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ABSTRACT 

Current multimedia applications require the design of data-
path intensive circuits.  Unfortunately, current design tools and 
methods support design abstraction at a level that is inferior to the 
expectation of designers. Namely, most arithmetic-level 
optimizations are not supported and they are left to the designers' 
ingenuity.  In this paper, we show how symbolic algebra can be 
used to construct an arithmetic-level decomposition algorithm.  
We also introduce our tool, SymSyn, that performs arithmetic 
library mapping and optimization of data-flow descriptions into 
data paths using arithmetic components. 

1. INTRODUCTION 
The growing market of multi-media applications has required 

the development of complex ASICs with significant data-path 
portions.  Automating the design of data paths from high-level 
specifications is necessary to meet time to market requirements. 
The optimal choice of the arithmetic units implementing complex 
data flows affects strongly the cost, performance and power 
consumption of the silicon implementations. Unfortunately, most 
high-level synthesis tools and methods cannot synthesize data 
paths that intelligently use arithmetic libraries without synthesis 
directives (pragmas). 

On the other hand, current high-level synthesis tools are 
effective in capturing HDL models of the circuits and mapping 
them into control/data-flow graphs (CDFGs), performing 
scheduling, resource sharing retiming, and control synthesis [1]. 
The approach presented in this paper fits seamlessly into the 
current high-level synthesis flow.  We propose to analyze the 
data-flow segments of the CDFG models in light of the arithmetic 
units available as library blocks, and to construct data paths that 
exploit at best the given library.  We assume that design is done 
using libraries that contain, beyond the basic elements such as 
adders and multipliers, more complex cells such as 
multiply/accumulate (MAC), sine, cosine, ... An example of such a 
library is Synopsys Designware [2] library. 

Two factors are key to automate the optimal mapping of data 

flow blocks.  First, a common functionality description formalism 
for data flow and library components.  Second, a method 
supporting the decomposition of the data flow into a set of library 
elements.  The functionality description formalism needs to be 
compact, canonical, and unambiguous. Polynomial representations 
have been shown to be effective for data flow representation and 
for supporting matching of data flow clusters to library cells [3, 
4].  Unfortunately, such methods were limited to test for a match 
in the library of existing components.  In case a match did not 
exist, there was no automated way to search for possible 
interconnections of library blocks matching the data flow cluster. 

In this paper, we propose a decomposition method based on 
symbolic manipulation of polynomials.  We leverage results from 
symbolic algebra to construct an algorithm that finds a minimal-
component decomposition of a polynomial representing a (portion 
of) data-flow.  The decomposition is done in terms of arithmetic 
library elements, also represented as polynomials. 

Moreover, we relax the assumption that a bit-level 
implementation should realize exactly the given specification.  In 
other word, we allow for some tolerance in the decomposition and 
matching process.  To a certain extent, the tolerated error can be 
seen as an “arithmetic-level don’t care” that can be spent toward 
achieving a low-cost implementation.  Note that many multi-media 
applications are well suited for tolerating computational 
inaccuracy, as long as the resulting effects (e.g. audio, video 
degradation) are limited.   

As a motivating example, we consider an antialias function of a 
MP3 decoder that has the following equation in one basic block: 
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A straightforward realization of this equation would use a 
divider and a square root operator, which are large and slow 
components and may not be available in the component library.  
For the sake of the example, we assume there is no square root and 
division in our library.  Alternatively, we assume the existence of 
adder, multiplier and multiplier-accumulator (MAC) in our library.  
Thus the computation c=x2+y2 can be easily done.  Next, using 
symbolic manipulations we first substitute x2+y2 by c.  We obtain: 
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We can approximate the given equation to a polynomial 
representation for a certain range of c using Taylor series 
expansion.  
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The error can be easily computed using standard 
approximation methods [11].  If we perform a Horner based 
transform on the polynomial approximation of  z, we obtain: 
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       The formula given above can be implemented using a chain of 
5 MACs, or one MAC in 5 cycles.  Figure 1 demonstrates one 
possible implementation.  Note that a1, a2, a3, a4, a5, and a6 are 
the constants in the formula shown above.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The paper presents a synthesis tool, called SymSyn, that 
automates the algebraic manipulations shown in this example and 
presents the underlying theory.  SymSyn converts the basic 
blocks of a behavioral description, representing data-flow portions 
of the design to their polynomial representations and uses 
numerical methods for exact and inexact matching with library 
elements.  If a match is not found, the data flow is decomposed 
into the library elements using symbolic computer algebra. 

The paper is organized as follows:  Section 2 gives an 
overview on symbolic algebra and explains how Gröbner basis is 
used in polynomial decomposition algorithms.  In Section 3, we 
present how we can leverage results from symbolic algebra to 
construct an algorithm that finds a minimal-component 
decomposition of a polynomial representing a (portion of) data 
flow.  In Section 3, we also explain our data flow synthesis tool, 
SymSyn, with an example.  Finally, Section 4 presents some 
experimental results. 

2. SYMBOLIC COMPUTER ALGEBRA 
Traditional mathematical computation with computers and 

calculators is based on arithmetic of fixed-length integers and fixed-
precision floating-point numbers, otherwise known as numeric 
computer algebra.  Such system does not allow manipulations of 
undetermined quantities (symbolic manipulation), such as variable 
x in  (x+1)*(x-1).  In contrast, modern symbolic computation 
systems support exact rational arithmetic, arbitrary-precision 
floating-point arithmetic, and algebraic manipulation of expression 
containing undetermined values (symbols).  

The algebraic object that we would like to manipulate 
symbolically is a multivariate polynomial that represents a 
(portion of) data path of our design. We need to decompose this 

polynomial into polynomials of the building blocks in the target 
library.  Such decomposition is called simplification modulo set of 
polynomials and uses Gröbner basis in symbolic computer algebra.  
In the following subsection we will review Gröbner basis [6, 9] 
and its application to the simplification algorithm.  Commercial 
symbolic computer programs, such as Maple [7], have a built-in 
routine that performs simplification modulo set of polynomials.  In 
Maple this method is called simplify. 

We describe next the underlying theory of  simplification 
modulo set of polynomials.  The reader solely interested in its 
application to data path synthesis may proceed to Section 2.2.  

2.1 Gröbner Bases 
Let R be a commutative ring, a non-empty subset I ⊆ R is an 

ideal  when [6, 9]: 
1. p + q ∈ I for all p, q ∈ I, and  
2. r ⋅ p ∈ I for all p ∈ I and r ∈ R. 

We denote R [x] = R [ x1, x2,… , xn ] as the ring of all 
multivariate polynomials with variables x = (x1, x2,… , xn).  Every 
finite set of polynomials P = { p1 , p2 ,… , pk } ⊂ R [x1, x2,… , xn] 
generates an ideal  

< P > = {  ∑
=

k

i 1

ai⋅pi     |   ai∈R [x1, x2 ,… , xn] }. 

The set P is called a basis for this ideal.  For example, the set 
of polynomials P = { p1, p2, p3 } defined below generates a 
polynomial ideal over R [x1, x2, x3]. 

p1 = x1
3 x2 x3- x1 x3

2,  p2 = x1 x2
2 x3- x1 x2 x3,  p3 = x1

2 x2
2- x3

2 
< P > = {a1⋅p1+a2⋅p2+a3⋅p3   |   a1, a2, a3 ∈ R [x1, x2, x3] }. 

Unfortunately, while P generates the infinite set < P >, the 
polynomials pi in P may not yield much insight into the nature of 
this ideal.  However, Buchberger [8] has shown that an arbitrary 
ideal basis can be transformed into a basis with special properties, 
which is called the Gröbner basis .  We will now give a brief 
description of Buchberger’s algorithm. 

A monomial of the form x1
i1x2

i2
…xn

in, where x1, x2,… , xn are 
the variables of the polynomial and i1, i2,… ,in are non-negative 
integers, is called a term.   We denote the set of terms of the 
polynomial ring R[x] by Tx, where N is the set of non-negative 
integers:  

Tx = { x1
i1x2

i2
…xn

in   |   i1, i2,… ,in ∈ N}.   

The leading monomial of polynomial p ∈ R[x] with respect to 
a total ordering of the variables, such as the lexicographical 
ordering, is the monomial in p whose term is the maximal among 
those in p;  we denote this monomial by M( p).  We also define 
hterm( p) to be the maximal term, and the hcoeff( p) to be the 
corresponding coefficient, therefore 

M( p) = hcoeff( p) ⋅ hterm( p). 

As an example consider p ∈ R[x1,  x2] that is written  in 
lexicographical order: 

p = 3x1
2x2+5x1

2+x2
2,    

M( p) = x1
2x2, hterm( p) = x1

2x2,   hcoeff( p)=3. 

For nonzero p, q ∈ R[x] we say that p reduces modulo q if 
there exists a monomial in p which is divisible by hterm(q).  Let 

c=x2+y2 

x y 

MAC 

c 

DFF 

a1 

z 

a2 a3 a4 a5 a6 

Figure 1.  An implementation for 
yx 22

1

+
 

clk 



α ∈ R[x]-{0}, i.e. the ring of polynomials after removing the 
trivial 0 polynomial.  If  p = α⋅t + r  where t ∈ Tx, r ∈ R[x], and 

)(hterm q
tu = , u∈ Tx, then we write p→q p’ to signify that p 

reduces to p’ (modulo q) and p’ is equal to:   

qu
q

pq
q
t

pp ⋅−=⋅−=
)hcoeff()M(

'
αα

 

For example, we have: 

p = 6x4+13x3-6x+1,  

q = 3x2+5x-1, 

p→q p’;   p’ = p – 2x2⋅q = 3x3+2x2-6x+1. 

If p reduces to p’ modulo a polynomial in a set of polynomials 
Q = {q1, q2,… , qn}, we say that p reduces modulo Q and write 
p→Q p’ ( p’ = Reduce(p,Q) ); otherwise we say that p is 
irreducible modulo Q.  We denote, p→+

Q q if and only if there is a 
sequence such that: 

p = p0 →Q p1→Q … →Q pn = q. 

Algorithm 2.1  Full Reduction of p Modulo Q. 
procedure Reduce(p, Q) 

# Given a polynomial p and a set of polynomials Q 
# from the ring R[x], find a q such that p→*

Q q. 

# Start with the whole polynomial. 
r ← p; q ← 0 

# if no reducers exist, strip off the leading 
# monomial; otherwise, continue to reduce. 
while r ≠ 0 do{ 

R ← Rr,Q 
while R ≠ ∅  do{ 

f ← select a polynomial ∈ R 
R ← R –{f} 
r ← r – (M(r)/M(f)) f  

} 
q ← q +M(r); r ← r – M(r) 

} 
return(q) 

end 

If p→+
Q q and q is irreducible, we will write p→*

Q q.  It can be 
shown that for a fixed set Q and a given term ordering, the 
sequence of reductions is finite [9].  Therefore, we may construct 
Algorithm 2.1 which, given a polynomial p and set Q, finds a 
polynomial q such that p→*

Q q.  In Algorithm 2.1, Rp,Q denotes 
the set polynomials in Q-{0} that hterm(p) is divisible by 
hterm(q).  Note that any member of Rp,Q can be chosen in each 
iteration, but this choice affects the efficiency of the algorithm.  
For the sake of simplicity, we assume an efficient selection is 
implemented in selectpoly.  

As mentioned previously any finite set of polynomials Q 
generates an ideal <Q> and Q is called the basis of this ideal.  If a 
nonzero polynomial p is reduced to zero modulo Q, we can 
determine that p is a member of the ideal generated by Q:  

 p →*
Q 0 ⇒ p ∈ <Q>. 

However the converse is not true for all basis of <Q>.   

Definition:  An ideal basis G ⊂ R[x] is called a Gröbner 
bases (with respect to a fixed term ordering and the implied 
permutation of variables) when 

p →*
G 0 ⇔ p ∈ <G>. 

We define the S-polynomial of p, q ∈ R[x] as: 

]
)M()M(

[))M(),LCM(M(),Spoly(
q

q
p

pqpqp −⋅= . 

In can be shown that [6, 9], G is a Gröbner basis when: 
1. the only irreducible polynomial in <G> is p = 0; 
2. Spoly(p, q) →+

G 0 for all p, q ∈ G; 
3. if p→*

G q and p→*
G r, then q = r. 

Buchberger’s algorithm (Algorithm 2.2) uses the properties above 
to convert a finite set Q ⊂ R[x] into a Gröbner basis [8]. 

Algorithm 2.2 Buchberger’s Algorithm for Gröbner Bases. 
procedure Gbasis(Q) 

# Given a set of polynomials Q, compute G such  
# that <G> = <Q> and G is a Gröbner basis. 
 
G ← Q; k ← length(G) 
# We denote the i-th element of the ordered set G by Gi 
B ← {[i, j] : 1 ≤ i < j ≤ k} 
 
while B ≠ ∅  do { 

[i, j] ← select a pair from B 
B ← B – {[i, j]} 
h ← Reduce(Spoly(Gi, Gj), G) 
if h ≠ 0 then { 

G ← G ∪ {h}; k ← k + 1 
B ← B ∪ { (i, k) : 1 ≤ i < k} }} 

return  (G) 
end 

In order to check whether a polynomial p is a member of the 
ideal <Q>, we would first use Algorithm 2.2 to form G a Gröbner 
basis for <Q>.  Next, using Algorithm 2.1, we check whether 
Reduce(p, G) returns zero.   

2.2 Gröbner Bases and Data-path Synthesis  
We now describe the application of the theory described 

previously.  Let L be the set of polynomial representations of the 
library elements.  In order to synthesize a data path for a 
polynomial representation S using library L, S should be a member 
of <L>.  In order to examine membership in <L>, we need to 
calculate G the Gröbner basis of <L> and use Reduce(S, G).  If S 
reduces to zero then S ∈ <L>.  If S is reduced to zero only using 
polynomials in G that are also in L, then S can be built from the 
given library elements.  As an example, consider: 

S = x + x2 + x3 + y + xy +x2y; 

L = {1+x+x2, x+y};  

G =  Gbasis(L) = {x+y, y2-y+1}; 

Reduce(S, G) returns zero, therefore S ∈ <L>.   

While performing Reduce(S, G), we determine that: 
S = (x+y)(1+x+x2); 

therefore S can be decomposed into elements of <L>. 



3. DECOMPOSITION ALGORITHM 
Here we introduce a new algorithm that automatically maps a 

polynomial representation of a data flow to a set of complex 
arithmetic components.  This algorithm in conjunction with 
classical high-level synthesis algorithms can be used for efficient 
high-level DSP synthesis.  This algorithm is empowered by 
Gröbner basis fundamentals described in the previous section.   

3.1 Symbolic Algebra and Library Matching 
After extracting the CDFG of an algorithmic level DSP model, 

we use symbolic computer algebra to intelligently decompose the 
data flow to library components and synthesize the data path.  
The symbolic algebra routine used in this algorithm is 
simplification modulo set of polynomials that has been described in 
Section 2.  As a reminder, to simplify a polynomial p modulo the 
side relation set L, we build a Gröbner basis from L, 
G←Gbasis(L), and use Reduce(p, G) to obtain the simplified 
answer.  The built-in function that implements simplification 
modulo set of polynomials in Maple is called simplify [7].  In order 
to comply with Maple terminology, we call the set of 
polynomials the side relations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Note that any polynomial representation can be implemented 
using only adders and multipliers.  Therefore, an implementation 
is guaranteed if the library includes adder and multiplier.  Our goal 
is to find non-trivial solutions that are minimal in terms of 
component count.  As an example, consider a data flow 
implementing x^2-y^2 and a library that includes add, multiply 
subtract and square functions.  Using Maple syntax we have: 

> a:=x^2-y^2: siderels:={b=x-y, c=x+y} 
> simplify(a, siderels,[x,y,b,c]); 
> b*c 

This is equivalent to the implementation shown in Figure 2.  
Note that siderels is a subset of our library.  Maple computes 
the Gröbner basis G of siderels and prints out the result of the 
Reduce(a, siderels).  The result indicates that: 

a:=x^2-y^2:=b*c:=(x-y)*(x+y) 

If the side relation set is changed, other possible solutions for 
the specification might be found, for example: 

> a:=x^2-y^2: siderels:={b=x^2, c=y^2} 
> simplify(a, siderels,[x,y,b,c]); 
> b-c 

results in the implementation shown in Figure 3. 
As shown, different side relation sets can result in different 

implementation of the specification.   Therefore, to find the best 
possible implementation, the side relation set should be set equal 
to all subsets of the library.  Since this is exponentially expensive, 
a guided architectural exploration is necessary.  Algorithm 3.1 
gives a high level view to the heuristic used to bound the 
complexity of this search. 

Algorithm 3.1 Decompose S into elements of library L 
procedure Decompose(S, L) 

# Given a polynomial representation of the spec S  
# and a set of polynomials L as component library, 
# decompose S into elements of library L. 

# initialize tree 
treeroot(S); 
depth ← 0 
bound ← -1 
while depth ≠ bound do { 

bound ← Explore(S, L, depth) 
depth ← depth +1 

} 
report best solution in tree 

end 
 
# used in Decompose procedure 
int function Explore(S, L, d)  

bound ← -1 
for all n ∈ in tree with depth d do{ 

for all sr ∈ L do{ 
result = simplify(n, sr); 
# make result a child of node n  
addchild(n, result);    
if result ∈ L     
# solution is found  
bound = treedepth(result);  }} 

# returns –1 if no solution is found yet. 
return(bound) 

end 

Let S be the polynomial representation of the data flow.  We 
start by simplifying S modulo each library element as the side 
relation.  We store the simplification results in a tree data 
structure.  If a simplification result is identical (or within an 
acceptable tolerance) to the polynomial representation of a library 
element, a possible solution is found and the corresponding tree 
node is marked accordingly.  If the simplification result stored in a 
tree node does not correspond to a library element, we recursively 
apply the same steps to the new tree node.   

To further reduce the search space a bounding function is 
used.  The bounding function is the number of library components 
used to build the specification.  In other words, if we find a 
solution with two library components we will not explore 
solutions requiring more than two components.  But we will 
uncover all two-component solutions and choose the one with 
optimal cost (area or delay).  The number of components used is 
the same as the depth of the simplification tree; therefore the tree 
is bounded by the depth of the first solution found. 
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Figure 2.  An implementation of x2-y2 
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Figure 3.  Another implementation of x2-y2 



Such bounding function is chosen assuming that if a 
component is custom designed to perform a combination of 
arithmetic operations, it is more cost effective than connecting a 
series of components that perform the same arithmetic operations.  
Clearly, the merit of the result is strongly dependent on the 
available library. 

3.2 Implementation and Example 
Algorithm 3.1 is implemented in our tool SymSyn using C 

programming language and calls to Maple V [7] for the symbolic 
manipulations.  To clarify the algorithm described above, we 
choose our library to be a subset of the DesignWare library 
consisting of six combinational elements; multiplier, adder, 
subtracter, multiplier-accumulator, sine, and cosine.  As an 
example, consider synthesizing a phase shift keying (PSK) 
modulator used in digital communication.  A data-flow segment of 
PSK has the following polynomial representation (S): 

> S:=1-.5*x0^2-x0*x1-.5*x1^2+ 
.041667*x0^4+.166668*x0^3*x1+ 
.250002*x0^2*x1^2+.166668*x0*x1^3+ 
.041667*x1^4; 

As the first step, SymSyn initializes a tree data structure and 
stores polynomial S in the root of the tree.  For all library 
elements, SymSyn makes a call to Maple and requests simplify 
with side relation set equal to the library element.  The results 
reported by Maple are kept as new children of the S tree node.   

In the first iteration of our example the side relation is set to 
the first element in the library, the multiplier.  Shown below are 
the Maple commands.  The first two lines are the requests sent by 
SymSyn and the third line is the simplification result reported by 
Maple to SymSyn.  SymSyn searches for a component in the 
library that implements the result, but it is not successful to find 
one for this instance. 

> siderel := {y=x0*x1}; 
> simplify(S, siderel, [x0,x1,y]); 
> .041667*x0^4+.166668*x0^2*y-

.5*x0^2+.041667*x1^4+.166668*x1^2*y-

.5*x1^2+.250002*y^2-1.*y+1. 

In the second iteration, the same steps are performed with the 
adder as the side relation.  The simplification result now matches 
an approximation to the cosine function.  Therefore, SymSyn 
marks this node as one possible solution.  The following Maple 
commands show the result of this iteration.  Note that the result is 
a Taylor series approximation of cosine. Since cosine is one of our 
library elements, we have found one possible solution, Figure 4.   

> siderel := {y=x0+x1}; 
> simplify(S, siderel, [x0,x1,y]); 
> 1.+.041667*y^4-.5*y^2 

Since there is a solution with depth equal to one in the tree, a 
bound of one is set on the tree growth.  SymSyn performs the 
steps described above for the rest of library elements and keeps 
the results in root offsprings.  After going through all library 
elements, SymSyn finds only one solution using two components.  
The solution is demonstrated in Figure 4.  SymSyn will stop 
decomposing the leaf nodes, since continuation would result in a 

search for solutions with three or more components while the 
objective is to find a solution using minimal number of 
components.  

 
 
 
 
 

4. EXPERIMENTAL RESULTS 
SymSyn implements Algorithm 3.1 described in this paper in 

C programming language with calls to Maple V [7] for the 
symbolic manipulations.  The program input is polynomial 
representation of data flow and a database of polynomial 
representations of library elements.  Output reported is 
components used to implement the data flow and the way they 
are connected. 

Table 1. SymSyn results for some examples 

Lexicographical 
Mapping 

SymSyn 
Output 

Data flow 

Examples 
#of 
compo-
nents 

Cost #of 
compo-
nents 

Cost 

1-x0^2/2+ 
x0^4/24+x0+x1x2 

11 14.5 3 9.7 

Cos(sin(x0)) 24 34 2 13 

X2+2xyz+y 2z2 9 9.5 2 3.4 

anti-alias 27 37.5 8 14.4 

PSK 33 45.5 2 7.5 

Turbo decoder 104 139.5 4 31.5 

We have tested the efficiency of SymSyn with a number of 
data-path examples.  The results are shown in Table I.  In this 
table, the cost reported is normalized by the cost of an adder.  For 
example, we assume that the cost of an adder is 1 and cost of a 
multiplier is 1.5.  In the first set of results, we assume that the 
polynomial representation is mapped only to multipliers and 
adders.  This is same as lexicographical component inference that 
is typical in commercial behavioral synthesis tools.  The number 
of components refers to the numbers of adds and multiplies in the 
data-path polynomial.  The cost is the cost of an adder multiplied 
by the number of adds, plus the cost of a multiplier multiplied by 
the number of multiplies in the data-path polynomial. 

The second set of results is derived by SymSyn.  The cost is 
sum of cost of the components used in data path to implement the 
polynomial representation as recommended by SymSyn.  The 
library used for the examples is the DesignWare library [2], except 
for the turbo decoder that needs ln(x) and exp(x) operation not 
available in DesignWare. 

  The first two data flows in Table I are simple benchmark 
polynomials.  The third polynomial is a basic block in a one-
dimensional inverse discrete cosine transform (IDCT).  The forth 
data flow is the anti-alias block described in the introduction.  
IDCT and anti-alias are widely used in portion in audio and video 

+ cosine 
x0 

y 
x1 

S 

Figure 4.  Mapping S to two components 



compression standards such as JPEG, MPEG, and MP3. The last 
two examples come from the digital communication field.  The 
fifth data flow performs phase shift keying (PSK) modulation. 

0
1
2
3
4
5
6
7
8

ad
de

r

squ
are mac co

s sin exp
ln

C
o

m
p

o
n

en
t 

D
is

tr
ib

u
ti

o
n

       

   In order to qualify the examples used in Table I, we have 
shown the distribution of components used in SymSyn output in 
Figure 5.  Note that the component used mostly is the 
multiply/accumulate (MAC); this result is typical in data-
intensive circuits. 

Table 2. Area in library units using tsmc.35 library 

Data flow 
Examples 

BC Results 
without SymSyn   

BC Results 
with SymSyn   

1-x0^2/2+ 
x0^4/24+x0+x1x2 

311502 143037 

cos(sin(x0)) 1065695 167584 

x2+2xyz+y 2z2 456704 178177 

anti-alias 1120542 317591 

PSK 1614610 34271 

With the intention of achieving more realistic area estimate for 
our set of examples, we used Behavioral Compiler to produce the 
set of results shown in Table 2.  The fist column shows the 
combinational area of Behavioral Compiler results without any 
mapping directive.  The second column shows the combinational 
area of the same examples, with mapping directives suggested by 
SymSyn incorporated in the HDL code.  It can be observed that 
improvements are comparable or better than estimated results by 
SymSyn. 

5. SUMMARY 
This paper has introduced a decomposition algorithm to map 

data flow to a set of complex arithmetic library components.  This 
algorithm fits seamlessly in the high-level synthesis flow and 
enhances the quality of result of data intensive circuit synthesis.  
Our method takes advantage of two previously developed 
concepts; one is the polynomial representation of library blocks 
and the second is symbolic computer algebra. Polynomial 
representation is used to represent the functionality of library 
components and the data flow segment of the chip under design.  

Symbolic computer algebra is used to decompose the data flow to 
a set of library components.  From a practical standpoint, the 
contribution of this paper is to make arithmetic library binding an 
automated process, and eliminate the need for synthesis directives.   

Symbolic computer algebra is a powerful set of algorithms not 
previously used in the field of synthesis.  We believe these 
algorithms open a new set of opportunities in high-level synthesis 
research.  Even though, algebraic manipulations are best suited for 
combinational arithmetic designs, classical scheduling, resource 
sharing, and retiming algorithms can be applied to the data-path 
output to achieve optimized/pipelined designs. 

The research presented here is especially promising in the 
fields of graphics and digital signal processing where there is a 
tolerance for computational error as long as the degradation in 
audio or video is limited [10].  This tolerance can be used to 
approximate non-polynomials data flows to polynomial 
representations, which are well-suited inputs for our tool 
SymSyn.  This paper does not explain the approximation tools 
and truncation errors since there is a wide body of mathematical 
literature available on these topics [11].  In future work, timing 
driven architectural exploration algorithms will be studied. 
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Figure 5.  Component distribution in SymSyn output 
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