
Empirical Comparison of Software-Based Error Detection
and Correction Techniques for Embedded Systems

Royan H. L. Ong
Student member IEE

Department of Engineering,
 University of Leicester,

Leicester, United Kingdom.

+44 (0)116 2522873

hlro1@le.ac.uk

Michael J. Pont
MBCS

 Department of Engineering,
 University of Leicester,

Leicester, United Kingdom.

+44 (0)116 2522559

m.pont@le.ac.uk

ABSTRACT

“Function Tokens” and “NOP Fills” are two methods proposed by
various authors to deal with Instruction Pointer corruption in
microcontrollers, especially in the presence of high
electromagnetic interference levels. An empirical analysis to
assess and compare these two techniques is presented in this
paper.

Two main conclusions are drawn: [1] NOP Fills are a powerful
technique for improving the reliability of embedded applications
in the presence of EMI, and [2] the use of Function Tokens can
lead to a reduction in overall system reliability.

Keywords
Instruction Pointer Corruption, Electromagnetic Interference,
EMI, Function Token, NOP Fill, Software-based Error Detection
Techniques, Embedded systems

1. INTRODUCTION
The use of microcontrollers in embedded systems has increased
tremendously with the rise in consumer demands for safer,
cheaper and more versatile electronics devices. As for other
sectors, the greater sophistication demanded by modern-day
applications coupled with the miniaturisation trend makes
microcontrollers the ideal electronics device in many applications.

The automotive industry forms a key part of the microcontroller
market, not least because of a desire to improve passenger safety
levels. In this regard, embedded electronics systems, such as air
bags and anti-lock brakes [9], have already proved effective while
adaptive cruise control systems are thought to have the potential
to reduce the number of accidents between 3% and 10% [3].
However, the increasing reliance on embedded systems for safety-
related automotive systems also introduces new risks. Many
factors, from the hardware, software and design point of view,

may influence the reliability of embedded systems: within the
present paper, we are concerned with the influence of
electromagnetic interference (EMI) on the microcontroller itself
(see [1]), with specific reference to the corruption of the
instruction pointer (IP).

This paper is organised as follows: the problem associated with IP
errors and software-based techniques proposed by other authors to
detect and correct such errors are described Section 2. Section 3
introduces the experimental procedure carried out to statistically
evaluate these techniques. Both experimental results and
discussion are found in Section 4 while Section 5 concludes this
paper.

Although the experiment and results were based on the 8051
family of microcontrollers, most topics discussed here are
applicable to other microcontroller families.

2. SOFTWARE TECHNIQUES TO DEAL
WITH IP ERRORS
Arguably, the most serious form of EMI-induced error in a
microcontroller is corruption of the instruction pointer, the
register that stores the address of the next instruction to be
executed. Though similar in construction to other registers, such
as the accumulator, corruption of the IP can lead to unpredictable
program branches, and – consequently – dramatic changes in
system behaviour.

The impact of IP corruption is particularly difficult to predict
because most microcontroller instruction sets include some
instructions longer than one byte in size (“multibyte instructions”)
[10, 11]. During program execution it is possible that IP
corruption may occur before all the bytes of a multibyte
instruction have been read. Under such circumstances, the correct
instruction is executed but with the wrong operands – a
phenomenon we term the “Early Multibyte Instruction Trap”
(EMIT) [11].

Further problems arise when the corrupted IP points to a memory
location that contains the second or third byte (or greater) of a
multibyte instruction. The processor will misinterpret the value
found at this location (and, often, at subsequent locations too).
We refer to this phenomenon as the “Late Multibyte Instruction
Trap” (LMIT) [11]. Note that it is also possible that both EMIT
and LMIT will be evident, in succession, when an IP error occurs.

Function Tokens (FT) and NOP Fills (NF) are two software-based
techniques proposed by various authors such as Banyai & Gerke
[2], Campbell [4, 5], Coulson [6] and Niaussat [8] to deal with
program flow errors brought on by IP corruption.

We describe both of these techniques below.

2.1 Function Tokens
The idea behind Function Tokens [2, 4, 5, 6, 8, 10, 11] is to use
one or more free data memory locations (known as the “ token”) to
store the unique ID of each function (see Figure 1). Just before a
function is called, the token is assigned the value of the function
ID. The token is then compared with the function’s ID within the
function itself. If the ID comparison fails, the program will
execute the IP error handler (IPEH); this is diiscussed further
below.

The above schema describes the simplest implementation of FT,
assuming a one-to-one relationship between caller and callee
functions. However, normal programs usually have functions
with many-to-many relationship, which makes implementation
more complicated. For effective FT implementation, the calls
between various functions must be fully mapped.

FTs are implemented as part of the program itself, and result in an
increase in the final code size. Coulson [6] estimates a code swell
between 10-20% in one FT implementation.

2.2 NOP Fills
NOP Fills [4, 5, 6, 8, 10, 11] are carried out on unused program
locations. Typically, program code is contiguously programmed
into physical code memory locations from address location
0x0000, which usually leaves some free memory locations at the
end of the physical memory space.

What NOP Fill (NF) does is to fill these locations with the value
of 0x00, equivalent to the “NOP” (No Operation) 8051
instruction. As a result, an erroneous program branch into this
region will not significantly alter the processor state. An IPEH
would be located at the end of the physical code memory to deal
with runaway program execution caught by the NOP Fill.

Note that, under normal program execution, both the NOP Fill
region and the IPEH are unreachable.

2.3 Instruction Pointer Error Handler
The IPEH is a function that carries out the appropriate error
handling when an IP error is detected. The type of error handling
varies greatly between applications. For example, a “warm” reset
may be appropriate for non-critical systems. Alternatively, a
shutdown may be more appropriate for systems with multiple
redundancies. For some safety-critical applications, such as
engine-management units, placing the system into a ‘safe’ mode
in the event of an EP error may be particularly effective.

Note that by locating the IPEH at the end of the physical code
memory, it is possible to “share” this function between NOP Fills
and Function Tokens, when both techniques are implemented.
Figure 2 shows a generic physical memory layout when both
techniques are implemented.

3. SIMULATION
The simulation discussed in this paper was carried out on dScope;
an 8051 simulator developed by Keil GmbH. This simulator is
capable of simulating at the instruction level as well as the C-
syntax level, which ideally suits our requirement. In addition, the
simulators’ C-like scripting language allows us to carry out
simulations almost autonomously. Unfortunately, its instruction-
level resolution means we could not simulate and detect EMIT
errors, and only LMIT errors are considered in this paper.

3.1 Simulated Programs
Three sets of programs, AlarmClock [12], GreenHouse [7] and
CentralHeating [13], were used for the simulations discussed here.
Each program set has four different versions employing different
IP error detection and correction techniques. The four
combinations of each program are suffixed _A, _B, _C and _D,
and employ the error detection and correction techniques as so:

Prog_A – Without any form of error checking.

Prog_B – Implements NOP Fills.

Prog_C – Implements Function Tokens.

Prog_D – Implements Function Tokens and NOP Fills

Figure 2 shows the physical code memory layout schematic of
each program version as it would appear when programmed onto
microcontrollers with internal code memory. Note that this figure
is not to scale.

Figure 1: Schematic of Function Token Implementation

Start
(ID=1)

End

2

Function A
(ID=2)

Function B
(ID=3)

3

1

2

FT:

FT Checks:

2

Start
(ID=1)

End

2

Function A
(ID=2)

Function B
(ID=3)

3

1

2

FT:

FT Checks:

2FT:

FT Checks:

2

All programs were written in C and compiled with the C51
Compiler by Keil GmbH. These programs were chosen for the
simulation as they are representative of real-world applications.
Though lacking computationally intensive algorithms apart from a
software-based I2C protocol, these programs had complex control
structures, the most complex of which, the AlarmClock project,
was built on a cooperative scheduler [12]. These programs are
available via their respective references.

We refer to each program as Alarm_C, Heat_A, etc., or
collectively as, program “A” for Alarm_A, Green_A and Heat_A.
Referring to “Alarm” itself would mean all four versions of that
program.

3.2 Implementing NFs and FTs
Two methods are generally used when creating the NOP Fill
region. The simpler method involves filling the EPROM
programmer’s code buffer with the value of 0x00, followed by
downloading the program code destined for the microcontroller.
In doing so, all empty locations would have the value of 0x00,
thus the NOP Fill is created.

The second method is to create the NOP Fill in assembly language
with the help of assembler directives. Although harder to
implement, this method allows greater flexibility and control
especially when different NOP Fill topologies are intended. The
former method also tends to be more time consuming in the long
run due to the overhead in configuring the EPROM programmer
on every programming cycle. Apart from that, modern
microcontrollers with In-circuit Serial Programming (ISP)
programming capabilities can also be programmed without
physically removing the microcontroller. The second “NOP
Filling” method was used in the studies reported here.

Since the test programs were taken from various sources, all the
code had to be meticulously scrutinised to map out all the callers
and callees of every function, including those called from the
interrupt service routine (ISR). Once the mapping was complete,
each function was assigned a unique ID. Function Token checks
were implemented at the start of each function and just after
program execution is returned to the caller routine.

With ISRs, no Function Token checks were carried out since they
could be called from practically any part of the program. Though
it is possible to create a “ local” token, this approach was deemed
unnecessary, as the ISR routines were short and non-critical.

The IPEH, as mentioned earlier, resides at the end of the physical
code memory location. For the simulation programs “B” , “C” and
“D”, the IPEH was written in assembler and located at a
predefined memory location with the help of assembler directives.

Table 1 shows the program and NOP Fill size of each program as
well as the number of Function Token checks implemented.

Due to the increase in code size for Alarm_C and Alarm_D, a
microcontroller with 8kB of internal code memory is assumed,
though the other programs could fit into 4kB devices. This is done
to ensure a standard basis of comparison.

3.3 Simulation procedure
For the results to be statistically convincing, a large number of
simulation cycles have to be carried out. dScopes’ C-like scripting
language helped to automate the simulation procedure.

The simulation script included all LMIT locations for each
program. This was generated by an “ in-house” program scanning
the microcontroller-downloadable file (in Intel H86 format). This
script controlled the entire simulation process, classified the
results and generated the appropriate log files.

One thousand simulation cycles were carried out on each program
with an error injected anywhere between the 1st and 10000000th
microcontroller instruction cycle. Before commencing each
simulation cycle, the instruction cycle in which the error would
occur (ECY), and the corresponding erroneous IP value (EIP), is
generated randomly. Each simulation cycle also starts from the
beginning, equivalent to a microcontroller reset.

Figure 2: Gener ic M emory M ap when Implementing NOP
Fills and Function Tokens

0x0000

0x1FFF

Programmed

Locations

Empty

Locations

NOP Fills

Function Token

IP Error

Handler

The simulated errors are classified into five categories as follows:

EL – Empty Location. The simulated error points the
IP to an empty code memory location.

NF – NOP Fill. The simulated error is detected and
corrected by the NOP Fills.

FT – Function Token. The simulated error is detected
and corrected by an FT check.

LM IT – Late Multibyte Instruction Trap. The simulated
error points the IP at the second or third byte of
a multibyte instruction.

UE – Undetected Error. The simulated error goes
undetected by NF or FT.

By evaluating EIP alone, EL, NF and LMIT are immediately
identifiable. The simulation script would first determine if EIP
points to a location outside the programmed code memory, or,
within the NF region for programs implementing NF. If it did, the
error was immediately logged as an EL or NF hit and a new
simulation cycle was started.

If EIP pointed to a code memory location within the program
itself (including the IPEH, if any), the simulation script looked up
the LMIT table to determine if that particular address location is
part of the second or third byte of a multibyte instruction. A match
in that table caused an LMIT hit to be recorded and a new
simulation cycle was started.

Only when none of the above-mentioned conditions was met
would actual simulation of the microcontroller from the first to
the ECYth instruction cycle begin. Simulation time is further
shortened by simulating at the fastest possible speed up to the
ECYth cycle, instead of stepping through each instruction. This
was done by setting breakpoints as no errors were injected before
the ECYth cycle.

Upon the breakpoint triggering, the value of the IP is changed to
that of EIP by the simulation script. Up to a further 50000
instruction cycles would then be executed in single step mode to
determine if an FT check has detected the error. Only if the FT
check fails to detect an error would it be recorded as a UE hit.

4. RESULTS AND DISCUSSION
The simulation script was written to produce a raw text summary
of each cycle containing ECY and EIP values. Total hits for EL,
NF, FT, LMIT and UE for each program were also displayed at
the end of the summary, as shown in Table 2.

Table 2: Simulation results

Alarm
Clock

EL NF FT LM IT UE

A 587 0 0 146 267
B 0 598 0 164 238
C 169 0 460 276 95
D 0 224 405 270 101

Green
House

EL NF FT LM IT UE

A 718 0 0 130 152
B 0 711 0 136 153
C 524 0 224 218 34
D 0 526 209 219 46

Central
Heating

EL NF FT LM IT UE

A 748 0 0 128 124
B 0 772 0 107 121
C 538 0 145 272 45
D 0 547 163 237 53

4.1 Impact of var ious errors
Before discussing the variations between different programs, it is
necessary to discuss the impact of each error category on the
overall program reliability.

Jumps to empty code memory locations (EL) should not be
tolerated since program code would be executed at location
0x0000 after the IP points to the address above the highest
physical code memory. This phenomenon is due to memory
aliasing and though it is similar to resetting the microcontroller, it
does not reset internal flags and registers to known states. For
embedded systems, this scenario should be avoided, more so
when safety is of prime concern.

Table 1: Program statistics

Alarm
Clock

Total size
(bytes)

NOP Fill
(bytes)

FT checks
(amount)

A 3283 0 0

B 3331 4861 0

C 6535 0 120

D 6535 1645 120

Green
House

Total size
(bytes)

NOP Fill
(bytes)

FT checks
(amount)

A 2286 0 0

B 2329 5862 0

C 3940 0 98

D 3940 4245 98

Central
Heating

Total size
(bytes)

NOP Fill
(bytes)

FT checks
(amount)

A 1954 0 0

B 1997 6195 0

C 3799 0 120

D 3799 4387 120

On the other hand, any IP errors “ falling” into the NOP Fill
region will be detected, and the suitable recovery strategy applied.
Moreover, only the IP and timing-associated registers change
before the recovery strategy is executed. As a result, this is
probably the best condition for a microcontroller to be in as a
result of IP errors. The main problem with NOP Fills is it is
possible that – in systems with large NOP Fill areas – there will
be a relatively long error-recovery latency. A slight variation on
the basic NOP Fill technique which is designed to reduce the
recovery latency is discussed in [11].

Function Tokens do detect IP errors and execute the IP Error
Handler, as shown in programs C and D. However, it must be
stressed that the errors are generally detected some instruction
cycles after they occur, as Figure 3 illustrates. Scenario (i) is the
typical situation where the IP erroneously “ fall” between FT
checks and is detected within a reasonable time span. However,
scenario (ii) is much preferred as the FT check detects the error on
the next instruction cycle: unfortunately, this will very rarely
happen. In scenario (iii), the FT check did detect the IP error, but
only after critical instructions were executed.

Arguably, the worst error situation happens when the IP causes an
(L)MIT error. In such circumstances, software-based error
detection and correction techniques may prove ineffective. Hence,
the state of the processor and program flow may be unpredictable.

Undetectable Errors (UEs) may also, clearly, prove dangerous,
since the system may still continue to function without any
apparent problems. In our experiment, only a few critical variables
were checked to determine system integrity. However, it is
possible that more subtle problems could arise, such as incorrect
timer duration, and input readings, which would be very hard to
detect even with expensive equipment and increased software
complexity.

Note that our simulation actively detects all but “Undetectable
Errors” , which are inferred by a process of elimination.

4.2 Program var iations
Quite a few points may be made regarding the differences
between the various programs.

The first thing to note is the variation in code size. As predicted,
the code sizes for programs employing error-checking routines are
larger than those without (see Table 1). However, “B” program
sizes are only marginally larger than “A” programs, as a result of
the additional IPEH. By contrast, programs “C” and “D” are

between 69% and 96% larger than programs “A” and “B” . The
huge difference is solely attributed to the implementation of
Function Tokens, which in turn is proportional to the complexity
and number of Function Token checks used. Coulson’s [6]
estimates of 10% to 20% code swell are only obtainable if the FT
checks are implemented at the start and end of each function –
resulting in less than 100% branch coverage.

By observing Table 2 alone, we could see that with no error
checking, a large percentage of IP errors will lead to the execution
of “empty instructions” (specifically “MOV R7,A”).
Implementing NOP Fills alone traps around the same number of
errors that would have been destined for EL. We conclude that
NOP Fills, which are easily implemented, should be used in all
situations.

As mentioned earlier, implementing Function Tokens increases
program size. As a consequence, an increase of LMIT hits was
recorded for programs “C” and “D”. This leads to the conclusion
that though FT detects and corrects errors, they would also
increase the probability of encountering an MIT error, which is
one of the trade-offs of using this technique. The complexity
involved in implementing Function Tokens also opens a new
avenue for software bugs and design errors.

The conclusion drawn by comparing programs “B” , “C” and “D”
is most important in this paper. As observed from Table 2,
implementing both techniques simultaneously increases the
number of detected IP errors. However, based on previous
discussion, it would be desirable to have NF detect the errors
instead of FT. When both techniques are implemented, the size of
the NOP Fill region decreases due to an increase in program size.

4.3 Effectiveness of NOP Fills
The relationship between the NOP Fill region size and its
effectiveness may not be immediately clear. The key lies with the
assumption that when an IP error occurs, the probability of the IP
taking on any addressable value (0 to 65535) is the same. Hence,
the size of the NOP Fill region gives a good estimate of its
probability to detect and correct IP errors. Figure 4 strengthens
this point by showing the good correlation between the percentage
of physical code memory taken up by the NF (black), and the
percentage of errors detected by NF (grey). It also shows the
relationship between NF size and the percentage of errors detected
by it to be directly proportional. Based on this finding, Figure 5
shows the interpolated results for programs “B” and “D” when the
amount of physical code memory increases.

Figure 3: Function Token Error Detection Scenar ios

Star t End

Important/
cr itical action

(i) (ii) (iii)

IP error entry point Function Token checking point

Star t End

Important/
cr itical action

(i) (ii) (iii)

Star t EndStar t End

Important/
cr itical action

Important/
cr itical action

(i) (ii) (iii)(i)(i) (ii)(ii) (iii)(iii)

IP error entry point Function Token checking pointIP error entry pointIP error entry point Function Token checking pointFunction Token checking point

A mathematical relationship between code size, instruction types
and other parameters with the statistical effectiveness of FT and
NF can be found in [10].

Though it would be good to have as large a NOP Fill region as
possible, this may not an economically-viable solution for all
systems. Hence, a compromise has to be made between physical
code memory size and the NF hit probability. There is also a
threshold beyond which increased memory size has little impact
on NF hit probability, as can be seen in Figure 5.

5. CONCLUSION
Function Tokens and NOP Fills do detect and correct errors
associated with IP corruption. However, the effectiveness of
Function Tokens is questionable and implementation is an error
prone affair. Overall, FTs may increase a system’s IP error
detection rate, but it do not necessarily increase its reliability. On
the other hand, NOP Fills are simple and effective, and hence
should be used in all embedded systems.

6. REFERENCES
[1] Armstrong, K. What EMC is, and Some Examples of EMC

Problems caused by Software. IEE Colloquium on
Electromagnetic Compatibility of Software (98/471),
Birmingham, UK, 1998.

[2] Banyai, C. and Gerke, D. EMI Design Techniques for
Microcontrollers in Automotive Applications. Intel
Application Note AP-711.

[3] Broughton, J. Assessing the Safety of New Vehicle Control
Systems. Proceedings of the First World Congress on
Applications of Transport Telematics and Intelligent
Vehicle-Highway Systems, Paris, France, 1994, 2141-2148.

[4] Campbell, D. Designing for Electromagnetic compatibility
with Single-Chip Microcontrollers. Motorola Application
Note AN1263.

[5] Campbell, D. Defensive Software Programming with
Embedded Microcontrollers. IEE Colloquium on
Electromagnetic Compatibility of Software (98/471),
Birmingham, UK, 1998.

[6] Coulson, D.R. EMC Techniques for Microprocessor
Software, IEE Colloquium on Electromagnetic Compatibility
of Software (98/471), Birmingham, UK, 1998.

[7] Meikle, Colin. Green House Computer. Everyday Practical
Electronics Magazine, Wimborne Publishing, (Jul 98) 492;
(Aug 98) 610.

[8] Niaussat, A. Software techniques for improving ST6 EMC
performance. ST Application Note AN1015/0398.

[9] NHTSA Light Vehicle Antilock Brake System Research
Program Task 4. National Highway Traffic Safety
Administration (NHTSA) Report, 1999.

[10] Ong, R. H. L., Pont, M. J., Peasgood, W. A comparison of
software-based techniques intended to increase the reliability
of embedded applications in the presence of EMI.
Microprocessor and Microsystems, Elsevier Science (in-
press).

[11] Ong, R. H. L., Pont, M. J., Peasgood, W. Hardware-Software
Tradeoffs when Developing Microcontroller -Based
Applications for High-EMI Environments, IEE Colloquium
on Hardware-Software Co-Design (00/111), London, UK,
2000.

[12] Pont, M.J. Patterns for Time-Triggered Embedded Systems:
Building Reliable Applications with the 8051 Family of
Microcontrollers (in press). Addison Wesley, 2001. (ISBN 0-
201-33138-1).

[13] Stone, R. Central Heating Controller. Everyday Practical
Electronics Magazine, Wimborne Publishing, (Nov 96) 831.

Figure 4: Correlation between NF hits and NF size

Figure 5: Relationship between NF hits and Code M emory size

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Physical code memory size (kB)

P
ro

b
ab

ili
ty

 o
f N

F
 h

it

ALARM_B ALARM_D

GREEN_B GREEN_D

HEAT_B HEAT_D

0

10

20

30

40

50

60

70

80

90

ALARM_B ALARM_D GREEN_B GREEN_D HEAT_B HEAT_D

P
er

ce
n

t
(%

)

NF Ratio (%)

NF Hits (%)

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

