
Using Symbolic Algebra in Algorithmic Level DSP Synthesis
Armita Peymandoust Giovanni De Micheli

Stanford University
Computer Systems Laboratory

Stanford, CA 94305

{armita, nanni}@stanford.edu

ABSTRACT

Current multimedia applications require the design of data-
path intensive circuits. Unfortunately, current design tools and
methods support design abstraction at a level that is inferior to the
expectation of designers. Namely, most arithmetic-level
optimizations are not supported and they are left to the designers'
ingenuity. In this paper, we show how symbolic algebra can be
used to construct an arithmetic-level decomposition algorithm.
We also introduce our tool, SymSyn, that performs arithmetic
library mapping and optimization of data-flow descriptions into
data paths using arithmetic components.

1. INTRODUCTION
The growing market of multi-media applications has required

the development of complex ASICs with significant data-path
portions. Automating the design of data paths from high-level
specifications is necessary to meet time to market requirements.
The optimal choice of the arithmetic units implementing complex
data flows affects strongly the cost, performance and power
consumption of the silicon implementations. Unfortunately, most
high-level synthesis tools and methods cannot synthesize data
paths that intelligently use arithmetic libraries without synthesis
directives (pragmas).

On the other hand, current high-level synthesis tools are
effective in capturing HDL models of the circuits and mapping
them into control/data-flow graphs (CDFGs), performing
scheduling, resource sharing retiming, and control synthesis [1].
The approach presented in this paper fits seamlessly into the
current high-level synthesis flow. We propose to analyze the
data-flow segments of the CDFG models in light of the arithmetic
units available as library blocks, and to construct data paths that
exploit at best the given library. We assume that design is done
using libraries that contain, beyond the basic elements such as
adders and multipliers, more complex cells such as
multiply/accumulate (MAC), sine, cosine, ... An example of such a
library is Synopsys Designware [2] library.

Two factors are key to automate the optimal mapping of data

flow blocks. First, a common functionality description formalism
for data flow and library components. Second, a method
supporting the decomposition of the data flow into a set of library
elements. The functionality description formalism needs to be
compact, canonical, and unambiguous. Polynomial representations
have been shown to be effective for data flow representation and
for supporting matching of data flow clusters to library cells [3,
4]. Unfortunately, such methods were limited to test for a match
in the library of existing components. In case a match did not
exist, there was no automated way to search for possible
interconnections of library blocks matching the data flow cluster.

In this paper, we propose a decomposition method based on
symbolic manipulation of polynomials. We leverage results from
symbolic algebra to construct an algorithm that finds a minimal-
component decomposition of a polynomial representing a (portion
of) data-flow. The decomposition is done in terms of arithmetic
library elements, also represented as polynomials.

Moreover, we relax the assumption that a bit-level
implementation should realize exactly the given specification. In
other word, we allow for some tolerance in the decomposition and
matching process. To a certain extent, the tolerated error can be
seen as an “arithmetic-level don’t care” that can be spent toward
achieving a low-cost implementation. Note that many multi-media
applications are well suited for tolerating computational
inaccuracy, as long as the resulting effects (e.g. audio, video
degradation) are limited.

As a motivating example, we consider an antialias function of a
MP3 decoder that has the following equation in one basic block:

222

1

yx
z

+
=

A straightforward realization of this equation would use a
divider and a square root operator, which are large and slow
components and may not be available in the component library.
For the sake of the example, we assume there is no square root and
division in our library. Alternatively, we assume the existence of
adder, multiplier and multiplier-accumulator (MAC) in our library.
Thus the computation c=x2+y2 can be easily done. Next, using
symbolic manipulations we first substitute x2+y2 by c. We obtain:

c
z

2

1
=

We can approximate the given equation to a polynomial
representation for a certain range of c using Taylor series
expansion.

64
85

32
81

64
279

16
75

64
115

32
9

64
1 23456 +−+−+−≅ ccccccz

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

The error can be easily computed using standard
approximation methods [11]. If we perform a Horner based
transform on the polynomial approximation of z, we obtain:

ccccccz


















































 +−++−++−+≅
64
1

32
9

64
115

16
75

64
279

32
81

64
85

 The formula given above can be implemented using a chain of
5 MACs, or one MAC in 5 cycles. Figure 1 demonstrates one
possible implementation. Note that a1, a2, a3, a4, a5, and a6 are
the constants in the formula shown above.

The paper presents a synthesis tool, called SymSyn, that
automates the algebraic manipulations shown in this example and
presents the underlying theory. SymSyn converts the basic
blocks of a behavioral description, representing data-flow portions
of the design to their polynomial representations and uses
numerical methods for exact and inexact matching with library
elements. If a match is not found, the data flow is decomposed
into the library elements using symbolic computer algebra.

The paper is organized as follows: Section 2 gives an
overview on symbolic algebra and explains how Gröbner basis is
used in polynomial decomposition algorithms. In Section 3, we
present how we can leverage results from symbolic algebra to
construct an algorithm that finds a minimal-component
decomposition of a polynomial representing a (portion of) data
flow. In Section 3, we also explain our data flow synthesis tool,
SymSyn, with an example. Finally, Section 4 presents some
experimental results.

2. SYMBOLIC COMPUTER ALGEBRA
Traditional mathematical computation with computers and

calculators is based on arithmetic of fixed-length integers and fixed-
precision floating-point numbers, otherwise known as numeric
computer algebra. Such system does not allow manipulations of
undetermined quantities (symbolic manipulation), such as variable
x in (x+1)*(x-1). In contrast, modern symbolic computation
systems support exact rational arithmetic, arbitrary-precision
floating-point arithmetic, and algebraic manipulation of expression
containing undetermined values (symbols).

The algebraic object that we would like to manipulate
symbolically is a multivariate polynomial that represents a
(portion of) data path of our design. We need to decompose this

polynomial into polynomials of the building blocks in the target
library. Such decomposition is called simplification modulo set of
polynomials and uses Gröbner basis in symbolic computer algebra.
In the following subsection we will review Gröbner basis [6, 9]
and its application to the simplification algorithm. Commercial
symbolic computer programs, such as Maple [7], have a built-in
routine that performs simplification modulo set of polynomials. In
Maple this method is called simplify.

We describe next the underlying theory of simplification
modulo set of polynomials. The reader solely interested in its
application to data path synthesis may proceed to Section 2.2.

2.1 Gröbner Bases
Let R be a commutative ring, a non-empty subset I ⊆ R is an

ideal when [6, 9]:
1. p + q ∈ I for all p, q ∈ I, and
2. r ⋅ p ∈ I for all p ∈ I and r ∈ R.

We denote R [x] = R [x1, x2,… , xn] as the ring of all
multivariate polynomials with variables x = (x1, x2,… , xn). Every
finite set of polynomials P = { p1 , p2 ,… , pk } ⊂ R [x1, x2,… , xn]
generates an ideal

< P > = { ∑
=

k

i 1

ai⋅pi | ai∈R [x1, x2 ,… , xn] }.

The set P is called a basis for this ideal. For example, the set
of polynomials P = { p1, p2, p3 } defined below generates a
polynomial ideal over R [x1, x2, x3].

p1 = x1
3 x2 x3- x1 x3

2, p2 = x1 x2
2 x3- x1 x2 x3, p3 = x1

2 x2
2- x3

2
< P > = {a1⋅p1+a2⋅p2+a3⋅p3 | a1, a2, a3 ∈ R [x1, x2, x3] }.

Unfortunately, while P generates the infinite set < P >, the
polynomials pi in P may not yield much insight into the nature of
this ideal. However, Buchberger [8] has shown that an arbitrary
ideal basis can be transformed into a basis with special properties,
which is called the Gröbner basis . We will now give a brief
description of Buchberger’s algorithm.

A monomial of the form x1
i1x2

i2
…xn

in, where x1, x2,… , xn are
the variables of the polynomial and i1, i2,… ,in are non-negative
integers, is called a term. We denote the set of terms of the
polynomial ring R[x] by Tx, where N is the set of non-negative
integers:

Tx = { x1
i1x2

i2
…xn

in | i1, i2,… ,in ∈ N}.

The leading monomial of polynomial p ∈ R[x] with respect to
a total ordering of the variables, such as the lexicographical
ordering, is the monomial in p whose term is the maximal among
those in p; we denote this monomial by M(p). We also define
hterm(p) to be the maximal term, and the hcoeff(p) to be the
corresponding coefficient, therefore

M(p) = hcoeff(p) ⋅ hterm(p).

As an example consider p ∈ R[x1, x2] that is written in
lexicographical order:

p = 3x1
2x2+5x1

2+x2
2,

M(p) = x1
2x2, hterm(p) = x1

2x2, hcoeff(p)=3.

For nonzero p, q ∈ R[x] we say that p reduces modulo q if
there exists a monomial in p which is divisible by hterm(q). Let

c=x2+y2

x y

MAC

c

DFF

a1

z

a2 a3 a4 a5 a6

Figure 1. An implementation for
yx 22

1

+

clk

α ∈ R[x]-{0}, i.e. the ring of polynomials after removing the
trivial 0 polynomial. If p = α⋅t + r where t ∈ Tx, r ∈ R[x], and

)(hterm q
tu = , u∈ Tx, then we write p→q p’ to signify that p

reduces to p’ (modulo q) and p’ is equal to:

qu
q

pq
q
t

pp ⋅−=⋅−=
)hcoeff()M(

'
αα

For example, we have:

p = 6x4+13x3-6x+1,

q = 3x2+5x-1,

p→q p’; p’ = p – 2x2⋅q = 3x3+2x2-6x+1.

If p reduces to p’ modulo a polynomial in a set of polynomials
Q = {q1, q2,… , qn}, we say that p reduces modulo Q and write
p→Q p’ (p’ = Reduce(p,Q)); otherwise we say that p is
irreducible modulo Q. We denote, p→+

Q q if and only if there is a
sequence such that:

p = p0 →Q p1→Q … →Q pn = q.

Algorithm 2.1 Full Reduction of p Modulo Q.
procedure Reduce(p, Q)

Given a polynomial p and a set of polynomials Q
from the ring R[x], find a q such that p→*

Q q.

Start with the whole polynomial.
r ← p; q ← 0

if no reducers exist, strip off the leading
monomial; otherwise, continue to reduce.
while r ≠ 0 do{

R ← Rr,Q
while R ≠ ∅ do{

f ← select a polynomial ∈ R
R ← R –{f}
r ← r – (M(r)/M(f)) f

}
q ← q +M(r); r ← r – M(r)

}
return(q)

end

If p→+
Q q and q is irreducible, we will write p→*

Q q. It can be
shown that for a fixed set Q and a given term ordering, the
sequence of reductions is finite [9]. Therefore, we may construct
Algorithm 2.1 which, given a polynomial p and set Q, finds a
polynomial q such that p→*

Q q. In Algorithm 2.1, Rp,Q denotes
the set polynomials in Q-{0} that hterm(p) is divisible by
hterm(q). Note that any member of Rp,Q can be chosen in each
iteration, but this choice affects the efficiency of the algorithm.
For the sake of simplicity, we assume an efficient selection is
implemented in selectpoly.

As mentioned previously any finite set of polynomials Q
generates an ideal <Q> and Q is called the basis of this ideal. If a
nonzero polynomial p is reduced to zero modulo Q, we can
determine that p is a member of the ideal generated by Q:

 p →*
Q 0 ⇒ p ∈ <Q>.

However the converse is not true for all basis of <Q>.

Definition: An ideal basis G ⊂ R[x] is called a Gröbner
bases (with respect to a fixed term ordering and the implied
permutation of variables) when

p →*
G 0 ⇔ p ∈ <G>.

We define the S-polynomial of p, q ∈ R[x] as:

]
)M()M(

[))M(),LCM(M(),Spoly(
q

q
p

pqpqp −⋅= .

In can be shown that [6, 9], G is a Gröbner basis when:
1. the only irreducible polynomial in <G> is p = 0;
2. Spoly(p, q) →+

G 0 for all p, q ∈ G;
3. if p→*

G q and p→*
G r, then q = r.

Buchberger’s algorithm (Algorithm 2.2) uses the properties above
to convert a finite set Q ⊂ R[x] into a Gröbner basis [8].

Algorithm 2.2 Buchberger’s Algorithm for Gröbner Bases.
procedure Gbasis(Q)

Given a set of polynomials Q, compute G such
that <G> = <Q> and G is a Gröbner basis.

G ← Q; k ← length(G)
We denote the i-th element of the ordered set G by Gi
B ← {[i, j] : 1 ≤ i < j ≤ k}

while B ≠ ∅ do {

[i, j] ← select a pair from B
B ← B – {[i, j]}
h ← Reduce(Spoly(Gi, Gj), G)
if h ≠ 0 then {

G ← G ∪ {h}; k ← k + 1
B ← B ∪ { (i, k) : 1 ≤ i < k} }}

return (G)
end

In order to check whether a polynomial p is a member of the
ideal <Q>, we would first use Algorithm 2.2 to form G a Gröbner
basis for <Q>. Next, using Algorithm 2.1, we check whether
Reduce(p, G) returns zero.

2.2 Gröbner Bases and Data-path Synthesis
We now describe the application of the theory described

previously. Let L be the set of polynomial representations of the
library elements. In order to synthesize a data path for a
polynomial representation S using library L, S should be a member
of <L>. In order to examine membership in <L>, we need to
calculate G the Gröbner basis of <L> and use Reduce(S, G). If S
reduces to zero then S ∈ <L>. If S is reduced to zero only using
polynomials in G that are also in L, then S can be built from the
given library elements. As an example, consider:

S = x + x2 + x3 + y + xy +x2y;

L = {1+x+x2, x+y};

G = Gbasis(L) = {x+y, y2-y+1};

Reduce(S, G) returns zero, therefore S ∈ <L>.

While performing Reduce(S, G), we determine that:
S = (x+y)(1+x+x2);

therefore S can be decomposed into elements of <L>.

3. DECOMPOSITION ALGORITHM
Here we introduce a new algorithm that automatically maps a

polynomial representation of a data flow to a set of complex
arithmetic components. This algorithm in conjunction with
classical high-level synthesis algorithms can be used for efficient
high-level DSP synthesis. This algorithm is empowered by
Gröbner basis fundamentals described in the previous section.

3.1 Symbolic Algebra and Library Matching
After extracting the CDFG of an algorithmic level DSP model,

we use symbolic computer algebra to intelligently decompose the
data flow to library components and synthesize the data path.
The symbolic algebra routine used in this algorithm is
simplification modulo set of polynomials that has been described in
Section 2. As a reminder, to simplify a polynomial p modulo the
side relation set L, we build a Gröbner basis from L,
G←Gbasis(L), and use Reduce(p, G) to obtain the simplified
answer. The built-in function that implements simplification
modulo set of polynomials in Maple is called simplify [7]. In order
to comply with Maple terminology, we call the set of
polynomials the side relations.

Note that any polynomial representation can be implemented
using only adders and multipliers. Therefore, an implementation
is guaranteed if the library includes adder and multiplier. Our goal
is to find non-trivial solutions that are minimal in terms of
component count. As an example, consider a data flow
implementing x^2-y^2 and a library that includes add, multiply
subtract and square functions. Using Maple syntax we have:

> a:=x^2-y^2: siderels:={b=x-y, c=x+y}
> simplify(a, siderels,[x,y,b,c]);
> b*c

This is equivalent to the implementation shown in Figure 2.
Note that siderels is a subset of our library. Maple computes
the Gröbner basis G of siderels and prints out the result of the
Reduce(a, siderels). The result indicates that:

a:=x^2-y^2:=b*c:=(x-y)*(x+y)

If the side relation set is changed, other possible solutions for
the specification might be found, for example:

> a:=x^2-y^2: siderels:={b=x^2, c=y^2}
> simplify(a, siderels,[x,y,b,c]);
> b-c

results in the implementation shown in Figure 3.
As shown, different side relation sets can result in different

implementation of the specification. Therefore, to find the best
possible implementation, the side relation set should be set equal
to all subsets of the library. Since this is exponentially expensive,
a guided architectural exploration is necessary. Algorithm 3.1
gives a high level view to the heuristic used to bound the
complexity of this search.

Algorithm 3.1 Decompose S into elements of library L
procedure Decompose(S, L)

Given a polynomial representation of the spec S
and a set of polynomials L as component library,
decompose S into elements of library L.

initialize tree
treeroot(S);
depth ← 0
bound ← -1
while depth ≠ bound do {

bound ← Explore(S, L, depth)
depth ← depth +1

}
report best solution in tree

end

used in Decompose procedure
int function Explore(S, L, d)

bound ← -1
for all n ∈ in tree with depth d do{

for all sr ∈ L do{
result = simplify(n, sr);
make result a child of node n
addchild(n, result);
if result ∈ L
solution is found
bound = treedepth(result); }}

returns –1 if no solution is found yet.
return(bound)

end

Let S be the polynomial representation of the data flow. We
start by simplifying S modulo each library element as the side
relation. We store the simplification results in a tree data
structure. If a simplification result is identical (or within an
acceptable tolerance) to the polynomial representation of a library
element, a possible solution is found and the corresponding tree
node is marked accordingly. If the simplification result stored in a
tree node does not correspond to a library element, we recursively
apply the same steps to the new tree node.

To further reduce the search space a bounding function is
used. The bounding function is the number of library components
used to build the specification. In other words, if we find a
solution with two library components we will not explore
solutions requiring more than two components. But we will
uncover all two-component solutions and choose the one with
optimal cost (area or delay). The number of components used is
the same as the depth of the simplification tree; therefore the tree
is bounded by the depth of the first solution found.

-

+
*

x

y

b

c

a

Figure 2. An implementation of x2-y2

^2

^2
-

x

y

b

c

a

Figure 3. Another implementation of x2-y2

Such bounding function is chosen assuming that if a
component is custom designed to perform a combination of
arithmetic operations, it is more cost effective than connecting a
series of components that perform the same arithmetic operations.
Clearly, the merit of the result is strongly dependent on the
available library.

3.2 Implementation and Example
Algorithm 3.1 is implemented in our tool SymSyn using C

programming language and calls to Maple V [7] for the symbolic
manipulations. To clarify the algorithm described above, we
choose our library to be a subset of the DesignWare library
consisting of six combinational elements; multiplier, adder,
subtracter, multiplier-accumulator, sine, and cosine. As an
example, consider synthesizing a phase shift keying (PSK)
modulator used in digital communication. A data-flow segment of
PSK has the following polynomial representation (S):

> S:=1-.5*x0^2-x0*x1-.5*x1^2+
.041667*x0^4+.166668*x0^3*x1+
.250002*x0^2*x1^2+.166668*x0*x1^3+
.041667*x1^4;

As the first step, SymSyn initializes a tree data structure and
stores polynomial S in the root of the tree. For all library
elements, SymSyn makes a call to Maple and requests simplify
with side relation set equal to the library element. The results
reported by Maple are kept as new children of the S tree node.

In the first iteration of our example the side relation is set to
the first element in the library, the multiplier. Shown below are
the Maple commands. The first two lines are the requests sent by
SymSyn and the third line is the simplification result reported by
Maple to SymSyn. SymSyn searches for a component in the
library that implements the result, but it is not successful to find
one for this instance.

> siderel := {y=x0*x1};
> simplify(S, siderel, [x0,x1,y]);
> .041667*x0^4+.166668*x0^2*y-

.5*x0^2+.041667*x1^4+.166668*x1^2*y-

.5*x1^2+.250002*y^2-1.*y+1.

In the second iteration, the same steps are performed with the
adder as the side relation. The simplification result now matches
an approximation to the cosine function. Therefore, SymSyn
marks this node as one possible solution. The following Maple
commands show the result of this iteration. Note that the result is
a Taylor series approximation of cosine. Since cosine is one of our
library elements, we have found one possible solution, Figure 4.

> siderel := {y=x0+x1};
> simplify(S, siderel, [x0,x1,y]);
> 1.+.041667*y^4-.5*y^2

Since there is a solution with depth equal to one in the tree, a
bound of one is set on the tree growth. SymSyn performs the
steps described above for the rest of library elements and keeps
the results in root offsprings. After going through all library
elements, SymSyn finds only one solution using two components.
The solution is demonstrated in Figure 4. SymSyn will stop
decomposing the leaf nodes, since continuation would result in a

search for solutions with three or more components while the
objective is to find a solution using minimal number of
components.

4. EXPERIMENTAL RESULTS
SymSyn implements Algorithm 3.1 described in this paper in

C programming language with calls to Maple V [7] for the
symbolic manipulations. The program input is polynomial
representation of data flow and a database of polynomial
representations of library elements. Output reported is
components used to implement the data flow and the way they
are connected.

Table 1. SymSyn results for some examples

Lexicographical
Mapping

SymSyn
Output

Data flow

Examples
#of
compo-
nents

Cost #of
compo-
nents

Cost

1-x0^2/2+
x0^4/24+x0+x1x2

11 14.5 3 9.7

Cos(sin(x0)) 24 34 2 13

X2+2xyz+y 2z2 9 9.5 2 3.4

anti-alias 27 37.5 8 14.4

PSK 33 45.5 2 7.5

Turbo decoder 104 139.5 4 31.5

We have tested the efficiency of SymSyn with a number of
data-path examples. The results are shown in Table I. In this
table, the cost reported is normalized by the cost of an adder. For
example, we assume that the cost of an adder is 1 and cost of a
multiplier is 1.5. In the first set of results, we assume that the
polynomial representation is mapped only to multipliers and
adders. This is same as lexicographical component inference that
is typical in commercial behavioral synthesis tools. The number
of components refers to the numbers of adds and multiplies in the
data-path polynomial. The cost is the cost of an adder multiplied
by the number of adds, plus the cost of a multiplier multiplied by
the number of multiplies in the data-path polynomial.

The second set of results is derived by SymSyn. The cost is
sum of cost of the components used in data path to implement the
polynomial representation as recommended by SymSyn. The
library used for the examples is the DesignWare library [2], except
for the turbo decoder that needs ln(x) and exp(x) operation not
available in DesignWare.

 The first two data flows in Table I are simple benchmark
polynomials. The third polynomial is a basic block in a one-
dimensional inverse discrete cosine transform (IDCT). The forth
data flow is the anti-alias block described in the introduction.
IDCT and anti-alias are widely used in portion in audio and video

+ cosine
x0

y
x1

S

Figure 4. Mapping S to two components

compression standards such as JPEG, MPEG, and MP3. The last
two examples come from the digital communication field. The
fifth data flow performs phase shift keying (PSK) modulation.

0
1
2
3
4
5
6
7
8

ad
de

r

squ
are mac co

s sin exp
ln

C
o

m
p

o
n

en
t

D
is

tr
ib

u
ti

o
n

 In order to qualify the examples used in Table I, we have
shown the distribution of components used in SymSyn output in
Figure 5. Note that the component used mostly is the
multiply/accumulate (MAC); this result is typical in data-
intensive circuits.

Table 2. Area in library units using tsmc.35 library

Data flow
Examples

BC Results
without SymSyn

BC Results
with SymSyn

1-x0^2/2+
x0^4/24+x0+x1x2

311502 143037

cos(sin(x0)) 1065695 167584

x2+2xyz+y 2z2 456704 178177

anti-alias 1120542 317591

PSK 1614610 34271

With the intention of achieving more realistic area estimate for
our set of examples, we used Behavioral Compiler to produce the
set of results shown in Table 2. The fist column shows the
combinational area of Behavioral Compiler results without any
mapping directive. The second column shows the combinational
area of the same examples, with mapping directives suggested by
SymSyn incorporated in the HDL code. It can be observed that
improvements are comparable or better than estimated results by
SymSyn.

5. SUMMARY
This paper has introduced a decomposition algorithm to map

data flow to a set of complex arithmetic library components. This
algorithm fits seamlessly in the high-level synthesis flow and
enhances the quality of result of data intensive circuit synthesis.
Our method takes advantage of two previously developed
concepts; one is the polynomial representation of library blocks
and the second is symbolic computer algebra. Polynomial
representation is used to represent the functionality of library
components and the data flow segment of the chip under design.

Symbolic computer algebra is used to decompose the data flow to
a set of library components. From a practical standpoint, the
contribution of this paper is to make arithmetic library binding an
automated process, and eliminate the need for synthesis directives.

Symbolic computer algebra is a powerful set of algorithms not
previously used in the field of synthesis. We believe these
algorithms open a new set of opportunities in high-level synthesis
research. Even though, algebraic manipulations are best suited for
combinational arithmetic designs, classical scheduling, resource
sharing, and retiming algorithms can be applied to the data-path
output to achieve optimized/pipelined designs.

The research presented here is especially promising in the
fields of graphics and digital signal processing where there is a
tolerance for computational error as long as the degradation in
audio or video is limited [10]. This tolerance can be used to
approximate non-polynomials data flows to polynomial
representations, which are well-suited inputs for our tool
SymSyn. This paper does not explain the approximation tools
and truncation errors since there is a wide body of mathematical
literature available on these topics [11]. In future work, timing
driven architectural exploration algorithms will be studied.

6. ACKNOWLEDGMENTS
This research is supported by ARPA/MARCO Gigascale

Research Center and Synopsys Inc. We would like to thank both
organizations for their support.

7. REFERENCES
[1] G. De Micheli, “Synthesis and Optimization of Digital

Circuits”, Mc Graw Hill, Hightstown, NJ, 1994.
[2] DesignWare Library, http://www.synopsys.com/, 1994.
[3] J. Smith and G. De Micheli, “Polynomial Methods for

Component Matching and Verification”, Proceedings of the
ICCAD, pp. 678-685, 1998.

[4] J. Smith and G. De Micheli, “Polynomial Methods for
Allocating Complex Components”, Proceedings of the DATE
Conference, pp. 382-383, 1999.

[5] R. Brayton and C. McMullen, “The decomposition and
factorization of logic synthesis”, IEEE ISCS, May 1982.

[6] T. Becker and V. Weispfenning, Gröbner Bases , Springer-
Verlag New York, 1993.

[7] Maple V, Waterloo Maple Inc., http://www.maplesoft.com/,
1988.

[8] B. Buchberger, “Some Properties of Gröbner Bases for
Polynomial Ideals”, ACM SIG-SAM Bulletin, pp.19-24, 1976.

[9] K. Geddes, S. Czapor, and G. Labahn, Algorithms for
Computer Algebra, Kluwer Academic Publishers, 1992.

[10] M. Willems, H. Keding, T. Grötket, and H. Meyr, “Fridge:
An interactive Fixed-Point Code Generation Environment for
HW/SW CoDesign”, Proceedings of Int. Conf. On Acoustics,
Speech, and Signal Processing 1997.

[11] J. F. Hart et al., “Computer Approximations”, New York:
Wiley, 1968.

Figure 5. Component distribution in SymSyn output

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

