
ABSTRACT
We introduce SATIRE, a new satisfiability solver that is particular-
ly suited to verification and optimization problems in electronic de-
sign automation. SATIRE builds on the most recent advances in
satisfiability research, and includes two new features to achieve
even higher performance: a facility for incrementally solving sets of
related problems, and the ability to handle non-CNF constraints.
We provide experimental evidence showing the effectiveness of
these additions to classical satisfiability solvers.

1. INTRODUCTION
Recent advances in backtrack search algorithms for Boolean satis-
fiability (SAT) have enabled the utilization of SAT modeling in a
wide variety of large-scale EDA applications such as combinational
and sequential equivalence checking, bounded model checking, test
pattern generation, timing analysis, and FPGA routing. In particu-
lar, algorithmic enhancements to basic backtrack search such as
conflict analysis [17] and recursive learning [12], coupled with op-
timized software implementations [20], make it possible today to
solve much larger SAT instances (thousands of variables and mil-
lions of clauses) than what was possible just a few years ago. Build-
ing on this success, we introduce two enhancements that expand the
modeling range of SAT in ways that directly correspond to charac-
teristics typical of problems from the EDA field. Specifically, we
address applications (1) that require the solution of many related
SAT instances [10][11] and (2) that involve complex constraints
whose encoding in conjunctive normal form (CNF) is impractical.
These enhancements have been incorporated in SATIRE, a new
backtrack SAT program that uses an incremental reasoning engine
to efficiently solve sets of related SAT instances. In addition to
CNF, SATIRE also accepts a variety of constraint types including
pseudo-Boolean inequalities [1] and cube lists. SATIRE employs
conflict analysis to derive and record conflict clauses and is archi-
tected to allow the recording of clauses identified through hypothet-
ic reasoning on both variables (recursive learning) and clauses
[15][18].

The rest of this paper is organized in 4 sections. In Section 2, we de-
fine an extension of classical SAT supporting the cooperative solu-

tion of a set of related SAT instances as well as accommodating
non-CNF constraints. Section 3 addresses some of the implementa-
tion issues that must be solved to incorporate these extensions in a
modern SAT solver. The effectiveness of these enhancements to
classical SAT is demonstrated by a sampling of experimental re-
sults in Section 4. Conclusions and future directions are summa-
rized in Section 5.

2. PROBLEM STATEMENT
The extended satisfiability problem we address is that of solving a
series of related SAT instances defined over bi-
nary variables . Each is a set of constraints that must
be simultaneously satisfied, and the consecutive instances are relat-
ed according to:

where and represent sets of constraints that are, respec-
tively, removed/added to transform into . The constraints
can be expressed in a variety of formats including:

• Standard CNF, e.g.
• Sum of products, e.g.
• Pseudo-Boolean inequalities, e.g.

Solving incrementally is accomplished by starting
the search for a solution to from the solution found for
and by taking advantage of all the learning (through clause record-
ing) that occurred during the solution of . The effec-
tiveness of incremental search, thus, depends on the degree of
similarity between the instances. In particular, one should expect
the maximum benefit to accrue when . In ad-
dition, for some sets of SAT instances significant computational
savings can result from “early termination”, namely when the un-
satisfiability of implies the unsatisfiability of all subsequent in-
stances and obviates the need to solve them. It is interesting to note
that this template generalizes earlier efforts at incremental satisfi-
ability [2][9].

EDA applications that lend themselves well to this extended SAT
formulation include (1) path sensitization problems such as test pat-
tern generation and timing analysis and (2) state traversal problems
such as sequential equivalence and model checking. Path sensitiza-
tion applications typically require the solution of a set of related
problems (find tests for all stuck-at faults; find input patterns to
propagate events along the circuit’s longest paths) that differ only
slightly from each other. For example, the SAT instance for a par-
ticular stuck-at fault problem consists of a large set of common con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

k ϕ1 … ϕk, ,{ } n
x1 … xn, , ϕi

ϕi 1+ ϕi ρi–() αi 1+∪=

ρi αi 1+
ϕi ϕi 1+

x3 x7¬ x12∨ ∨()
x2 x5¬ x¬ 3 x4¬ x11 x6x9∨ ∨()

3x1 x2¬– 2x3+ 2≥()

ϕ1 … ϕk, ,{ }
ϕi 1+ ϕi

ϕ1 … ϕi, ,{ }

ρi αi 1+, ϕi 1+«

ϕi

SATIRE: A New Incremental Satisfiability Engine
Jesse Whittemore Joonyoung Kim Karem Sakallah
University of Michigan Intel Corporation University of Michigan

jwhitte@umich.edu joonyoung.kim@intel.com karem@umich.edu

straints that model the logic circuit, and a much smaller set of
specific constraints that model fault activation and propagation.

State traversal problems, in contrast, involve unrolling a sequential
circuit for a number of cycles. Assuming that models the state
transition constraints from cycle to cycle , the SAT instance

 can be expressed as where
 represents the additional constraints that must be satisfied in

cycle (typically translated from a temporal logic specifica-
tion.) The structure of these problems admits an incremental solu-
tion approach that can take advantage of early termination as well
as learning across cycles of operation.

In addition to the above EDA applications, combinatorial optimiza-
tion problems with pseudo-Boolean objective functions can be
solved as sequences of related SAT instances that differ only in a
single pseudo-Boolean constraint which becomes tighter as the
search for the optimal solution progresses [1]. Such optimization-
to-decision problem transformations are well known, but take on
added value in the context of incremental satisfiability because of
the potential of learning across iterations of the optimization pro-
cess. Optimization applications also highlight the need for con-
straints that are more expressive than CNF. Specifically,
minimizing an objective function of the form , where the
coefficients are real and the optimization variables are binary,
leads to pseudo-Boolean constraints whose CNF repre-
sentation can be exponentially large.

3. IMPLEMENTATION ISSUES
SATIRE is an implementation of a solver for problems of the gen-
eral SAT form described above. It has its roots in the GRASP [16]
package, building upon its conflict diagnosis technology. In addi-
tion, SATIRE was architected to allow for the integration of addi-
tional forms of Boolean reasoning such as Recursive Learning
(RL) [12] and Stalmarck’s Method (SM) [8][18], as well as the in-
clusion of arbitrary constraint types and incremental satisfiability.

Conflict Diagnosis. SATIRE depends on the technique known as
clause recording, which adds clauses to the original problem set
based on the analysis of conflicts encountered during the search.
SATIRE’s implementation is adapted from GRASP with the nota-
ble difference that relationships between learned clauses and exist-
ing constraints must be determined during conflict analysis. If
constraints are removed from a problem (via incremental satisfi-
ability) it is necessary to also remove any learned clauses that were
derived from those constraints. The interdependency between new-
ly created clauses and their previously existing “parent” constraints
gives rise to a constraint hierarchy that may grow many levels
deep.

Constraint Modeling. When applied to pure CNF instances,
SATIRE’s (as well as GRASP’s) reasoning engines rely on the unit
clause rule [7] to generate implications, diagnose conflicts, and per-
form nonchronological backtracking. The CNF form is central to
these tasks because conflict signatures are inadmissible variable as-
signments whose negation exactly corresponds to the clausal form.

A natural question when considering non-CNF constraints is
whether the unit clause rule needs to be extended to a “unit con-
straint rule.” For example, the pseudo-Boolean constraint

 becomes unit under the assignment
yielding the implication , forcing the remaining unas-
signed variables to become 1. It turns out that implementing such a
rule for non-CNF constraints is unnecessary for completeness of the
search but can have a dramatic impact on its efficiency. In particu-
lar, failure to imply necessary assignments from a non-CNF con-
straint causes SATIRE’s conflict diagnosis procedure to create
corresponding CNF clauses that, individually, partially cover the
original non-CNF constraint. Over time, a complete CNF equiva-
lent representation of the non-CNF constraint may be accumulated.
This can be viewed as a feature for constraint types where an effi-
cient implementation of the unit constraint rule is difficult or com-
putationally expensive; SATIRE will automatically perform an
“on-demand” transformation to CNF creating only those clauses
that are necessary for backtracking. In practice, however, the unit
constraint rule greatly improves the efficiency of the solver and
should be implemented whenever possible. In the current imple-
mentation of SATIRE, the unit rule is fully supported for pseudo-
Boolean inequalities and partially supported for sum-of-product
constraints.

4. EXPERIMENTAL VALIDATION
In this section we present examples of SATIRE’s special features
being applied to the problems of functional delay fault
testing [14][19] and bounded model checking [3][4]. These experi-
ments demonstrate the natural match between incremental satisfi-
ability with extended constraint types and EDA problem domains.
Both examples are modeled by SATIRE in straightforward man-
ners, and in each case SATIRE’s capabilities lead to improved per-
formance.

Minimal FDFT. Ideally, one would test all paths through a circuit
for delay faults. The potentially exponential number of paths makes
such an approach infeasible, however, and functional delay fault
testing (FDFT) has emerged as a compromise [14]. Under this sche-
ma, we would seek two-vector test patterns that cause the propaga-
tion of a transition from an input to an output where it
appears as transition , but the actual path is left unspecified.

We extended the basic FDFT by requiring minimal test patterns;
test patterns with the fewest possible specified inputs (i.e., the most
don’t cares). Some FDFT methodologies require tens to hundreds
of tests per input/output/transition combination to ensure adequate
coverage [14]. Thus, given a choice, a test pattern with more un-
specified inputs is preferable to one with fewer since the former can
be used to generate more tests [19]. Such an objective function is
readily cast as a pseudo-Boolean inequality using
a suitable 2-bit encoding of the problem variables.

Minimal FDFT pattern generation requires the solution of an opti-
mization problem for each input/output/transition combination of
the circuit under test. Each subproblem, encoded as SAT, is com-
prised of three groups of constraints: (1) a large set of CNF clauses
modeling the circuit’s logical behavior, (2) a few trivial constraints
to force the desired input/output transitions, and (3) objective con-

ri
i 1– i

ϕi 1+ r1 … ri 1+∪ ∪[] αi 1+∪
αi 1+

i 1+

aixi∑ ai
xi

aixi∑ bj≤

a b c d e 4≥+ + + +() a 0=
a¬ bcde→

tI I O
tO

x1 … xn+ + b≤

straints that limit the number of specified inputs. As an optimization
problem, the SAT procedure will be iterated with the objective con-
straints being made more restrictive until the minimum number of
specified inputs is found.

The objective constraint is of particular interest because it can be
implemented by either CNF clauses or a pseudo-Boolean inequali-
ty. We performed minimal FDFT pattern generation for the combi-
national portions of a subset of the ISCAS89 circuits using both
methods. For each benchmark circuit, optimization in-
stances (corresponding to both transition combinations for all pos-
sible input/output pairs) were created and solved. The results of this
experiment are shown in Table 1: column 1 gives the circuit name,
and column 2 shows the number of primary inputs.1 The range in
the optimal number of specified inputs for each circuit is given in
columns 3 and 4. For example, across all optimization instances for
circuit s208.1 with 18 inputs, the number of specified inputs in the
optimal tests ranged between 2 and 12. The last three columns of
the table show the search times to find these optimal solutions using
three different configurations of SATIRE. The data in columns 5
and 6 were generated without invoking the incremental reasoning
engine. In other words, the sequence of SAT instances for each op-
timization iteration as well as the separate SAT instances for each
input/output/transition combination were solved in isolation. The
data in column 7 were produced by turning on the incremental rea-
soning engine within individual, as well as across, optimization in-
stances.

The column labeled “CNF” indicates the run times when the pseu-
do-Boolean objective function is modeled by a set of CNF clauses
during the search process. The data in this column clearly suggest
the infeasibility of such an approach as only four out of the sixteen
circuits could be processed this way. For the remaining twelve
benchmarks, in excess of 600,000 objective clauses were generated
before exhausting the 500MB of available memory. The columns
labeled “CNF+PB” show the data generated when the circuit and
transition constraints were modeled by CNF clauses, whereas the
objective functions were cast as pseudo-Boolean inequalities. The
run times in these two columns contrast the cases of non-incremen-
tal and fully incremental search. In both cases, all optimization runs
were completed yielding identical optimal solutions and were sig-
nificantly faster than the successful CNF-only runs. This should be
hardly surprising since the CNF-only cases were significantly larg-
er in size. The incremental approach was also consistently faster,
yielding an average speedup of 2 over the non-incremental ap-
proach.

For comparison, we ran the same tests using the binate covering
solver scherzo [5][6]. Scherzo was moderately successful when it
was not instructed to minimize the number of specified inputs. It
was not competitive, however, when it attempted to generate mini-
mal FDFT patterns, with performance ranging from 1.5 to several
hundred times slower than the SATIRE results.

Incremental BMC. Bounded model checking (BMC) [4][3] is
the process of verifying that a property holds in a transition system
for all paths up to a specified length. Length bounds are commonly
tested in succession because higher bounds are typically much
harder to verify, and thus a significant amount of work can be
avoided if a failing property can be detected with smaller bounds.
Additionally, shorter (simpler) counter examples are desirable for
failing properties.

A SAT formulation of BMC includes a set of constraints for each
time step modeling the transition from the preceding step .
A final set of constraints specifies the property being tested. In an
incremental framework, the individual time step and property check
constraints for each corresponding length bound are added incre-
mentally, testing each bound along the way. This allows the model
checker to identify the shortest counter example in the case of a fail-
ing property without starting from scratch for each bound.

Table 2 contains the times, in seconds, required by SATIRE to ver-
ify 10 properties of the PCI Local Bus [13][16], both incrementally
and non-incrementally, for paths of length 1 to 14. The values in the
“Non-Inc” and “Inc” columns compare the cumulative times re-
quired to test each length individually versus the run time of the
same solver incrementally solving for all 14 bounds. The incremen-
tal verifications are consistently faster, sometimes dramatically so.

5. CONCLUSIONS AND FUTURE
RESEARCH

The performance and capacity of satisfiability solvers has been in-
creasing steadily over the past few years. This has accelerated their
adoption as the preferred Boolean reasoning engine in many EDA1 Technically, this corresponds to the number of primary

inputs and flip-flops in the original sequential circuits.

TABLE 1: Minimal FDFT Results

Ckt #Inputs

Specified
inputs in
solution

Solution time (sec)

CNF CNF + PB

Min Max NonInc Inc

s208.1 18 2 12 1159 7 3
s344 24 1 11 - 52 33
s349 24 1 11 - 52 35
s382 24 1 12 - 34 17
s386 13 4 11 63 13 6
s400 24 1 12 - 37 21
s420 35 2 20 - 42 17
s444 24 1 12 - 43 22
s510 25 3 8 - 62 21
s526 24 1 14 - 49 29
s820 23 3 13 - 129 59
s832 23 3 13 - 127 58
s1196 32 1 18 - 2039 1701
s1238 32 1 18 - 2027 1701
s1488 14 3 11 857 413 234
s1494 14 3 11 863 410 234

2 I O××

i i 1–

applications, especially in situations where symbolic methods
based on BDDs had limited success. This paper introduced two new
enhancements to the classical SAT formulation that were motivated
by the particular properties of EDA problems. The first enhance-
ment allows sets of related problems—a common occurrence in
both verification and optimization scenarios—to be solved incre-
mentally. Compared to solving such related problems separately,
the incremental approach achieves a significant performance ad-
vantage. The second enhancement—the ability to handle more ex-
pressive constraint forms—extends the range of problems that can
be attacked beyond what is feasible with classical CNF SAT. In par-
ticular, pseudo-Boolean inequalities which are a more natural form
than CNF for representing objective functions in optimization prob-
lems, allow SAT solvers to become very competitive contenders for
solving combinatorial optimization problems.

SATIRE was architected to facilitate the incorporation of many of
the features proposed in recent years to enhance the effectiveness of
the search process. We plan to use SATIRE as an experimental test-
bed for the evaluation of such enhancements as well as the develop-
ment of additional ones. Our long-term goal is to explore the limits
of applicability of SAT methods in EDA.

6. ACKNOWLEDGMENTS
This work was funded in part by a grant from the Intel Corporation.
The authors would also like to acknowledge Fadi Aloul for provid-
ing the incremental BMC data.

7. REFERENCES
[1] P. Barth, “A Davis-Putnam based Enumeration Algorithm

for Linear Pseudo-Boolean Optimization,” Technical
Report MPI-I-95-2-003, Max-Planck-Institut Für Informa-
tik, 1995.

[2] H. Bennaceur, I. Gouachi and G. Plateau, “An Incremental
Branch-and-Bound Method for the Satisfiability Problem,”
INFORMS Journal on Computing, vol. 10, pp. 301-308,
1998.

[3] A. Biere, A. Cimmati, E. Clarke, M. Fujita, and Y. Zhu,
“Symbolic Model Checking using SAT Procedures instead

of BDDs,” Design Automation Conference (DAC), pp. 317-
320, 1999.

[4] E. Clarke, E. Emerson, and A. Sistla, “Automatic Verifica-
tion of Finite-State Concurrent Systems Using Temporal
Logic,” ACM Transactions on Programming Languages
and Systems, pp. 244-263, 1986.

[5] O. Coudert and J. C. Madre, “New Ideas for Solving Cover-
ing Problems,” Design Automation Conference (DAC), pp.
641-646, 1995.

[6] O. Coudert, “On Solving Covering Problems,” Design
Automation Conference (DAC), pp. 197-202, 1996.

[7] M. Davis, G. Logemann, and D. Loveland, “A Machine
Program for Theorem Proving,” Communications of the
ACM, vol. 5, pp. 394-397, 1962.

[8] J. F. Groote and J. P. Warners, “The Propositional Formula
Checker HeerHugo,” Technical Report SEN-R9905 (CWI),
1999.

[9] J. N. Hooker, “Solving the Incremental Satisfiability Prob-
lem,” Journal of Logic Programming, vol. 15, pp. 177-186,
1993.

[10] J. Kim, J. Whittemore, J. P. M. Silva and K. A. Sakallah,
“On Application of Incremental Satisfiability to Delay Fault
Testing,” Design, Automation and Test in Europe (DATE),
pp. 380-384, 2000.

[11] J. Kim, J. Whittemore, J. P. M. Silva and K. A. Sakallah,
“On Solving Stack-Based Incremental Satisfiability Prob-
lems,” International Conference on Computer Design
(ICCD), pp. 379-382, 2000.

[12] W. Kunz and D. Stoffel, Reasoning in Boolean Networks,
Kluwer Academic Publishers, 1997.

[13] PCI Special Interest Group, “PCI Local Bus Specification,”
Revision 2.2, December 1995.

[14] I. Pomeranz, S. M. Reddy, “Functional Delay Faults in
Macro-based Combinational Circuits,” International Con-
ference on Computer-Aided Design (ICCAD), pp. 687-694,
1995.

[15] M. Sheeran and G. Stalmarck, “A Tutorial on Stalmarck’s
Proof Procedure for Propositional Logic,” Proceedings of
Formal Methods in Computer-Aided Design (FMCAD), pp.
82-99, 1998.

[16] K. Shimizu, D. Dill, and A. Hu, “Monitor-Based Formal
Specification of PCI,” Proceedings of Formal Methods in
Computer-Aided Design (FMCAD), pp. 335-353, 2000.

[17] J. P. Marques-Silva, and K. A. Sakallah, “GRASP: A
Search Algorithm for Propositional Satisfiability,” IEEE
Transactions on Computers, vol. 48, no. 5, pp. 506-521,
May 1999.

[18] G. Stalmarck, “A System for determining propositional
logic theorems by applying values and rules to triplets that
are generated from boolean formula,” Swedish Patent No.
467,076 (approved 1992), U.S. Patent No. 5,276,897
(approved 1994), European Patent No. 0403 454 (approved
1995).

[19] S. Tragoudas and M. Michael, “ATPG tools for Delay
Faults at the Functional Level,” Design, Automation and
Test in Europe (DATE), pp. 631-635, 1999.

[20] H. Zhang, “SATO: An Efficient Propositional Prover,” in
Proceedings of International Conference on Automated
Deduction, pp. 272-275, July 1997.

TABLE 2: Incremental BMC of the PCI Bus1

1 The properties were obtained from [16]; we
translated them into CNF for these experiments.

Property Non-Inc Inc

1 Transaction Termination 2.4 1.5
2 Bus Arbitration 118.2 64.9
3 Target Termination 19.7 6.4
4 Target Termination 3.0 1.8
5 Read/Write Transaction 19.6 3.9
6 Data Transfer 375.4 318.3
7 Device Selection 1584.6 701.6
8 Device Selection 7.6 5.3
9 Master Abortion 1533.3 663.2

10 Master Abortion 7.2 5.44

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

