
A Design Framework to Efficiently Explore Energy-Delay Tradeoffs

William Fornaciari§ Donatella Sciuto§ Cristina Silvano✸ Vittorio Zaccaria§

§Politecnico di Milano
Dip. di Elettronica e Informazione

Milano, ITALY 20133
{fornacia,sciuto,zaccaria}@elet.polimi.it

✸Università degli Studi di Milano
Dip. di Scienze dell’Informazione

Milano, ITALY 20135
silvano@dsi.unimi.it

Abstract

Comprehensive exploration of the design space parameters
at the system-level is a crucial task to evaluate architec-
tural tradeoffs accounting for both energy and performance
constraints. In this paper, we propose a system-level de-
sign methodology for the efficient exploration of the mem-
ory architecture from the energy-delay combined perspec-
tive. The aim is to find a sub-optimal configuration of the
memory hierarchy without performing the exhaustive analy-
sis of the parameters space. The target system architecture
includes the processor, separated instruction and data level-
one caches, the main memory, and the system buses. The
methodology is based on the sensitivity analysis of the op-
timization function with respect to the tuning parameters
of the cache architecture (mainly cache size, block size and
associativity). The effectiveness of the proposed method-
ology has been demonstrated through the design space ex-
ploration of a real-world example: a MicroSPARC2-based
system running the Mediabench suite. Experimental results
have shown an optimization speedup of 329 times with re-
spect to the full search, while the near-optimal system-level
configuration is characterized by a distance from the optimal
full search configuration in the band of 10%.

1. INTRODUCTION
Decreasing power consumption in microprocessor-based

systems without significantly impacting performance is a
must during the design of a broad range of embedded appli-
cations. Evaluation of energy-delay metrics at the system-
level is of fundamental importance for embedded applica-
tions characterized by low-power and high-performance re-
quirements. Given the application-specific functionality, the
design of an embedded system requires the definition of the
best architecture in terms of core processor, memory sub-
system, and system-level bus topology. Full search of the
optimal system architecture with respect to the energy-delay
cost function can be computationally very costly due to the
simulation time required to explore the wide space of pa-

.

rameters.
Several system-level exploration methods have been re-

cently proposed in literature targeting power-performance
tradeoffs from the system-level standpoint [1], [2], [3], [4],
[5], [6], [7], [8]. In [5], the authors propose to sacrifice some
performance to save power by filtering memory references
through a small cache placed close to the processor (namely
filter cache). Su and Despain [1] proposed a model to eval-
uate the power/performance tradeoffs in cache design and
the effectiveness of novel cache design techniques targeted
for low-power (such as vertical and horizontal cache par-
titioning). Kamble and Ghose ([9] proposed an analytical
power model for various cache structures accounting for both
technological parameters (such as capacitances and power
supplies) and architectural factors (such as block size, as-
sociativity and capacity). An analytical model of energy
consumption for the memory hierarchy has been provided in
[10]. Power and performance tradeoffs in cache architectures
have been also investigated in [3]. The Avalanche frame-
work presented in [2] evaluates simultaneously the energy-
performance tradeoffs for software, memory and hardware
for embedded systems. The work in [6] proposes a system-
level technique to find low-power high-performance super-
scalar processors tailored to specific user application. More
recently, the Wattch architectural-level framework has been
proposed in [7] to analyze power/performance tradeoffs with
a good level of accuracy with respect to lower-level estima-
tion approaches. Low-power design optimization techniques
for high-performance processors have been investigated in
[8] from the architectural and compiler standpoints.
Aim of this paper is to propose a system-level methodol-

ogy for the efficient exploration of memory architectures for
application-specific systems characterized by energy and de-
lay constraints. We are focusing on the class of microprocessor-
based embedded systems. The target of our work is to find
a near-optimal configuration of the cache architecture with-
out performing the exhaustive analysis of the space of pa-
rameters (mainly cache size, block size and associativity).
The paper proposes a heuristic method to reduce the time
spent during the simulation of different system configura-
tions. The method is based on the sensitivity analysis of the
system behavior with respect to the most relevant system-
level parameters. In such a way, the resulting design explo-
ration phase cost increases linearly with respect to the design
space size. The system-level architecture we are focusing on
includes a separate instruction and data L1 caches. To re-
duce the problem complexity, the I- and D-cache parameters
have been optimized independently.

The cornerstone of our strategy is the dynamic profiling of
the memory references obtained by tracing the software ex-
ecution in terms of transition activity on system-level buses
and by filtering the bus traces with a behavioral model of
the caches. Bus traces, derived from the execution of several
application programs, are analyzed from the energy-delay
combined perspective to evaluate the cost associated with
different architectural configurations.
The effectiveness of the proposed methodology has been

validated by applying it to the design of a real-world repre-
sentative example (a MicroSPARC2-based system) running
the Mediabench suite [11]. Experimental results have shown
how much the design exploration phase can be shortened
while achieving either the optimal system-level configura-
tion (obtained by the exhaustive system-level exploration)
or a sub-optimal system-level configuration with a maximum
error of 9.71%.
The paper is organized as follows. In the next section, the

proposed system-level exploration methodology is described,
while in Section 3, an application example of the exploration
method is discussed. Finally, some concluding remarks and
future directions of our work are drawn in Section 4.

2. DESIGN SPACE EXPLORATION
The analysis of goal functions at the system-level, plays

a primary role during the design space exploration. Our fo-
cus is on processor-to-memory communication through the
memory hierarchy. In this section, we describe (i) the sep-
arate optimization flow based on the analysis of energy-
delay metrics; (ii) the sensitivity-based optimization; (iii)
the system-level simulation environment; (iv) the energy-
delay models used to optimize the system.

2.1 Separate Optimization Flow
The choice of the optimal system configuration, in many

cases, is the most important and time consuming activity
of the whole design process. Such a task is typically ac-
complished by considering some goal functions, e.g. taking
into account energy consumption and performance. In many
cases, the optimization of either energy or performance leads
to sub-optimal architectures unable to meet the tight con-
straints of embedded applications. To be general and flexi-
ble, we adopted the Energy ∗Delay product metric to com-
pare alternative system configurations from both a power
and performance standpoint. Despite the choice of a unique
and comprehensive goal function to be optimized, the ex-
haustive analysis of the typical design space still remains an
hard task.

INSTRUCTION
CACHE

DATA
CACHE

PROCESSOR

SYSTEM BUS

MAIN
MEMORY

Figure 1: Target system architecture.

Let us consider the target configurable system architec-
ture shown in Figure 1 composed of a processor, a separated

Processor
Data

cache

Config. model

Candidate Global
Optimal

Configuration

Optimizer

Optimized
Data Cache

Processor

Config. model

Optimizer

Processor
Data

cache

Config. modelInstr.
cache Exhaustive

Analyzer

ApplicationApplication

Optimal Global
Configuration

Comparison

error

Instr.
Cache

Optimized
Instr. Cache

Figure 2: Separated I- and D-cache optimization
flow

I- and D- L1 caches, the main memory and the system buses.
We assume to explore the design space of this architecture
in terms of six parameters: cache size, block size and asso-
ciativity of both D- and I- L1 caches. Thus each instance
of the configurable architecture is described as a 6-tuple
t =< ci, bi, vi, cd, bd, vd >∈ T = Ci ×Bi ×Vi ×Cd ×Bd ×Vd

where:

• Ci, Cd are the spaces of sizes of I- and D-caches.

• Bi, Bd are the spaces of block sizes of I- and D-caches.

• Vi, Vd are the spaces of associativity of I- and D-caches.

Let us indicate as I = Ci × Bi × Vi the space of I-cache
parameters and as D = Cd × Bd × Vd the space of D-cache
parameters.
In this work, we propose to apply a separate analysis to

the data and instruction streams in the memory hierarchy
in order to compute two sub-optimal configurations, one for
the D-cache and one for the I-cache (see Figure 2). The
resulting two sub-optimal solutions are composed to build
a sub-optimal solution for the entire system. Even if this
procedure seems intuitive from the point of view of the sys-
tem delay (because the delays introduced by the D- and the
I-cache are independent to each other), this is not true from
the point of view of the ED metric, where energy and de-
lay contributions are merged together to build a complex
system-level cost function.
Since the two sub-optimal configurations can be computed

independently, we can find a sub-optimal configuration in
the I × D space in a |I| + |D| number of simulation steps
instead of a full search requiring |I| ∗ |D| steps.
The sub-optimal configuration for the D-cache is com-

puted by exploring a simplified system model in which the
D-cache is kept varying and the I-cache is considered fixed
and ideal, i.e., it does not introduce any delay in the system
and it does not consume power. We denote this family of
architectures (or subspace of exploration) as M(iideal, D) =
{iideal}×D where iideal is the ideal I-cache configuration and
D is the D-cache parameter space. Given a family of sys-
tems M(iideal, D), the optimization (described in the next

New
Configuration

StatisticsEmulator

Sensitivity
Analysis

Configurable
Model

Application

Candidate
Optimal

Configuration

Figure 3: The sensitivity analysis controls the be-
havior of the sensitivity optimizer by suggesting a
smart path in the architectural space exploration.

section) is applied to find a near-optimal D-cache configu-
ration dopt. The dual procedure is applied to a family of
architectures in which the D-cache is considered fixed and
ideal to find a near-optimal iopt I-cache configuration.

2.2 Sensitivity-Based Optimization
The optimization methodology we are proposing is based

on the sensitivity analysis of the system to the parameters
defining its configuration as well as on the relative indepen-
dence of some parameters with respect to others.
To perform the sensitivity-based optimization on both

families of systems (M(I, dideal) and M(iideal, D)), the pa-
rameters of each family must be ordered by their sensitivity.
We define the sensitivity Sens(p) of a parameter p with re-
spect to the full search optimal configuration topt as the
maximum variation of the metric ED from ED(topt) when
the component p is varied of the smallest δp possible.
This phase is called the methodology tuning phase and it

has to be applied only once for a particular system. In or-
der to perform the methodology tuning, a full architectural
space exploration for a selected set of benchmarks must be
done. In our application example, we selected eight Media-
bench programs representative of a class of audio, image and
video processing algorithms [11] to characterize the sensitiv-
ity of both the system models.
The sensitivity analysis produces tuning information that

will be used for the fast determination of the optimal con-
figuration for a new, arbitrary application running on the
target system. During this optimization (shown in Fig. 3),
we exploit the sensitivity analysis results to find the sub-
optimal I-cache and D-cache configurations given an arbi-
trary application. First let us consider the optimization of
the family M(I, dideal) where we have to explore the I-cache
configuration space I = Ci ×Bi × Vi.
As a clarifying example, let us assume that, the sensitivity

analysis has shown that the ED product is mostly affected
first by the cache size, second by the associativity, and third
by the block size. Our optimization methodology suggests
to find the sub-optimal iopt by optimizing first the most
sensitive parameters in the following way:

1. Select a pair of values (bi,0, vi,0) to be used as ini-
tial values and perform the exhaustive search of the
minimum of the function ED on the subspace of the
I-cache configurations {< ci, bi,0, vi,0 > |ci ∈ Ci}. In
the experimental results we used the mean values of
the Bi and Vi spaces. Define as ĉi,opt the estimated
I-cache size of the near-optimal configuration found.

2. Perform an exhaustive search of the minimum of the
function ED on the subspace of the I-cache configura-

tions {< ĉi,opt, bi,0, vi > |vi ∈ Vi}. Define as v̂i,opt the
estimated associativity of the near-optimal configura-
tion found.

3. Perform an exhaustive search of the minimum of the
function ED on the subspace of I-cache configurations
{< ĉi,opt, bi, v̂i,opt > |bi ∈ Bi}. Define as b̂i,opt the es-
timated block size of the near-optimal I-cache config-
uration.

The 3-tuple iopt =< ĉi,opt, b̂i,opt, v̂i,opt > represents the es-
timated ED sub-optimal I-cache configuration for theM(I,-
dideal) family. This configuration has been found in |Ci| +
|Bi| + |Vi| steps, while the exhaustive search would require
|Ci| ∗ |Bi| ∗ |Vi| steps.
The optimization task of the methodology is then applied

to the D-cache by searching for a dopt =< cd, bd, vd >∈ Cd×
Bd×Vd that minimizes the ED product for theM(iideal, D)
family of architectures.
The combined results < iopt, dopt >∈ T constitutes the

near- optimal configuration for the entire system, found with
with |Ci|+|Bi|+|Vi|+|Cd|+|Bd|+|Vd| simulation steps while
the full search optimal configuration would have required
|Ci| × |Bi| × |Vi| × |Cd| × |Bd| × |Vd| steps.

2.3 System-Level Simulation Framework
To apply this general methodology, we require a system-

level simulation environment to profile dynamically the be-
havior of the multi-level memory hierarchy. The system ar-
chitecture we address is quite general and models system-
level buses in terms of the main parameters that affect the
energy-delay behavior of the processor-to-memory commu-
nication (operating frequency, transition activity, capacitive
load, power supply, bus width, cache hit rate, cache and
memory access time, etc.).
The system-level simulation environment [12] [13] is mainly

composed of the following modules: (i) Software Execu-
tion Profiler, (ii) Configurable Memory Model, (iii) Con-
figurable Bus Model. In our approach, the performance and
the energy associated to each level of the memory hierar-
chy, mainly depends on the number of accesses. Given a
target software application, our framework enables us to de-
termine the actual number of accesses to each level in the
hierarchy and the corresponding hit rates. The method is
based on the profiling of the memory references generated by
the processor during the execution of the application soft-
ware in terms of transition activity on system-level buses.
The Software Execution Profiler combines a cycle-accurate
Instruction-Set Simulator (ISS) to execute software appli-
cation programs and a dynamic tracer to generate data and
address bus streams during the program execution. The
bus traces generated by the Software Execution Profiler are
given as inputs to the Configurable Memory Model, that
includes different levels in the memory hierarchy, such as
on- and off-processor L1 and L2 caches as well as the main
memory. Each level of storage can be customized in terms
of design parameters (such as cache size, block size, associa-
tivity, memory array organization, etc.).
In particular, the bus traces generated by the Software

Execution Profiler are filtered by a behavioral model of the
first level cache (dependent on cache size, block size, asso-
ciativity, replacement policy, write strategy, etc.), then they
are passed to the behavioral model of the second level cache
and finally to the main memory model.

2.4 Energy-Delay Models
In our system-level model, we focus on the energy and

the delay associated with the processor-to-memory commu-
nication, considering the contributions of the processor core,
the system-level buses and each level of the memory hierar-
chy. While the delay calculation is embedded in the cycle-
accurate simulation environment, the statistics of each re-
source of the system have to be extracted and imported into
the analytical energy models to evaluate the overall energy-
delay cost functions. These analytical energy models include
the following contributions:

• processor core;

• processor I/O pads;

• processor-to-L1 on-chip buses;

• on-chip L1 I- and D-caches;

• L1-to-L2 off-chip buses;

• L2 unified SRAM cache;

• L2-to-MM off-chip buses;

• MM DRAM .

All the energies and delays presented in this this work
are normalized to the instructions executed. This is done
in order to compare the behavior of different applications
on the same system architecture and to compare different
architectures on the same application. For the processor
core, we use a simple model that accounts for an average
power consumed by the processor in normal operating con-
ditions and we multiplied it by the average execution time
of an instruction. In general, this model depends on the
particular processor used. For system-level buses (such as
the processor-to-L1 buses), the energy model can be simply
expressed as: E ≈ (CloadV

2
ddntrans)/2, where Cload is the

bus load capacitance, Vdd is the power supply voltage and
ntrans is the number of transitions on the bus lines. The
ntrans term is given by:

ntrans ≈
∑L−1

t=0 H(B(t), B(t+1))

(L− 1)
(1)

where H is the Hamming distance between the bus line
B at time t and the bus line at time (t + 1) and L is the

total length of the bus stream. The actual values of B(t),
derived from our simulation environment, are considered in
our model.
For on-chip L1 caches, our analytical energy model is

based on the model developed in [9], that accounts for:

• technological parameters (such as capacitances and power
supplies);

• architectural parameters (such as block size and cache
size);

• switching activity parameters (such as number of bit
line transitions).

The energy model has been used in recent works (such
as in [5]), where the switching activity parameters have
been calculated either by using application-dependent statis-
tics or by assuming typical values (such as half of the ad-
dress lines switching during each memory request). In our
cache energy model, we directly import the actual values
of hit/miss rates and and transitions on cache components,
that have been derived by our system-level simulation envi-
ronment to account for actual profiling information depend-
ing on the application software.

3. AN APPLICATION EXAMPLE
In this section, we present the experimental environment

setup to explore a system architecture (see Fig. 1) composed
of the following modules :

• A 100MHz MicroSPARC2 Processor Core (operating
at 3.3V and without I- and D-caches).

• Separated and configurable I- and D-caches implemented
in 0.8µm CMOS technology with one-cycle hit-time.
The speed of the processor-to-memory bus is 100MHz.

• A 32Mbyte DRAM composed by 16× 16-Mbit blocks
and characterized by a 7-cycle latency. The power
model for this memory has been derived from [14]. The
speed of the bus cache-DRAM is 100MHz.

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

0 10000 20000 30000 40000 50000 60000 70000

Cache Size

Energy Energy*Delay Delay*10^(-7)

Figure 4: Energy [JPI], normalized Delay [CPI]
and Energy*Delay [JPI ∗ CPI] product for adpcmdec
benchmark with respect to cache size for a 4-way set
associative cache with 32B block

8.00E-08

8.50E-08

9.00E-08

9.50E-08

1.00E-07

1.05E-07

1.10E-07

1.15E-07

1.20E-07

1.25E-07

1.30E-07

0 5 10 15 20 25 30 35

Block Size

Energy Energy*Delay Delay*10^(-7)

Figure 5: Energy [JPI], normalized Delay [CPI]
and Energy*Delay [JPI ∗ CPI] product for adpcmdec
benchmark with respect to block size for a 64KB
4-way set associative cache.

The cache energy model is related to 0.8µm caches im-
plemented in CMOS technology, however the equations in
the analytical energy model can be easily modified to reflect

Benchmark Sens(C) Sens(B) Sens(V)

adpcmdec 11,6% 0,3% 4,1%
adpcmenc 9,7% 0,1% 3,5
g721decode 109,3% 1,0% 42,5%
gsdec 7,1% 2,8% 0,1%
pegwit 92,8% 0,7% 1,1%
pgp 51,3% 0,9% 6,6%
rasta 29,0% 3,7% 3,1%
Mean 44,4% 1,4% 8,7%

Table 1: Sensitivity of ED w.r.t. cache size, block
size and associativity for L1 I-Cache.

Benchmark Sens(C) Sens(B) Sens(V)

adpcmdec 126,1% 8,5% 2,1%
adpcmenc 125,7% 8,8% 2,0%
g721decode 2,1% 0,4% 11,0%
gsdec 9,3% 1,7% 1,5%
pegwit 20,9% 37,1% 3,3%
pgp 86,0% 3,6% 21,3%
rasta 45,8% 0,3% 11,5%
Mean 59,4% 8,6% 7,5%

Table 2: Sensitivity of ED w.r.t. cache size, block
size and associativity for L1 D-Cache.

a more updated process technology by simply changing the
values of the capacitance parameters to account for techno-
logical and layout features.
Each instance of the virtual architecture has been de-

scribed as a 6-tuple t =< ci, bi, vi, cd, bd, vd >∈ T = Ci ×
Bi × Vi × Cd ×Bd × Vd where:

• Ci, Cd ={2KB, 4KB, 8KB, 16KB, 32KB, 64KB}.
• Bi, Bd ={4B, 8B, 16B, 32B}.
• Vi, Vd ={1, 2, 4, 8}).
The architecture has been explored by using our in-house

developed tool, calledMEX, that simulates the execution of
a program compiled for the Sparc V8 architecture within a
configurable memory architecture. MEX exploits the Shade
[15] library to trace the memory accesses made by a SPARC
V8 program and consequently simulates the target memory
architecture to obtain accurate memory access statistics. At
the end of the simulation,MEX reports the following statis-
tics:

• number of accesses generated to the memory hierarchy
(on both I- and D-buses);

• average cache miss rate (on both I- and D-buses);

• address sequentiality (on both I and D address buses)
[12];

• bus transition activities (on both I and D address buses);

• delay D (average clock cycles per instruction, mea-
sured in [CPI]);

• energy E dissipated by the architecture during pro-
gram execution measured in Joule per Instruction [JPI].

To give the flavor of the ED trend for the adpcmdec
benchmark, Figure 4 reports the behavior of the ED met-
ric with respect to the cache size for fixed associativity and
block size, while Figure 5 reports the ED metric with re-
spect to the block size for fixed 64KB 4-way set associative
cache. Table 1 reports the sensitivity index with respect
to the three cache parameters (cache size, block size and
associativity) for the M(I, dideal) family. Similarly Table

Proposed Method Full Search Error
Benchmark Copt Bopt Vopt Copt Bopt Vopt on ED

epic 2KB 8B 2 2KB 8B 2 0,00%
gsmdec 8KB 8B 8 8KB 8B 8 0,00%
gsmenc 16KB 16B 2 16KB 16B 2 0,00%
jpegdec 4KB 4B 4 4KB 4B 4 0,00%
jpegenc 4KB 8B 4 4KB 8B 4 0,00%
mesa 16KB 16B 8 16KB 16B 4 0,21%
mpegdec 8KB 8B 4 8KB 8B 4 0,00%
mpegenc 2KB 8B 4 2KB 8B 4 0,00%
unepic 2KB 8B 2 2KB 8B 2 0,00%
g721encode 8KB 16B 2 8KB 16B 2 0,00%

Table 3: Comparison between the I-cache configu-
rations derived with the proposed method and the
full search analysis.

Proposed Method Full Search Error
Benchmark Copt Bopt Vopt Copt Bopt Vopt on ED

epic 16KB 4B 2 16KB 4B 2 0,00%
gsmdec 8KB 16B 2 8KB 16B 2 0,00%
gsmenc 4KB 8B 4 8KB 16B 1 1,92%
jpegdec 32KB 16B 4 32KB 16B 4 0,00%
jpegenc 32KB 8B 2 64KB 16B 1 1,90%
mesa 16KB 4B 4 8KB 4B 8 1,00%
mpegdec 8KB 4B 4 4KB 4B 4 0,13%
mpegenc 4KB 4B 4 2KB 4B 4 0,17%
unepic 32KB 4B 4 8KB 4B 2 2,39%
g721encode 2KB 8B 4 2KB 4B 2 0,23%

Table 4: Comparison between the D-cache configu-
rations derived with the proposed method and the
full search analysis.

2 reports the sensitivity data derived for the M(iideal, D)
family .
In the case of the I-cache, the ED metric is affected, first

by cache size (44.4%), second by associativity (8.7%) and
third by block size (1.4%). For the D-cache, the ED met-
ric is affected, in order, by cache size (59.4%), block size
(8.6%) and associativity (7.5%). The results of these two
sensitivity analysis are used to optimize the M(I, dideal)
and M(iideal, D) families for any new algorithm without a
full search of the exploration phase. In our case, this cor-
responds to 14 simulation steps instead of 96 steps (585%
speedup).
To assess the methodology, we performed the separate op-

timization presented in Section 2.1 for each application of
the remaining set of Mediabench applications. Table 3 com-
pares the I-cache configurations estimated by our approach
with those found with the full search. The table shows also
the percentage errors on the ED metric. For all benchmarks
but one, the near-optimal configuration found coincides with
the full search one.
To complete the I-cache analysis, we varied the choice of

the initial values < bi,0, vi,0 > among all the 16 = |Bi| ∗ |Vi|
possible pairs of initial values and we found an maximum er-
ror between the estimated sub-optimal configuration and the
full search-optimal configuration of 6.10%. After the I-cache
analysis, we performed the dual sensitivity optimization on
the D-cache by optimizing, in order, D-cache, block size and
associativity. The related results are shown in Table 4
Finally, we show how the combined < iopt, dopt > can be

used as a near-optimal global configuration. Table 5 com-
pares the full search optimal configurations with the com-
bined near-optimal configurations. The table shows also
the percentage errors between the full search optimal ED
and the near-optimal ED values. The maximum error is

Full Search Proposed Method
I-cache D-cache I-cache D-cache Error

Benchmark Copt Bopt Vopt Copt Bopt Vopt Copt Bopt Vopt Copt Bopt Vopt on ED
epic 2KB 8B 2 32KB 4B 4 2KB 8B 2 16KB 4B 2 0,07%
gsmdec 8KB 8B 8 16KB 32B 2 8KB 8B 8 8KB 16B 2 0,23%
gsmenc 16KB 16B 2 8KB 16B 1 16KB 16B 2 4KB 8B 4 0,19%
jpegdec 4KB 4B 4 32KB 16B 4 4KB 4B 4 32KB 16B 4 0,00%
jpegenc 4KB 8B 4 64KB 8B 1 4KB 8B 4 32KB 8B 2 9,17%
mesa 16KB 16B 4 16KB 4B 4 16KB 16B 8 16KB 4B 4 0,53%
mpegdec 8KB 8B 4 8KB 4B 4 8KB 8B 4 8KB 4B 4 0,00%
mpegenc 2KB 4B 4 4KB 4B 4 2KB 8B 4 4KB 4B 4 0,00%
unepic 2KB 8B 2 64KB 8B 4 2KB 8B 2 32KB 4B 4 0,25%
g721encode 8KB 16B 2 8KB 8B 2 8KB 16B 2 2KB 8B 4 1,21%

Table 5: Comparison between the I- and D-cache configurations derived with the proposed method and those
derived with the full search analysis.

9.17%. Note that the combined optimal configuration has
been found with |Ci|+|Bi|+|Vi|+|Cd|+|Bd|+|Vd| = 28 sim-
ulations while the full search needs |Ci|× |Bi|× |Vi|× |Cd|×
|Bd| × |Vd| = 9216 steps. This means that our methodology
enables a speedup in terms of steps of approximately 329
times on the design space exploration phase. As an exam-
ple, for a generic application requiring a simulation time of
2 minutes for a single simulation steps, the full search opti-
mization would have required approximately 13 days, while
our methodology finds a near optimum solution within 56
minutes. A full search step can exploit the information gen-
erated by previous steps without performing a real simula-
tion thus reducing the actual evaluation time of an architec-
ture.

4. CONCLUSIONS AND FUTURE WORK
This paper addresses the problem of design space explo-

ration of system architectures where both performance and
power consumption are relevant issues. In particular, a
methodology to reduce simulation time dramatically while
preserving acceptable design accuracy has been proposed
and experimentally assessed by considering the design of the
memory subsystem of a real-world processor. Experimental
results have shown a speed-up in simulation time of 329
times and a distance from the optimal configuration always
in the band of 10%. Furthermore, this methodology allows
the designer to save analysis time since the number of con-
figuration to be compared is significantly reduced. Work is
in progress to validate this methodology on a broader range
of processor architectures.

5. REFERENCES
[1] C. L. Su and A. M. Despain, “Cache Design Trade-offs for

Power and Performance Optimization: A Case Study,”
ISLPED-95: ACM/IEEE Int. Symposium on Low Power
Electronics and Design, 1995.

[2] Y. Li and J. Henkel, “A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW
Systems,” DAC-35: ACM/IEEE Design Automation
Conference, June 1998.

[3] R. I. Bahar, G. Albera, and S. Manne, “Power and
Performance Tradeoffs using Various Caching Strategies,”
ISLPED98: ACM/IEEE Int. Symposium on Low Power
Electronics and Design, Monterey, CA, 1998.

[4] C. A. Mandal, P. P. Chakrabarti and S. Ghose, “A Design
Space Exploration Scheme for Data-Path Synthesis,” IEEE
Trans. on Very Large Scale Integration (VLSI) Systems ,
Vol. 7, No. 3, Sep. 1999, pp. 331-338.

[5] J. K. Kin, M. Gupta and W. H. Mangione-Smith, “Filtering
Memory References to Increase Energy Efficiency,” IEEE
Trans. on Computers, Vol. 49, No. 1, Jan. 2000.

[6] T. M. Conte, K. N. Menezes, S. W. Sathaye and M. C.
Toburen, “System-Level Power Consumption Modeling and

Tradeoff Analysis Techniques for Superscalar Processor
Design,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, Vol. 8, No. 2, Apr. 2000, pp. 129-137.

[7] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,” ISCA 2000: 2000 International Symposium
on Computer Architecture, Vancouver BC Canada, pp. 83-94,
June 2000.

[8] N. Bellas, I. N. Hajj, D. Polychronopoulos, and G. Stamoulis
“Architectural and Compiler Techniques for Energy Reduction
in High-Performance Microprocessors,” IEEE Transactions on
Very Large Scale of Integration (VLSI) Systems, Vol. 8, no 3,
June 2000.

[9] M. B. Kamble and K. Ghose, “Analytical Energy Dissipation
Models for Low Power Caches,” : ISLPED97: ACM/IEEE
Int. Symposium on Low Power Electronics and Design, 1997.

[10] P. Hicks, M. Walnock, and R. M. Owens, “Analysis of Power
Consumption in Memory Hierarchies,” ISLPED-97:
ACM/IEEE Int. Symposium on Low Power Electronics and
Design, Monterey, CA, August 1997, pp. 239-242.

[11] C. Lee, M. Potkonjak and W. H. Mangione-Smith,
“MediaBench: A Tool for Evaluating Multimedia and
Communication Systems,” Proc. of MICRO30, 1997.

[12] W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano,
“Power Optimization of System-Level Address Buses based on
Software Profiling,” CODES-2000: 8th Int. Workshop on
Hardware/Software Co-Design, San Diego, CA, May 2000.

[13] W. Fornaciari, D. Sciuto, and C. Silvano, “Power Estimation
of System-Level Buses for Microprocessor-Based Architectures:
A Case Study,” ICCD99: 1999 IEEE Int. Conf. on Computer
Design, Austin, Texas, Oct. 1999.

[14] NEC, “16M-bit Synchronous DRAM Data Sheet,” Doc. No.
M12939EJ3V0DS00, 3rd Ed., April 1998.

[15] B. Cmelik, D. Keppel, “Shade: A Fast Instruction-Set
Simulator for Execution Profiling,” ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, 1994.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

