain andliDomainDependenaghich tracks link depen

. . : . _dencies within all domains including cross domain paths. We use
MTSD flip-flops is to transform them into master slave latch pairs g P

: - lIDomainDependency to sort all route links in all domains and to
gr;ghg;en subject them to the same processing as other MTS@roduce a partial order that is consistent in each of the domains.

During scheduling, we are only interested in following same
) . domain paths to compute an optimal schedule[4]. In addition we
6. Static Scheduling compute MinDelay(i, L) and MaxDelay(i, L) for each block input

We have used a modified TIERS scheduling algorithm to rc)uteterminal i to latch L as there can be multiple combinational paths

communication paths between blocks[4]. This is a reverse scheduffOm a block input terminal to a latch.

ing algorithm in that it routes paths starting from primary outputs to .
primary inputs. Note that the techniques explained are also applicdTSD Latch Ordering
ble to forward routing. In this section we describe the basic steps
involved in static routing. In the next section we describe in detail

D-INPUT SET

the specific steps involved in MTSD latch scheduling. : - - - j’
A route-link (Pi, Pj) represents a logical connection from block » 5

output terminal Pi to block input terminal Pj located on a different "OUTPUT SET

FPGA. A route-link often has to cross multiple FPGAs before
reaching its destination. We calculate link depths that represent the
longest time required to propagate through the network from the
source FPGA to the destination FPGA. We create a partial order by G-INPUT SETI
sorting route-links by depth to ensure that all the route-links upon _ __ —_pwCombinational Path ———pp»-Inter FPGA RouteLinks
which a given route-link depends are scheduled before the route-

link itself. The core scheduling algorithm involves the following
steps:

LATCH L1
MTSD BLOCK
Y

Figure 6: MTSD Latch Ordering.

As noted earlier, to satisfy the hold time of a MTSD latch, we need
For each route-link(Pi,Pj), to schedule such that Gate signal information from output to input
.)) . arrives at the latch at or before the time the Data arrives. This
1 '_:'nd the Iatest_ tlm_e, calleReadyTimet W_h'Ch avaIL_le mu_st imposes an additional ordering requirement on route-links. Here we
arrive at its destination for further evaluation. For Pj terminat- yescrine the scheme that helps to compute the evaluation order of
ing at design primary output k, ReadyTime is Delay(Pj to k). o te |inks and latches. To aid in latch ordering, we analyze each

2. Find the shortegt path. 'sp’ from Pi to Pj, ,SUCh F.hat data MTSD partition and create the following block terminal sets for
arrives by ReadyTime(Pj). We use a modified Dijkstra’s algo- each latch as shown in Figure 6

rithm([6].
3. Re[S(]erve wiring resources along the path sp. e D-INPUT Set: Group of all MTSD Block terminals that com-
4. ComputeDeparture TiméPi) at the source Pi: binationally reach the Data terminal of the latch. This includes
DepartureTime(Pi) = ReadyTime(Pj) - PathLength(sp) any input that reaches both Data and Gate (called DG input).
5. Update input ReadyTimes at the block, e G-INPUT Set: Group of all Gate only inputs to a latch.
for each terminal Pk in Parent(Pi) e D-OUTPUT Set: Group of all block terminals which are
ReadyTime(Pk) = DepartureTime(Pi) - Delay(Pk to Pi) dependent children of terminals in D-INPUT set.
7. MTSD Scheduling Latch Groups

)) Since the same block terminal can combinationally reach more than
In this section we focus on how MTSD paths are scheduled sucpe |atch, it is necessary to analyze evaluation order between
that we satisfy hold time requirements on every MTSD latch in|atches. This imposes additional constraints on the order in which
each of the constituent domains. block terminals need to be scheduled. We analyze each MTSD par-

tition and compute the following latch relationships:

MTSD Dependency and Depth o _
.) * DD-type: When a block terminal is connected to Data inputs
The key issue here is to ensure that we create a causally correct ¢ v o+ more latches, it represents a sibling relationship

order of route-links such that when scheduled, the order satisfies between latches. We combine such latches by merging their D-

the dependency between route-links in a given combinational path. INPUT and D-OUTPUT sets so that these latches are evalu-
The MTSD paths between fork and merge are split into a group of ated together

route links that belong to different domains which collectively , DG-type: If a block input reaches Data of latch L1 and Gate of
transport the MTSD value across FPGAs. If the scheduler can latch L2 then the latch L2 needs to be scheduled before the
ensure that these route-links are scheduled such that they all take an |11 | 1 since Gate terminals are evaluated first. This essen-
equal number of virtual clocks to propagate the value, the causally tially forms a Parent-Child dependency relationship between
correct value can be easily regenerated at the destination. L2 as parent and L1 as child. DGChild(L) contains a set of

latches which must be evaluated after latch L. For each output terminal Oj in DependChild(Di),

* DG-Cycle: When we have a cyclical DG relation involving) o) . . .
two or more latches, the only way to satisfy DG constraints on ReadyTime(Di) = MAX (DepatureTime(Oj) - MaxDelay(Di to O}))

aII_ latches is to evaluate all of them simu_lte_tneously. We treat; e\ aiuate the difference between each ReadyTime(Di) with the
this case the same as DD-types by combining latch D-INPUT ReadyTime(L) and if the difference is less than the minimum
and D-OUTPUT sets. delay from Di to the latch L, then update the ReadyTime(L).

Computing MTSD Latch Dependency For each Di in D-INPUT(L),

The DG constraint implies that: D-INPUT terminals must be evalu- ReadyTime(L) = MAX (ReadyTime(Di) + MinDelay(Di to L))
ated after all of the dependent G-INPUT terminals are evaluated but

before the latch itself is evaluated. This constraint must hold valid3. If latch L has DG relationship on other latches, take the maxi-
in each of the same domain (Di,Gj) pairs for Di in the D-INPUT Set mum ReadyTime of child latches:

and Gj in the G-INPUT set. Essentially we are introducing two For each child latch Lc in DGChild(L),

types of dependencies into the system:
. . . ReadyTime(L) = MAX (ReadyTime(L), ReadyTime(Lc))
e Dependency introduced between terminals in the D-INPUT set

and terminals in the G-INPUT set. 4. For each Diin D-INPUT(L),
« Dependency introduced between latches/latch groups due to 4.1. Compute thequiredReadyTim@he value is called

DG relationships. requiredReadyTime because, if data arrives any sooner than
We use these dependencies to order latch route-links with other quir yi) S Y
that time, there is a risk of violating DG Constraint.

route-links. RequiredReadyTime(Di) = ReadyTime(L) - MinDelay(Di to L)

Latch Evaluation
4.2. Compute the final ReadyTime. This is the ReadyTime that

is used by parent links of Di for further computation

D-INPUT D-OUTPUT ' N
SET (1) SETS INITIAL READY TIMES /1 SET ReadyTime(Di) =) .)))
MAX (ReadyTime(Di), RequiredReadyTime(Di))
\%%m K 4.3. If ReadyTime(Di)s greater thaRequiredReadyTime(Di)
-) Q add delay compensation in the Di to L path to ensure that Data
(3) SETS FINAL DI does not arrive at the latch sooner than required.
RDY TIMES DelayCompensation(Di, L) =
G
- Do ReadyTime(Di) - RequiredReadyTime(Di)
'FL\‘I;TYV;ILMGEiS A delay equal toDelayCompensation(Di,Li} injected in the
path from Di to latch L by adding a chain of Virtual Clock trig-
GINPUT gered flip-flops.
SET Block Boundar - - -
b 4 5. PropagateReadyTime(L)to each of the terminals in G-

INPUT(L) as initialReadyTime(Gi)This is initial ReadyTime
because there could be other dependent children on Gi which
can further alter its ReadyTimes.

Figure 7: MTSD Latch Evaluation.

Figure 7 illustrates the basic steps involved in Latch scheduling.
Due to the latch order described earlier, by the time a latch gets For each Gi in G-INPUT(L),
evaluated, we know thBepartureTime®f all the terminals in it's
D-OUTPUT set. Note that in the above diagram arrows indicates
the flow of ReadyTime, the time at which the value must be ready MAX (ReadyTime(Gi, ReadyTime(L)) - MaxDelay(Gi to L))
for consumption by dependent logic. The ready-time evaluation) o)]
sequence is indicated by the numbers in the parenthesis. This alg¥!ith the above algorithm it is guaranteed that ReadyTime(Gils
rithm computes the final ready time on D-INPUTs and the lowera/ways less than or equal ReadyTime(Djjor any (Gi, Dj) pair on
bound for the ready times on G-INPUTSs. a given latch which ensures that the Gate value always arrives
before the Data value on any MTSD latch. Notice that in the above
For each latch L, equations, we have used MinDelay from Data terminals to Latches
1. Compute the initial ReadyTimes for each terminal Di in D- but. iqstead have used MaxDelay from Gate.terminals to Latches.
INPUT(L) set based on the DepartureTimes of theirTh's is to ensure that the delay from any Gi to a Latch does not

fanouts(D-OUTPUTS). Note that these are not final Re‘,Jldy_exceed the delay from Di to the Latch after compensation (per-

Times because they do not take into account the latch’s Read);_ormed in step 4.3). Without this compensation it is still possible to
Time violate hold time requirements at the latch even if DG constraints at

the block boundary are met.

ReadyTime(Gi) =

8. Experimental Results higher than Design1. This is because experiments for Design2 were
dominated by memory transactions. It can be seen that the MTSD
We have implemented the algorithms described in this paper angbuting results in a slightly smaller number of Virtual clocks
integrated them into the lkos VirtualLogic Compiler[8] for the (hence faster execution) as compared to the hard wired approach.
VStation-5M Emulator. We have taken two industrial designs con-This is because if some physical wires are removed, the remaining
taining asynchronous domains and compiled them using the Virtuawires have to carry a greater load of non-MTSD communication.
Logic compiler. Designl has a smaller percentage of MTSD logicMaximum emulation clock speeds in rows 10 and 11 are estimated
based on a 34 MHz Virtual clock on a VStation-5M Emulator. To

Testcase Design1 Design2 f.u.rther'illustrate the' usefulness of virtual routing, we varieo! the par-
tition sizes for Designl and compared the resulting IO pincounts.
1. Num. Total Modules 543000 57000 Figure 8 shows the number of FPGAs needed vs. per-FPGA Pin-
2. Num. MTSD Modules 3100 7400 counts. Since there is a hard limit on the number of pins on a
- FPGA, unless time scheduled Virtual routing is used, it is necessary
3. Num. Clock Domains 3 2 to reduce the partition size in order to keep the pincount below this
4. Num. MTSD Paths 173 213 hard limit. This results in a need for substantially more FPGAs to
5. Num. MTSD FPGAs 23 24 fit the same design for hard routing versus Virtual routing.
6. Clock Domains dl d2 dp di d2 9. Conclusions
7. Num. Non MTSD FPGAp 11 43 140 4 7 In this paper we have described a new, general approach for dealing
8. Critical Path (Virtual- 42 47 49]| 85 131 with multiple asynchronous clock domains in parallel functional
Clocks) MTSD Hard Routgd verification systems. The goal of this work was to automatically
9. Critical Path (Virtual- 37 38 461 68 108 handle multi _domai_n a_sy_nchrc_mous designs with higher modeling
Clocks)MTSD VirtualRouted accuracy while maintaining high performar_lce. The approach has
been demonstrated on a VirtuaLogic emulation system for two large
10. Est. Max Speed 346 KHz 129 KHz commercial benchmark designs. Experimental results show that the
MTSD HardRouted approach is scalable and provides good modeling fidelity. As a
11. Est. Max Speed 369 KHz 157 KHz result of this scalability, an improvement in overall system perfor-
MTSD VirtualRouted mance was also obtained.

Table 1: MTSD Virtual Routing vs. Hard Routing We plan to extend this approach to deal with memories under test
and hard-wired cores. The heterogeneous nature of these blocks

when compared to Design2 and has fewer memory modules. TabRy€sents special considerations for scheduling and interfacing.

1 compares the results of _scheduled MTSD Virtual rputing to har_dj_o_ Acknowledgments

wire routing. Note that Virtual routed wires and pins are multi-

plexed to achieve better FPGA pin utilization while hard routedWe thank Ken Crouch and Matt Dahl for many insightful discus-
wires require dedicated physical wires and pins. To determine theions on scheduling and routing.

results for hard routing experiments we ran a pre-routing step

which reserved physical pins between source and destinatio-1. References

FPGAs for each MTSD wire and removed those pins from consid-1 Gobi G thy. et al.. "Hard Emulation for Funci |
eration during virtual routing of non-MTSD wires. Note that the [1] Gopi Ganapathy, et al,, "Hardware Emulation for Functiona

number of Virtual clocks in the critical path for Design2 is much Verification of K5°, Proceedings, 33rd Design Automation
A Conference, June 1996.

[2] J. Babb, R. Tessier et al. “Virtual Wires: Overcoming Pinlimi-

|
3000 - tations in FPGA based logic emulators”. In Proceedings of
1 :’/ E‘;Lﬁg”é,ﬁggfnfr;%g IEEE Workshop on FPGA based Custom Computing
Machines, pages 142-151, Napa, CA, April 1993.
| [3] J.Babb, R. Tessier, et al. “Logic Emulation and Virtual
2000 PinCoun} FpgaCount Wires”. In IEEE Transactions on CAD, June 1997, Vol 16,
] No.6, Pages 609-626.
Fpga 120 3492 [4] C. Selvidge, et al. “TIERS: Topology Independent Pipelined
Count 287 1702 Routing and Scheduling for VirtualWire Compilation”. In Pro-
1000 gg; Zgg ceedings of FPGA95, pages 25-31, Berkeley, CA, Feb 1995.
] | 1047 331 [5] Corman et al. Introduction to Algorithms, MIT Press, 1992.
| 1780 280 [6] Shekhar Patkar and Pran Kurup, "ASIC Design Flow Scores
on First Pass", Integrated Systems Design Magazine, Aug
! 1997.
' | | [7] IKOS Systems Inc, VirtuaLogic Datasheet, http://
40L) 8&0 1200 160Rin Count www.ikos.com/products/vsli/index.html

.)) [8] Quickturn Design Systems, Cobalt Data Sheet, http://
Figure 8: Hard Routing Vs. Virtual Routing. www.quickturn.com/products/cobalt.htm

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

