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Abstract. Compiler technology is becoming a key component in
the design of embedded systems, mostly due to increasing partici-
pation of software in the design process. Meeting system-level ob-
jectives usually requires exible and retargetable compiler optimiza-
tions that can be ported across a wide variety of architectures. In
particular, source-level compiler optimizations aiming at increasing
locality of data accesses are expected to improve the quality of the
generated code. Previous compiler-based approaches to improving
locality have mainly focused on determining optimal memory layouts
that remain in e�ect for the entire execution of an application. For
large embedded codes, however, such static layouts may be insuf-
�cient to obtain acceptable performance. The selection of memory
layouts that dynamically change over the course of a program's ex-
ecution adds another dimension to data locality optimization. This
paper presents a technique that can be used to automatically de-
termine which layouts are most bene�cial over speci�c regions of a
program while taking into account the added overhead of dynamic
(runtime) layout changes. The results obtained using two bench-
mark codes show that such a dynamic approach brings signi�cant
bene�ts over a static state-of-the-art technique.
Keywords. Software Compilation, Data Locality, Memory
Layout Optimizations, Array Reuse, Data Dependence.

1. INTRODUCTION
Today's embedded systems typically involve a mixture of

hardware and software components. While the contribution
of these components may vary from system to system, we ob-
serve an increasing contribution of software. Meeting system-
level objectives usually requires exible software optimizations
that can be ported across a wide variety of architectures. The
traditional way of writing the embedded software in assembly
language does not provide a scalable solution as the system
complexity grows. In such cases, high-level languages can re-
place assembly language as they are cost and time e�ective,
and are easier to maintain. One problem with using a high-
level language in programming an embedded system is that the
compiler needs to do a very good job if we are to match the
quality of the code written in hand-optimized assembly lan-
guage. To accomplish this, the compiler should be aggressive
in optimizing for performance (execution cycles), space, power
consumption, and other relevant metrics.
Source-level compiler optimizations (e.g., high-level loop [12,

2] and data transformations [7, 2]) are particularly desirable as
they have the potential of achieving large gains. For instance,
loop and data layout transformations that target embedded
image and video applications can improve iteration-level paral-
lelism and data locality, eventually leading to better utilization

of system resources such as functional units and cache mem-
ory. In addition, they are also retargetable as they can take as
input parameters such as cache capacity, cache block size, and
number of functional units.
Optimizing data locality (that is, satisfying majority of data

accesses from fast memories such as cache or scratch-pad mem-
ory instead of slow main memory) is critical for a large class of
embedded codes from image and video processing that manip-
ulate multi dimensional arrays using multi-level nested loops.
To optimize these codes, an optimizing compiler can use ei-
ther loop-centric optimizations (e.g., those changing the access
pattern of nested loops), data-centric optimizations (e.g., those
modifying the memory layouts of multi dimensional arrays), or
a combination of these. Most of the previous compiler-based
approaches to data locality focus on loop-centric transforma-
tions (e.g., loop tiling [12]). While these techniques can be
quite successful depending on the application at hand, inherent
data dependences in the program being optimized and complex
control structures (e.g., imperfectly-nested loops) may prevent
the application of the best loop transformation [3]. Alter-
natively, data-centric transformations modify memory layouts
in an attempt to make them more suitable for the dominant
access pattern. These transformations are, however, in gen-
eral restricted to optimizing spatial locality [7], and demand
a more global perspective as an array can be accessed in dif-
ferent places (i.e., not necessarily in a single nest) in a given
code using di�erent access patterns. Several research groups
(e.g., [3, 9]) have also targeted their research e�orts to develop
integrated techniques that use loop-centric and data-centric
transformations in a uni�ed framework.
Many locality-enhancing approaches that employ data trans-

formations in the domain of regular array codes are limited in
their capability in the sense that the layouts determined by
these algorithms are static, that is, they are determined at
compile time, and valid throughout the entire execution. A
disadvantage of this static layout-based locality enhancement
strategy is that it fails to optimize codes that manipulate arrays
that demand di�erent layouts (from the data locality perspec-
tive) in di�erent regions of the code.
This paper presents a novel approach which extends the

static layout optimization techniques to select dynamically chang-
ing layouts to further improve the locality of data accesses. We
refer to this technique as dynamic layout optimization. While
previous research on optimizing compilers uses several dynamic
layout optimizations (runtime data re-groupings) for irregu-
lar applications (e.g.,[4]), to the best of our knowledge, auto-
matic (compiler-based) dynamic layout transformations have
not been explored for embedded image and video processing
codes with regular (compile-time detectable) access patterns.
Our approach in this paper builds upon our previous work

on static layout optimization schemes and employs the tech-
nique developed in [6] as a component (i.e., building block).
However, the dynamic optimization approach presented in this
paper is exible, and can work with almost any static local-
ity optimizer that uses some form of layout transformation.
Our dynamic layout strategy is also di�erent from the dynamic
techniques proposed for irregular applications in an important
aspect. In the domain of irregular applications, the layout
forms are determined and implemented at runtime depending



on the interactions between the objects modeled by the appli-
cation. In contrast, our approach to layout optimization divides
the job between compile-time and run-time. More speci�cally,
the layouts of arrays for di�erent regions of the code (program
segments) are determined at compile-time (along with the ac-
companying loop transformations) and the bookkeeping code
that is necessary to dynamically transform the layouts of ar-
rays between di�erent program segments is inserted in the code
(again at compile time). However, these bookkeeping codes are
executed at run-time. In other words, the memory layouts are
transformed during the course of execution.
The rest of this paper �rst revises loop/data transforma-

tions and static locality optimizer. After that, our dynamic
optimization approach and experimental results are presented.

2. LOOP AND DATA TRANSFORMATIONS
When a reference in a loop nest accesses the same data in

di�erent iterations, we say that temporal reuse occurs. Simi-
larly, if a reference accesses data residing on the same cache
line in di�erent iterations, we say that spatial reuse occurs.
Our focus in this paper is on a�ne programs in which data

structures are restricted to be multi-dimensional arrays, and
control structures are limited to sequencing and nested loops.
We also allow conditional constructs (e.g., `if statements') be-
tween nested loops (but not within them). Loop nest bounds
and array subscript functions are a�ne functions of enclosing
loop indices and constant parameters. Under these assump-
tions, an optimizing compiler can detect the potential tempo-
ral and spatial reuses in the code, and convert these reuses into
locality (i.e., it can modify the code to exploit these reuses at
run-time). Each iteration of the nested loop is represented by
an iteration vector, �J , which contains the values of the loop
indices from outermost position to innermost. Each array ref-
erence to anm-dimensional array in a nested loop that contains
n loops (i.e., an n-level nested loop) is represented by L�I + �o,
where �I is a vector that contains loop indices. For a speci�c
�I = �J , the data (array) element L �J + �o is accessed. In this
representation, the m� n matrix L is called the access (refer-
ence) matrix [12], and the m-dimensional vector �o is called the
o�set (constant) vector.
The application of a loop transformation represented by a

square non-singular matrix T can be accomplished in two steps
[12]: (i) re-writing the loop body, and (ii) re-writing the loop
bounds. Assuming that �I is the vector that contains the orig-
inal loop indices and �I 0 = T �I is the vector that contains the
new (transformed) loop indices, each occurrence of �I in the
loop body is replaced by T�1 �I 0. In other words each reference
represented by L�I + �o is transformed to LT�1 �I 0 + �o: Determi-
nation of the new loop bounds, however, is more complicated
and may require the use of Fourier{Motzkin elimination.
On the other hand, a data transformation is applied by trans-

forming the dimensions (subscript expressions) of the array
reference and the declaration of the associated array [7]. As-
suming again that we represent the subscript function for a
reference as L�I+ �o, a square non-singular data transformation
matrix M transforms this reference to ML�I +M �o: It should
be emphasized that applying a data transformation to an ar-
ray reference (and the array declaration) creates the e�ect of
transforming the memory layout of the array. For instance, a
data transformation represented by a square inverse-identity
matrix corresponds to modifying memory layout of a multi-
dimensional array from column-major to row-major or vice
versa (depending on the language-de�ned default layout).
Assuming that the original reference is L�I+�o, applying both

a loop transformation matrix T and a data transformation ma-
trixM transformes the reference to MLT�1 �I 0+M �o: Omitting
the o�set vector part, since both M and T�1 are unknown,
�nding a suitable MLT�1 from the data locality point of view
involves solving a non-linear problem, with the constraints such
that both M and T should be non-singular and T should ob-
serve all the data dependences in the original nest.

3. DYNAMIC OPTIMIZATION FRAMEWORK

3.1 Static Layout Optimization
The static optimizer employed in this work uses a method

that is based on dividing the locality optimization task between
loop and data transformations. Let us focus on a single nest.
The approach �rst determines the maximum inherent temporal
reuse in the nest, and �nds a loop transformation (that is, the
matrix T ) to exploit this reuse in the innermost loop position.
In other words, it specializes the loop transformations to maxi-
mize temporal locality. After this transformation, the arrays in
the nest are divided into two disjoint groups. The �rst group
contains the arrays with temporal reuse in the innermost loop
(as a result of the loop transformation found). The technique
does not perform any layout transformations on these arrays
(in this nest) as they exhibit temporal locality. The second
group is the set of arrays that do not exhibit temporal reuse
in the innermost loop (after the loop transformation). Our
approach uses data transformations to optimize spatial local-
ity for these arrays. More speci�cally, for each array, it takes
the newly found loop transformation into account and selects
the most suitable data layout (i.e., �nds a data layout trans-
formation matrix M) so as to ensure unit-stride access in the
innermost loop. If there are multiple references to the same
array, a conict resolution scheme is used to favor the most
dominant (or the most important) reference.
In order to handle multiple nests (procedure-wide optimiza-

tion), the technique in [6] propagates memory layouts across
loop nests. To accomplish this, it �rst orders the nest using
an importance criterion (also called cost criterion). The �rst
(the most important) nest is then optimized using the strategy
explained in the previous paragraph. After this, the memory
layouts for a subset (possibly all) of the arrays accessed in this
nest are determined. Next, the algorithm moves to the next
most important nest. It uses the same approach (as in the most
important nest) to optimize this nest. The only di�erence is
that, in selecting the most suitable loop transformation, it also
takes the memory layouts that have been found so far into ac-
count. Again, a conict resolution scheme is adopted if it is not
possible to achieve both the objectives. After optimizing this
nest, a group of new layouts is added to the `set of determined
layouts', and the approach moves to the next (third) important
nest and optimizes this nest taking into account all the layouts
found so far (from the most important nest and the second
most important nest), and so on. A complete discussion of the
static optimizer can be found in [6].

3.2 Program Representation
In our framework, each procedure is represented using a nest

ow graph (NFG) which can be described as follows. Each
node v in the NFG represents a nested loop in the code and
each directed edge (arrow) e from v and v0 indicates that there
might be a ow of control from the nest represented by v to
the nest represented by v0. Each edge e = (v; v0) also carries
a weight which is the product of the estimated frequency of
control transfers (transitions) from v to v0 (denoted fvv0) and
the estimated number of exposed misses in v0 (denoted mv0).
The exposed misses in v0 are the misses incurred assuming
some �xed memory layouts for the arrays accessed in the nest
represented by v0. Note that in our framework di�erent arrays
may have di�erent memory layouts.
As an example, Figure 1 gives a code sketch and its NFG. In

a sense, we can think of an NFG as a simpli�ed macro control
ow graph (CFG) where each node corresponds to a nested
loop instead of basic block. Let us now try to understand how
fv1v3 (the estimated number of control transitions from v1 to
v3) is determined. This depends on two factors: the probabil-
ity with which the conditional branch at the end of v1 will take
the route to v3 and the number of times the outer loop iter-
ates. Supposing that the branch (at the end of v1) is taken 50%
of the time and the said loop iterates N times, then fv1v3 is
0:5N . Similarly, fv3v4 is 0:5NN 0 , assuming that the loop that
encloses only the nodes v3 and v4 iterates N

0 times. Note that
these frequencies do not consider the number of times a given
nested loop (represented by a node in the NFG) is executed.
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Figure 1: Left: a program fragment; Right: the Nest Flow

Graph (NFG).

They just consider the execution frequencies of the edges be-
tween the nested loops (nodes). It should be noted that while a
given fvv0 is an important factor in determining the weight (or
importance) of the edge (v; v0), it is not su�cient alone. This
is because if the number of exposed misses in v0 is very low,
the control ow on (v; v0) is not a major determinant factor
in shaping the locality behavior of the code. Consequently, we
also need to get mv0 (the estimated number of exposed misses)
in the picture. Overall, we can de�ne wvv0 , the weight of the
edge between v and v0, as mv0fvv0 .

3.3 Estimating the Number of Misses
In this subsection, we discuss how to estimate the number

of exposed misses, mv, for a given nested loop represented
by v. Our approach is modeled after the technique proposed
by McKinley et al [8]. An important modi�cation that we
made to the original miss estimation algorithm is to take into
account the possibility that the di�erent arrays referenced in
the nest can have di�erent memory layouts. The approach in
[8] �rst groups the references according to the potential group-
reuse between them. Then, for each representative reference,
it calculates a reference cost (i.e., the estimated number of
misses during a complete execution of the innermost loop).
Basically, the reference cost of a given array reference with
respect to a loop order is 1 if the reference has temporal reuse
in the innermost loop; that is, the subscript functions of the
reference are independent of the innermost loop index. The
reference cost is trip/(cls/stride) if the reference has spatial
reuse in the innermost loop. In this expression, trip is the
number of iterations of the innermost loop (trip count), cls is
the cache line size in data items, and stride is the step size
of the innermost loop multiplied by the coe�cient of the loop
index variable. Finally, if the reference in question exhibits
neither temporal nor spatial reuse in the innermost loop, its
reference cost is assumed to be equal to trip; that is, a cache
miss per loop iteration is anticipated. The overall loop cost
of the nest is the sum of the contributions of each reference it
contains. The contribution of a reference is its reference cost
multiplied by the number of iterations of all the loops (that
enclose the reference) except the innermost one. Note that this
miss calculation process is a good �rst degree approximation if
one does not consider conict misses and inter-nest data reuse.
In our framework, we allow di�erent arrays to have di�er-

ent memory layouts; consequently, we need to relax the �xed
uniform layout requirement. Consider the following two-level
nested loop that accesses three two-dimensional arrays:

for i = 1; N
for j = 1;N 0

U [j][i] = V [j][i] +W [j][i]
end for
end for

Assuming that arrays U and V have column-major layouts
and array W has a row-major memory layout, it is easy to see
that the reference cost of array U is N 0/cls, the reference cost
of array V is N 0/cls, and the the reference cost of array W is
N 0. In fact, it is possible to modify the original algorithm in [8]

as follows to accommodate di�erent layout forms. Assuming
that the language-de�ned default memory layout is column-
major, the impact of a row-major layout can be imitated by
pre-multiplying the reference matrix with the inverse of the
identity matrix (which corresponds to row-major to column-
major layout conversion). In our example nest above, this
process transforms the reference to array W from W [j][i] to
W [i][j]. After this, the miss estimation process developed in
[8] (which assumes column-major layout for every array) can be
applied toW as well. Continuing with the example, the contri-
butions of the arrays U , V , and W are NN 0/cls, NN 0/cls, and
NN 0, respectively. Therefore, the overall cost (the estimated
number of exposed misses) is NN 0(1+2/cls). In the remainder
of this paper, when we mention cache miss, we mean exposed
cache miss.

3.4 Algorithm
The most important part of our approach is determining the

layouts of arrays at di�erent program points (i.e., in di�erent
nests). Our technique makes use of the static optimizer and the
cache miss estimation technique explained above. Let us �rst
focus on a simple case where we have a number of consecutive
loop nests with no conditional statements between them and no
timing/convergence test loops. An example of such a code and
its NFG are shown in Figures 3(a) and (b), respectively. Our
dynamic optimization approach proceeds as follows. First, it
uses the static locality optimizer to optimize nest v0 through
nest v4 (i.e., the entire code). This optimization returns a
potentially modi�ed code with optimized nests (through loop
transformations) and assigns a suitable memory layout to each
array. This is normally the code that would be returned by
the static approach described in [6]. The dynamic approach
estimates the number of misses for this optimized code and
records it. Instead of modifying the original code directly (as
would be done by the static optimizer), it just records the loop
and data transformations found along with the number of esti-
mated misses (call this number cost04).

1 Next, it checks all the
edge weights and selects the edge with the highest weight as
the cut point. Without loss of generality, let us assume that in
our example the cut point is (v2; v3), that is, the edge between
v2 and v3. This cut point divides the code into two logical
partitions: the one that contains the nests v0, v1, and v2 and
the other one that contains v3 and v4 (see Figure 3(c)). After
that, the dynamic approach runs the static optimization algo-
rithm for each partition separately, and obtains the number of
misses for each of them (call these numbers cost02 and cost34).
It also records the preferable layouts and accompanying loop
transformations for each partition. Note that since these two
partitions may access some common arrays, it is possible that
the static optimizer can select di�erent layouts for the same ar-
ray in each partition [5]. If there are such arrays, the dynamic
approach also calculates overhead23, the estimated number of
misses that would occur during dynamically transforming the
layouts of such arrays between two partitions. The approach
then compares cost04 and cost02 + cost34 + overhead23. If the
former term is smaller than or equal to the latter, the approach
stops and returns the result of the static optimizer (when the
input is the entire code) as output (indicating that the static
layout optimized version is the best alternative for this code).
If not, this means that transforming memory layouts across
partitions (dynamic layout transformation) might be bene�-
cial for the code in question (under our miss estimation model).
In this case, the algorithm recursively applies this strategy by
dividing the two partitions in Figure 3(c) into further subparti-
tions. At each step of the recursion, the algorithm re-computes
the total number of misses (considering the entire code) and
compares this �gure with the case before the recursion and
stops the recursion if and only if further partitioning the code

1The notation costij refers to the number of estimated misses for
the program fragment starting with vi and ending with vj (includ-
ing both vi and vj). On the other hand, overheadij denotes the
number of estimated misses that would occur during dynamically
transforming the memory layouts (whenever necessary) between the
partition that ends with vi and the partition that starts with vj .



INPUT: A procedure P that accesses a number of arrays using
separate nested loops.

OUTPUT: Optimized code with transformed nested loops and
dynamic memory layouts.

Begin

Build a Nest Flow Graph (NFG) for the procedure

P 0 = static optimizer(P )

cost = cost-cal(P 0)

Compute an edge weight w
vv0 for each edge (v; v0) in P 0 as w

vv0 = f
vv0mv0

current-min = cost

Build an acyclic NFG (ANFG) from the NFG by:
eliminating the back-edges, and

adjusting edge weights as w0

vv0
= Fw

vv0 where F is the combined

frequency of all edges in the NFG that enclose (v; v0)
Determine the levels in the NFG
Select a cut point and determine two logical partitions P1 and P2 from P

P 0

1 = static optimizer(P1)

P 0

2 = static optimizer(P2)

If current-min < cost-cal(P 0

1) + cost-cal(P 0

2) + Ovhd(P 0

1 ; P
0

2)

then Return(P')
else

current-min = cost-cal(P 0

1) + cost-cal(P 0

2) + Ovhd (P 0

1; P
0

2)

compute(P1)
compute(P2)

End

Procedure compute(P )
Begin

Determine levels in P
Select a cut point and determine two logical partitions P1 and P2
P 0

1 = static optimizer(P1)

P 0

2 = static optimizer(P2)

If current-min < Up(cost-cal(P 0

1) + cost-cal(P 0

2) +Ovhd(P 0

1; P
0

2))

then

P 0 = static optimizer(P )
Return(P')

else

current min = Up(cost-cal(P 0

1) + cost-cal(P 0

2) +Ovhd(P 0

1; P
0

2))

compute(P1)
compute(P2)

End

Figure 2: Dynamic locality optimization algorithm.
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Figure 3: (a) An example code sketch; (b-f) Di�erent log-

ical partitionings.

results in a higher cost than the current minimum or there is no
possibility of partitioning the code further (recall that our ap-
proach works on a nest granularity). During the optimization
process, it also keeps track of the current minimum.
Returning to our current example, supposing that after the

�rst partitioning step, cost02 + cost34 + overhead23 < cost04,
the algorithm records cost02 + cost34 + overhead23 as the cur-
rent minimum and further partitions the code. Assuming that
in the �rst partition (v1; v2) is the cut point, then the dy-
namic optimization approach applies the static optimizer to
two subpartitions: one containing the nests v0 and v1 and the
other containing only the nest v2 (see Figure 3(d)). The new
total (procedure-wide) cost is computed as cost01 + cost22 +
overhead12 + cost34 + overhead023 and is compared to the cur-
rent minimum. Note that, in general, overhead023 might be
di�erent from overhead23 as the static optimizer can return
di�erent layouts for some arrays in v2 depending on whether it
is working on v0, v1, and v2 (as a single partition) or only on v2.
Continuing with the example, assuming that cost01 + cost22 +
overhead12 + cost34 + overhead023 is smaller than the current
minimum, the dynamic approach selects this as the current
minimum and this time it checks the pro�tability of splitting
the partition that contains the nests represented by v3 and v4.
Assuming that this partitioning and any further partitioning
of the subpartition that contains the nests v0 and v1 do not
bring any bene�t, the approach stops and returns the three
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els).

partitions (their optimized versions) as shown in Figure 3(d).
Figures 3(e) and (f), on the other hand, show what would be
the case if further partitionings were bene�cial.
So far, we have assumed that there is no control ow between

loop nests. In the presence of a control ow, determining the
cut points and estimating the number of misses (especially the
ones due to explicit layout transformation overhead, that is,
due to transforming layouts dynamically between loop nests)
are more di�cult. Let us consider once more the code sketch
and its NFG in Figure 1. In the �rst step of our dynamic ap-
proach, the static optimizer attempts to optimize the entire
code (that includes all the nested loops v0 through v5) without
taking into account the control ow explicitly. After analyz-
ing the code and recording the loop and data transformations
and the estimated number of misses (for the optimized version
code), the approach selects a cut point. Due to the structure
of the program, any cut now may need to cross multiple edges
in the NFG. For instance, assuming that (v1; v2) (in the NFG
shown in Figure 1) is the cut point, Figure 4(a-d) show four al-
ternatives for dividing the program into two logical partitions.
It is not clear which alternative is the best choice.
Our approach �rst eliminates the back edges in the NFG

and transforms the NFG to an acyclic graph (called acyclic
NFG or ANFG) in which the edge weights are the original
weights (as de�ned above) multiplied by the frequencies of all
enclosing back edges. For example, in Figure 4(e), w0

34, the
weight of the edge between the nodes 3 and 4 in the ANFG
is computed as w0

34 = w34f43f51 as both (v4; v3) and (v5; v1)
enclose (v3; v4) in the original NFG (Figure 1). Similarly, it
is easy to see that w0

12 = w12f51 and w0

25 = w25f51. The
ANFG for this example is shown in Figure 4(e). Afterwards,
our approach divides this ANFG into levels as illustrated in
Figure 4(f). Each level corresponds to a potential cut point.
It then calculates a level weight for each level which is simply
sum of the weights of all the edges that intersect the level.
Finally, it selects the level with the largest level weight as the
cut point and divides the ANFG into two partitions. It then
applies the static optimizer to both of the partitions. For our
example in Figure 4(e), it compares w0

01, w
0

12+w0

13, w
0

25+w0

34,
and w0

25+w0

45, and assuming that w0

12+w0

13 is greater than the
others, it selects as the cut point the level that intersects with
the edges (v1; v2) and (v1; v3); that is the second level from top
in Figure 4(f). This gives us two partitions: one that contains
the nests v0 and v1 and the other one containing the nests v2,
v3, v4, and v5. It then recursively applies the static optimizer
to these partitions. It should be noted that computing the
overhead costs in this case can be done in the same way as in
the previous case (without control ow).
A sketch of our dynamic optimization algorithm is given in

Figure 2. In this algorithm, static optimizer is a routine that
takes as input a logical partition and returns as output its
layout-optimized version. cost-cal estimates the total number



of misses, and current-min holds the current minimum (the
best total number of misses found so far). The main program
computes the total number of misses, and then (if bene�cial)
divides the program into two logical partitions, and calls the
compute routine for each partition.

3.5 Transforming Memory Layouts between Nests
Once optimal layouts in di�erent program parts and accom-

panying transformed loops are determined, the next step is
modifying the code. Transforming array layouts (using data
transformations) within loop nests has already been discussed
by previous research [3, 7, 6]. However, transforming memory
layouts explicitly between loop nests has not been previously
addressed. In the following, we address this issue by divid-
ing the problem into two components: (i) determining optimal
points in the code to insert layout transformation (copy) loops,
and (ii) structuring the copy loops to minimize loop overhead.
Explicitly transforming memory layout of a given array is

typically done through the use of a copy loop. For example, to
convert layout of a two-dimensional array U of size N�M from
row-major to column-major, we can use a two-level nested loop
using which the transpose of U is copied to another array U 0.
After the execution of the copy loop, the array identi�er U 0 is
used instead of U .
Note that the copy loops used to implement explicit lay-

out transformations are pure overhead, so they should be op-
timized as much as possible. This can be achieved by selecting
the most appropriate points to transform arrays, and by trans-
forming the layouts of multiple arrays simultaneously. Let us
�rst focus on an NFG without a conditional control ow be-
tween loop nests. Figure 5(a) shows such an NFG. We assume
that this NFG uses �ve di�erent arrays. For the sake of simplic-
ity, we also assume that each array needs to be transformed
just once. It is easy to extend our strategy to cases where
the array layouts need to be transformed multiple times. For
each array, we de�ne a slack as the set of consecutive edges,
along which the array in question can be layout-transformed.
Figure 5(a) also shows �ve illustrative slacks corresponding to
�ve arrays. For example, one of the arrays has a slack that
contains three edges: (v1; v2), (v2; v3), and (v3; v4). Our strat-
egy is based on the assumption that minimizing the number of
actual layout transformation points is critical. This assump-
tion is reasonable as minimizing the number of transformation
points might enable us to transform a number of arrays simul-
taneously (i.e., using the same copy loop). In the example
shown in Figure 5(a), this can be done if we select the points
marked `*' as the layout transformation points. Note that in
the �rst transformation point (between v2 and v3), we can po-
tentially transform three arrays together, and in the second
transformation point (between vk�1 and vk), we can transform
(again potentially) two arrays. Whether or not these simulta-
neous layout transformations can actually be done depends to
a large extent on the dimensionalities and sizes of the arrays.
On the other hand, in this example, a scheme that does not
aim at minimizing the number of layout transformation points
can use �ve di�erent transformation points in the worst case
(marked using `+' in Figure 5(a)).
When we take conditional control ow into account, the

problem of selecting transformation points becomes more dif-
�cult. Consider the NFG in Figure 5(b) assuming that (v1; v3)
is the only edge in the slack for a given array and v1 and v3
are the only nests using that array. Obviously, this means that
the array in question should be transformed in the program
portion corresponding to this edge. However, the exact point
along this edge at which the array is transformed can make
a great di�erence in performance. For example, the transfor-
mation can be done before the `if statement' that follows v1
(marked `+' in Figure 5(b)). However, during execution, if the
branch that goes into v2 is taken, this transformation would
be useless. A better option is transforming the array after the
`else portion' of the `if statement' (see the code sketch in Fig-
ure 1). This point is marked using `*' in the edge (v1; v3) in
Figure 5(b). In this case, the layout transformation overhead
will be incurred only if it is really necessary. Based on this
observation, our current implementation postpones the layout
transformations as much as possible. Another issue here is de-
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Figure 5: Several NFGs.

for i = 1;N
for j = 1; N
U 0[j][i] = U [i][j]

end for
end for
for i = 1;N 0

for j = 1; N 0

V 0[j][i] = V [i][j]
end for
end for

(a)

for i = 1; N
for j = 1;N
U 0[j][i] = U [i][j]
V 0[j][i] = V [i][j]

end for
end for
for i = N + 1;N 0

for j = N + 1; N 0

V 0[j][i] = V [i][j]
end for

end for
(b)

Figure 6: (a) Straightforward transformation, (b) Opti-

mized transformation.

termining the point to transform the layout back to the original
form. In Figure 5(b), this transformation should be done along
the edge (v5; v1).
Now assume that for a given array the desired layout by the

nest represented by v5 (see Figure 5(e)) is di�erent from the
other nests. One alternative in this case is transforming the
layout at the two points marked `+' to satisfy the layout re-
quirement imposed by v5. In Figure 1, this corresponds to the
points between nest v2 and `else statement' and between the
second `if statement' and nest v5. A better alternative, how-
ever, is transforming the array only once just before v5 (marked
`*'). As in the previous case, the array should be transformed
back along the edge (v5; v1). The remaining two NFGs in Fig-
ure 5 illustrate two more example cases. In Figure 5(c), we
assume that for a given array the desired layout by the nest
represented by v1 is di�erent from the other nests. In this case,
the array needs not to be transformed back as v1 is executed
only once (i.e., there is no back edge). Finally, in Figure 5(d),
we assume that only the nests v3 and v4 demand a di�erent
layout from others for a particular array. The transformation
points are marked using `*'.
We now focus on how multiple arrays can be layout-transformed

using the same copy loop. Suppose for example that two two-
dimensional arrays U and V of sizes N � N and N 0 � N 0,
respectively (where N 0 � N), are to be layout-transformed at
the same point in the code. To handle this, a naive approach
would use two di�erent copy loops as shown in Figure 6(a). As-
suming a loop iteration overhead of C (per iteration), the total

cost of these loops is roughly N2C +N 02C. Instead, we could
implement these transformations as shown in Figure 6(b). Un-
der the assumption mentioned above, the total loop cost of
these copies now is N2C + (N 0 �N)2C which is equivalent to

2N2C +N 02C � 2NN 0C. Since N2 � 2NN 0 � 0, this second
alternative is pre�erable over the �rst one. Note that this opti-
mization can be generalized to multiple arrays and non-square
arrays with minor modi�cations.



FT
original static dynamic ilp

L1 Misses 0.42B 0.28B 0.17B 0.17B
L2 Misses 38.60M 20.36M 12.73M 12.73M
Cycles 14.05B 10.62B 5.21M 5.21M
MFLOPS 30.96 77.24 128.82 128.82

ADI
original static dynamic ilp

L1 Misses 0.56B 0.23B 0.13B 0.11B
L2 Misses 44.31M 26.62M 14.85M 10.33M
Cycles 18.56B 10.77B 3.71B 2.13B
MFLOPS 23.31 66.14 104.00 134.27

Figure 7: Performance results for two benchmarks. `M'

means million and `B' means billion.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results for two codes:

a two-dimensional Fourier Transform (FT) and a two-dimensional
Alternating Direction Implicit Method (ADI). The total input
sizes are 18MB and 16.5MB for FT and ADI, respectively. We
implemented our approach using the Parafrase-2 compiler [10].
Since our approach uses the static optimizer as a subcompo-
nent, the additional code to implement the dynamic partition-
ing strategy was less than 700 lines.
The experiments are run on a MIPS R10K-based machine.

The R10K is a microprocessor that can fetch and decode four
instructions per cycle and can run them on �ve pipelined func-
tional units. The processor implements the MIPS IV instruc-
tion set architecture and has a two-level cache hierarchy. Lo-
cated on the chip are a 32KB, two-way set associative Level-1
(L1) instruction cache and a 32 KB, two-way set associative,
two-way interleaved Level-1 (L1) data cache. O�-chip is a two-
way set associative, uni�ed Level-2 (L2) cache (4MB). For the
L1 cache hits, the latency is two to three cycles; and for L1
misses that hit in the L2 cache, the latency is eight to ten
cycles. The main memory latency is at least sixty cycles.
Figure 7 gives the number of L1 (data) and L2 misses, MFLOP

rates, and execution cycles for four di�erent versions of the two
benchmarks. The original version represents the unoptimized
code, and static represents the version optimized using only
the static optimizer [6]. The dynamic version is the result of
the strategy discussed in this paper (our approach). Finally, ilp
gives the optimal solution based on integer linear programming
(ILP). This last version is not implemented in the compiler, but
obtained by formulating the ILP problem for dynamic layout
optimization (assuming only row-major and column-major lay-
outs) and solving it using the lp solve package [11]. We omit
the details of the ILP formulation due to lack of space. For
static and dynamic, we fed the input code (in C) to Parafrase-
2, and the optimized code returned by Parafrase-2 (again in
C) has been compiled by the native compiler for R10K using
the O2 optimization ag.
These results show that, in FT, the dynamic approach re-

sulted in the optimal solution returned by ILP. Our approach
reduces the number of cycles by 50.9% as compared to the
static optimization. In ADI, on the other hand, there is a dif-
ference between ilp and dynamic as far as the performance is
concerned. We believe that this is due to our miss estima-
tion model rather than the layout selection strategy. Never-
theless, as compared to the static version, we achieve a 65.5%
improvement in execution cycles. These results indicate that
the dynamic optimization strategy is very successful.

5. CONCLUSIONS AND ONGOING WORK
This paper introduces a dynamic layout optimization strat-

egy to minimize the number of cycles spent in memory ac-
cesses. In this strategy, a given multi-dimensional array is
allowed to have di�erent memory layouts in di�erent parts of
the application if doing so improves data locality beyond the
static approaches that �x memory layouts to speci�c forms
at compile-time. In this dynamic strategy, di�erent layouts
that a given array will assume at run-time are determined at

compile-time; however, the layout modi�cations, themselves,
occur dynamically during the course of execution. Currently,
we are experimenting with di�erent static optimizers and cache
miss estimation techniques within the dynamic optimizer. We
plan to extend our approach to employ more than one static
optimization strategy, and activate the most suitable one at
runtime.
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