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ABSTRACT  

“Function Tokens”  and “NOP Fills”  are two methods proposed by 
various authors to deal with Instruction Pointer corruption in 
microcontrollers, especially in the presence of high 
electromagnetic interference levels. An empirical analysis to 
assess and compare these two techniques is presented in this 
paper.  

Two main conclusions are drawn: [1] NOP Fills are a powerful 
technique for improving the reliability of embedded applications 
in the presence of EMI, and [2] the use of Function Tokens can 
lead to a reduction in overall system reliability. 
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1. INTRODUCTION 
The use of microcontrollers in embedded systems has increased 
tremendously with the rise in consumer demands for safer, 
cheaper and more versatile electronics devices. As for other 
sectors, the greater sophistication demanded by modern-day 
applications coupled with the miniaturisation trend makes 
microcontrollers the ideal electronics device in many applications. 

The automotive industry forms a key part of the microcontroller 
market, not least because of a desire to improve passenger safety 
levels.  In this regard, embedded electronics systems, such as air 
bags and anti-lock brakes [9], have already proved effective while 
adaptive cruise control systems are thought to have the potential 
to reduce the number of accidents between 3% and 10% [3].  
However, the increasing reliance on embedded systems for safety-
related automotive systems also introduces new risks. Many 
factors, from the hardware, software and design point of view, 

may influence the reliability of embedded systems: within the 
present paper, we are concerned with the influence of 
electromagnetic interference (EMI) on the microcontroller itself 
(see [1]), with specific reference to the corruption of the 
instruction pointer (IP). 

This paper is organised as follows: the problem associated with IP 
errors and software-based techniques proposed by other authors to 
detect and correct such errors are described Section 2. Section 3 
introduces the experimental procedure carried out to statistically 
evaluate these techniques. Both experimental results and 
discussion are found in Section 4 while Section 5 concludes this 
paper.   

Although the experiment and results were based on the 8051 
family of microcontrollers, most topics discussed here are 
applicable to other microcontroller families. 

2. SOFTWARE TECHNIQUES TO DEAL 
WITH IP ERRORS 
Arguably, the most serious form of EMI-induced error in a 
microcontroller is corruption of the instruction pointer, the 
register that stores the address of the next instruction to be 
executed.  Though similar in construction to other registers, such 
as the accumulator, corruption of the IP can lead to unpredictable 
program branches, and – consequently – dramatic changes in 
system behaviour. 

The impact of IP corruption is particularly difficult to predict 
because most microcontroller instruction sets include some 
instructions longer than one byte in size (“multibyte instructions”) 
[10, 11]. During program execution it is possible that IP 
corruption may occur before all the bytes of a multibyte 
instruction have been read. Under such circumstances, the correct 
instruction is executed but with the wrong operands – a 
phenomenon we term the “Early Multibyte Instruction Trap”  
(EMIT) [11].  

Further problems arise when the corrupted IP points to a memory 
location that contains the second or third byte (or greater) of a 
multibyte instruction. The processor will misinterpret the value 
found at this location (and, often, at subsequent locations too).  
We refer to this phenomenon as the “Late Multibyte Instruction 
Trap”  (LMIT) [11].  Note that it is also possible that both EMIT 
and LMIT will be evident, in succession, when an IP error occurs. 

 

 



Function Tokens (FT) and NOP Fills (NF) are two software-based 
techniques proposed by various authors such as Banyai & Gerke 
[2], Campbell [4, 5], Coulson [6] and Niaussat [8] to deal with 
program flow errors brought on by IP corruption.   

We describe both of these techniques below. 

2.1 Function Tokens 
The idea behind Function Tokens [2, 4, 5, 6, 8, 10, 11] is to use 
one or more free data memory locations (known as the “ token”) to 
store the unique ID of each function (see Figure 1). Just before a 
function is called, the token is assigned the value of the function 
ID. The token is then compared with the function’s ID within the 
function itself.  If the ID comparison fails, the program will 
execute the IP error handler (IPEH); this is diiscussed further 
below. 

The above schema describes the simplest implementation of FT, 
assuming a one-to-one relationship between caller and callee 
functions.  However, normal programs usually have functions 
with many-to-many relationship, which makes implementation 
more complicated. For effective FT implementation, the calls 
between various functions must be fully mapped. 

FTs are implemented as part of the program itself, and result in an 
increase in the final code size. Coulson [6] estimates a code swell 
between 10-20% in one FT implementation. 

2.2 NOP Fills 
NOP Fills [4, 5, 6, 8, 10, 11] are carried out on unused program 
locations. Typically, program code is contiguously programmed 
into physical code memory locations from address location 
0x0000, which usually leaves some free memory locations at the 
end of the physical memory space.  

What NOP Fill (NF) does is to fill these locations with the value 
of 0x00, equivalent to the “NOP” (No Operation) 8051 
instruction.  As a result, an erroneous program branch into this 
region will not significantly alter the processor state.  An IPEH 
would be located at the end of the physical code memory to deal 
with runaway program execution caught by the NOP Fill.  

Note that, under normal program execution, both the NOP Fill 
region and the IPEH are unreachable. 

2.3 Instruction Pointer  Error  Handler  
The IPEH is a function that carries out the appropriate error 
handling when an IP error is detected. The type of error handling 
varies greatly between applications.  For example, a “warm” reset 
may be appropriate for non-critical systems.  Alternatively, a 
shutdown may be more appropriate for systems with multiple 
redundancies.  For some safety-critical applications, such as 
engine-management units, placing the system into a ‘safe’  mode 
in the event of an EP error may be particularly effective. 

Note that by locating the IPEH at the end of the physical code 
memory, it is possible to “share”  this function between NOP Fills 
and Function Tokens, when both techniques are implemented. 
Figure 2 shows a generic physical memory layout when both 
techniques are implemented. 

3. SIMULATION 
The simulation discussed in this paper was carried out on dScope; 
an 8051 simulator developed by Keil GmbH. This simulator is 
capable of simulating at the instruction level as well as the C-
syntax level, which ideally suits our requirement. In addition, the 
simulators’  C-like scripting language allows us to carry out 
simulations almost autonomously. Unfortunately, its instruction-
level resolution means we could not simulate and detect EMIT 
errors, and only LMIT errors are considered in this paper. 

3.1 Simulated Programs 
Three sets of programs, AlarmClock [12], GreenHouse [7] and 
CentralHeating [13], were used for the simulations discussed here. 
Each program set has four different versions employing different 
IP error detection and correction techniques. The four 
combinations of each program are suffixed _A, _B,  _C and _D, 
and employ the error detection and correction techniques as so: 

Prog_A – Without any form of error checking. 

Prog_B – Implements NOP Fills. 

Prog_C – Implements Function Tokens. 

Prog_D – Implements Function Tokens and NOP Fills 

Figure 2 shows the physical code memory layout schematic of 
each program version as it would appear when programmed onto 
microcontrollers with internal code memory.  Note that this figure 
is not to scale. 

Figure 1: Schematic of Function Token Implementation 
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All programs were written in C and compiled with the C51 
Compiler by Keil GmbH. These programs were chosen for the 
simulation as they are representative of real-world applications. 
Though lacking computationally intensive algorithms apart from a 
software-based I2C protocol, these programs had complex control 
structures, the most complex of which, the AlarmClock project, 
was built on a cooperative scheduler [12].  These programs are 
available via their respective references. 

We refer to each program as Alarm_C, Heat_A, etc., or 
collectively as, program “A”  for Alarm_A, Green_A and Heat_A. 
Referring to “Alarm” itself would mean all four versions of that 
program. 

3.2 Implementing NFs and FTs 
Two methods are generally used when creating the NOP Fill 
region. The simpler method involves filling the EPROM 
programmer’s code buffer with the value of 0x00, followed by 
downloading the program code destined for the microcontroller. 
In doing so, all empty locations would have the value of 0x00, 
thus the NOP Fill is created. 

The second method is to create the NOP Fill in assembly language 
with the help of assembler directives. Although harder to 
implement, this method allows greater flexibility and control 
especially when different NOP Fill topologies are intended. The 
former method also tends to be more time consuming in the long 
run due to the overhead in configuring the EPROM programmer 
on every programming cycle. Apart from that, modern 
microcontrollers with In-circuit Serial Programming (ISP) 
programming capabilities can also be programmed without 
physically removing the microcontroller. The second “NOP 
Filling”  method was used in the studies reported here. 

Since the test programs were taken from various sources, all the 
code had to be meticulously scrutinised to map out all the callers 
and callees of every function, including those called from the 
interrupt service routine (ISR). Once the mapping was complete, 
each function was assigned a unique ID. Function Token checks 
were implemented at the start of each function and just after 
program execution is returned to the caller routine. 

With ISRs, no Function Token checks were carried out since they 
could be called from practically any part of the program. Though 
it is possible to create a “ local”  token, this approach was deemed 
unnecessary, as the ISR routines were short and non-critical. 

The IPEH, as mentioned earlier, resides at the end of the physical 
code memory location. For the simulation programs “B” , “C”  and 
“D”, the IPEH was written in assembler and located at a 
predefined memory location with the help of assembler directives. 

Table 1 shows the program and NOP Fill size of each program as 
well as the number of Function Token checks implemented. 

Due to the increase in code size for Alarm_C and Alarm_D, a 
microcontroller with 8kB of internal code memory is assumed, 
though the other programs could fit into 4kB devices. This is done 
to ensure a standard basis of comparison. 

3.3 Simulation procedure 
For the results to be statistically convincing, a large number of 
simulation cycles have to be carried out. dScopes’  C-like scripting 
language helped to automate the simulation procedure. 

The simulation script included all LMIT locations for each 
program. This was generated by an “ in-house”  program scanning 
the microcontroller-downloadable file (in Intel H86 format). This 
script controlled the entire simulation process, classified the 
results and generated the appropriate log files. 

One thousand simulation cycles were carried out on each program 
with an error injected anywhere between the 1st and 10000000th 
microcontroller instruction cycle. Before commencing each 
simulation cycle, the instruction cycle in which the error would 
occur (ECY), and the corresponding erroneous IP value (EIP), is 
generated randomly. Each simulation cycle also starts from the 
beginning, equivalent to a microcontroller reset. 

 

Figure 2: Gener ic M emory M ap when Implementing NOP 
Fills and Function Tokens 
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The simulated errors are classified into five categories as follows: 

EL  – Empty Location. The simulated error points the 
IP to an empty code memory location. 

NF – NOP Fill. The simulated error is detected and 
corrected by the NOP Fills. 

FT – Function Token. The simulated error is detected 
and corrected by an FT check. 

LM IT – Late Multibyte Instruction Trap. The simulated 
error points the IP at the second or third byte of 
a multibyte instruction. 

UE – Undetected Error. The simulated error goes 
undetected by NF or FT. 

By evaluating EIP alone, EL, NF and LMIT are immediately 
identifiable. The simulation script would first determine if EIP 
points to a location outside the programmed code memory, or, 
within the NF region for programs implementing NF. If it did, the 
error was immediately logged as an EL or NF hit and a new 
simulation cycle was started. 

If EIP pointed to a code memory location within the program 
itself (including the IPEH, if any), the simulation script looked up 
the LMIT table to determine if that particular address location is 
part of the second or third byte of a multibyte instruction. A match 
in that table caused an LMIT hit to be recorded and a new 
simulation cycle was started. 

Only when none of the above-mentioned conditions was met 
would actual simulation of the microcontroller from the first to 
the ECYth instruction cycle begin. Simulation time is further 
shortened by simulating at the fastest possible speed up to the 
ECYth cycle, instead of stepping through each instruction. This 
was done by setting breakpoints as no errors were injected before 
the ECYth cycle. 

Upon the breakpoint triggering, the value of the IP is changed to 
that of EIP by the simulation script. Up to a further 50000 
instruction cycles would then be executed in single step mode to 
determine if an FT check has detected the error. Only if the FT 
check fails to detect an error would it be recorded as a UE hit. 

4. RESULTS AND DISCUSSION 
The simulation script was written to produce a raw text summary 
of each cycle containing ECY and EIP values. Total hits for EL, 
NF, FT, LMIT and UE for each program were also displayed at 
the end of the summary, as shown in Table 2. 

 

Table 2: Simulation results 

Alarm 
Clock 

EL NF FT LM IT UE 

A 587 0 0 146 267 
B 0 598 0 164 238 
C 169 0 460 276 95 
D 0 224 405 270 101 

 

Green 
House 

EL NF FT LM IT UE 

A 718 0 0 130 152 
B 0 711 0 136 153 
C 524 0 224 218 34 
D 0 526 209 219 46 

 

Central 
Heating 

EL NF FT LM IT UE 

A 748 0 0 128 124 
B 0 772 0 107 121 
C 538 0 145 272 45 
D 0 547 163 237 53 

 

4.1 Impact of var ious errors 
Before discussing the variations between different programs, it is 
necessary to discuss the impact of each error category on the 
overall program reliability. 

Jumps to empty code memory locations (EL) should not be 
tolerated since program code would be executed at location 
0x0000 after the IP points to the address above the highest 
physical code memory. This phenomenon is due to memory 
aliasing and though it is similar to resetting the microcontroller, it 
does not reset internal flags and registers to known states. For 
embedded systems, this scenario should be avoided, more so 
when safety is of prime concern. 

Table 1: Program statistics 

Alarm 
Clock 

Total size 
(bytes) 

NOP Fill 
(bytes) 

FT checks 
(amount) 

A 3283 0 0 

B 3331 4861 0 

C 6535 0 120 

D 6535 1645 120 

Green 
House 

Total size 
(bytes) 

NOP Fill 
(bytes) 

FT checks 
(amount) 

A 2286 0 0 

B 2329 5862 0 

C 3940 0 98 

D 3940 4245 98 

Central 
Heating 

Total size 
(bytes) 

NOP Fill 
(bytes) 

FT checks 
(amount) 

A 1954 0 0 

B 1997 6195 0 

C 3799 0 120 

D 3799 4387 120 



On the other hand, any IP errors “ falling”  into the NOP Fill 
region will be detected, and the suitable recovery strategy applied. 
Moreover, only the IP and timing-associated registers change 
before the recovery strategy is executed. As a result, this is 
probably the best condition for a microcontroller to be in as a 
result of IP errors.  The main problem with NOP Fills is it is 
possible that – in systems with large NOP Fill areas – there will 
be a relatively long error-recovery latency.  A slight variation on 
the basic NOP Fill technique which is designed to reduce the 
recovery latency is discussed in [11]. 

Function Tokens do detect IP errors and execute the IP Error 
Handler, as shown in programs C and D. However, it must be 
stressed that the errors are generally detected some instruction 
cycles after they occur, as Figure 3 illustrates. Scenario (i) is the 
typical situation where the IP erroneously “ fall”  between FT 
checks and is detected within a reasonable time span. However, 
scenario (ii) is much preferred as the FT check detects the error on 
the next instruction cycle: unfortunately, this will very rarely 
happen.  In scenario (iii), the FT check did detect the IP error, but 
only after critical instructions were executed.   

Arguably, the worst error situation happens when the IP causes an 
(L)MIT error. In such circumstances, software-based error 
detection and correction techniques may prove ineffective. Hence, 
the state of the processor and program flow may be unpredictable. 

Undetectable Errors (UEs) may also, clearly, prove dangerous, 
since the system may still continue to function without any 
apparent problems. In our experiment, only a few critical variables 
were checked to determine system integrity.  However, it is 
possible that more subtle problems could arise, such as incorrect 
timer duration, and input readings, which would be very hard to 
detect even with expensive equipment and increased software 
complexity.  

Note that our simulation actively detects all but “Undetectable 
Errors” , which are inferred by a process of elimination.  

4.2 Program var iations 
Quite a few points may be made regarding the differences 
between the various programs. 

The first thing to note is the variation in code size.  As predicted, 
the code sizes for programs employing error-checking routines are 
larger than those without (see Table 1). However, “B”  program 
sizes are only marginally larger than “A”  programs, as a result of 
the additional IPEH. By contrast, programs “C”  and “D”  are 

between 69% and 96% larger than programs “A”  and “B” . The 
huge difference is solely attributed to the implementation of 
Function Tokens, which in turn is proportional to the complexity 
and number of Function Token checks used. Coulson’s [6] 
estimates of 10% to 20% code swell are only obtainable if the FT 
checks are implemented at the start and end of each function – 
resulting in less than 100% branch coverage. 

By observing Table 2 alone, we could see that with no error 
checking, a large percentage of IP errors will lead to the execution 
of “empty instructions”  (specifically “MOV R7,A”). 
Implementing NOP Fills alone traps around the same number of 
errors that would have been destined for EL. We conclude that 
NOP Fills, which are easily implemented, should be used in all 
situations.  

As mentioned earlier, implementing Function Tokens increases 
program size.  As a consequence, an increase of LMIT hits was 
recorded for programs “C”  and “D”. This leads to the conclusion 
that though FT detects and corrects errors, they would also 
increase the probability of encountering an MIT error, which is 
one of the trade-offs of using this technique. The complexity 
involved in implementing Function Tokens also opens a new 
avenue for software bugs and design errors. 

The conclusion drawn by comparing programs “B” , “C”  and “D”  
is most important in this paper. As observed from Table 2, 
implementing both techniques simultaneously increases the 
number of detected IP errors. However, based on previous 
discussion, it would be desirable to have NF detect the errors 
instead of FT.  When both techniques are implemented, the size of 
the NOP Fill region decreases due to an increase in program size.  

4.3 Effectiveness of NOP Fills 
The relationship between the NOP Fill region size and its 
effectiveness may not be immediately clear. The key lies with the 
assumption that when an IP error occurs, the probability of the IP 
taking on any addressable value (0 to 65535) is the same.  Hence, 
the size of the NOP Fill region gives a good estimate of its 
probability to detect and correct IP errors. Figure 4 strengthens 
this point by showing the good correlation between the percentage 
of physical code memory taken up by the NF (black), and the 
percentage of errors detected by NF (grey). It also shows the 
relationship between NF size and the percentage of errors detected 
by it to be directly proportional. Based on this finding, Figure 5 
shows the interpolated results for programs “B”  and “D”  when the 
amount of physical code memory increases. 

Figure 3: Function Token Error  Detection Scenar ios 
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A mathematical relationship between code size, instruction types 
and other parameters with the statistical effectiveness of FT and 
NF can be found in [10]. 

Though it would be good to have as large a NOP Fill region as 
possible, this may not an economically-viable solution for all 
systems.  Hence, a compromise has to be made between physical 
code memory size and the NF hit probability.  There is also a 
threshold beyond which increased memory size has little impact 
on NF hit probability, as can be seen in Figure 5. 

5. CONCLUSION 
Function Tokens and NOP Fills do detect and correct errors 
associated with IP corruption. However, the effectiveness of 
Function Tokens is questionable and implementation is an error 
prone affair. Overall, FTs may increase a system’s IP error 
detection rate, but it do not necessarily increase its reliability. On 
the other hand, NOP Fills are simple and effective, and hence 
should be used in all embedded systems. 
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Figure 4: Correlation between NF hits and NF size 

Figure 5: Relationship between NF hits and Code M emory size 
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