ABSTRACT
We present a semi-automated method for the detection and exploitation of application domain specific instruction set extensions for embedded (VLIW) processors. It consists of three steps: the first step detects frequently occurring operation patterns, in the second step, the patterns are grouped and implemented in a number of Special Function Units (SFUs) and the third step incorporates the custom operations into the code generation process.
Experiments show that the SFUs generated and exploited with our methodology can result in architectures that perform up to 30% better than architectures of the same cost without SFUs.

Keywords
Instruction Set Synthesis, Design Space Exploration

1. INTRODUCTION
In recent years, the emphasis in the microprocessor market has increasingly been shifting from general-purpose CPUs for personal computers and workstations, to processors that have to perform only a limited number of tasks, meant to be embedded in various electronic systems. Examples of these embedded processors can be found all around us today: in mobile phones, cars, cameras, toys, etc. It is expected that the market for these embedded devices will only grow as the mobile voice and data networks continue to expand.

The research presented in this paper is aimed at tuning (embedded) processors towards their intended application domain. Figure 1 shows a number of different hardware/software systems, each with its own advantages and disadvantages. The systems on the left side of the figure tend to be more application-specific (efficient but inflexible), to the right they become more general-purpose (very flexible but also expensive). By designing an Application Domain Specific Processor (ADSP), we want to combine the efficiency of hardware with the flexibility of software.

2. RELATED WORK
The work presented in this article relates to the fields of pattern matching, instruction set synthesis and instruction selection/code generation. Matching and covering algorithms are well-known in the fields of code generation and logic synthesis. Pattern matchers used in logic synthesis ([2], [3]) and compilers ([4], [5]) generally require the pattern graphs to be trees (single-output, acyclic, non-reconvergent graphs).

The study described in [6] involves the search for chainable operation sequences, in order to find instruction set extensions for application-specific instruction set processors...
3. FINDING INSTRUCTION SET EXTENSIONS

We will describe an automated technique to identify frequently occurring operation patterns in a set of applications. By implementing these patterns in hardware, as special operations, we hope to be able to increase the efficiency with which the embedded processor can execute these applications. The general approach we will take is as follows:

1. Generate execution traces for a set of benchmarks representative of the application domain we are designing the embedded processor for.

2. In these traces, identify and isolate frequently occurring patterns of operations.

3. Evaluate the most frequently occurring operation patterns in terms of how useful it would be to implement them in hardware (as custom operations).

The execution traces are generated using the simulator from the Move compiler suite [15], which simulates the execution of (sequential) code as it is generated by the compiler front-end. The operations that the simulator executes are used to generate (dynamic) execution trace in the form of a data-dependence graph to expose a large amount of available instruction level parallelism. This way, we can also detect patterns and their frequency counts across control flow boundaries.

For the second step, the automatic detection of recurring patterns of operations, a new matching algorithm was developed. This was necessary in order to overcome several limitations posed by existing matching algorithms, most notably the restriction that pattern graphs are only allowed to have one output. This restriction would make it impossible to detect opportunities for multi-output custom operations. In addition, the algorithm has been extended to allow on-the-fly construction of the pattern library, adding operation patterns as they are found in the trace. Conventional methods such as the one used in [12] require the designer to supply a predefined library of operation patterns, which means that the designer must know beforehand which patterns to expect.

An in-depth description of our pattern detection and construction algorithm is beyond the scope of this paper. Instead, we will illustrate the basic concepts by means of two examples in sections 3.1 and 3.2. A detailed description of the algorithm can be found in [14].

The third step involves gaining an understanding of how often a custom operation would be used during code generation. This is described briefly in section 3.3.

3.1 The Matching Algorithm

Given a subject graph \(G_{sub} \), consisting of the operations and operands in an execution trace, we must find all matches of pattern graph \(G_{pat} \) in \(G_{sub} \). Our matching algorithm operates by finding partial matches between individual subject and pattern operations, and then merging these until complete pattern matches are found. Figure 2 illustrates the concept of partial matches. Operation \(I \) matches operand \(n_1 \) and a partial match \(m_1 \) is created. This match consists of a vector of references to subject graph nodes, where the position in the vector of each reference indicates which pattern graph node it corresponds to. The rest of the entries in the match vector remain empty. In a similar fashion, partial match \(m_2 \) is constructed for operation \(II \) and \(n_2 \). Combining partial matches \(n_1 \) and \(m_2 \) around a shared pivot operand yields a complete match \(m_3 \) for pattern \(G_{pat} \).

Figure 2: Partial matches merged into a complete match.

3.2 Pattern Library Construction

We start pattern library construction with a subject graph \(G_{sub} \) and a collection of single-operation patterns \(PatLib = \{ G_{pat} \} \), as shown in figure 3. Each time we finish detecting matches on an operation node, we start looking for opportunities to create new patterns.

After we finish matching on operations \(I \) and \(II \) of \(G_{sub} \),
3.3 Trace Covering

It is misleading to use the number of detected matches for each pattern as a measure of its usefulness as an instruction set extension. It has been observed [14] that some classes of patterns result in an enormous number of overlapping matches, from which only a few can be chosen for a cover. For this reason, we want to make a selection of matches, such that all subject operations are covered by one match. Selecting such a set of matches is called covering. In this paper we attempt to minimize the number of matches chosen for the cover, since that may give an indication which patterns could be useful in minimizing the code size when we are generating code.

The algorithm we use to select a cover is a variation on dynamic programming[16], an approach often used in compilers. It operates by recursively walking each path in the subject graph from its outputs upwards, until it meets either an already covered node, or a subject graph input. On each operand node it comes across, it determines the lowest implementation cost in much the same way that dynamic programming handles the minimum-cost covering problem on trees. Since we have to deal with non-tree graphs, however, some modifications have been made.

The calculation of the implementation cost of a match happens relative to the current subject operand node. In figure 2, the cost of a single operation match on operation III, relative to f, would be the cost of the match itself, plus the implementation cost at the input d. However, a pattern supporting a post-increment load (II and III) would be much more expensive since it is both larger and has a larger fan-in. Instead, we only consider the part of the match that is relevant to f. The implementation cost of the II-III match itself is divided across its outputs, meaning that for f only half the match cost is considered. Similarly, we divide the cost at its inputs by the number of uses of that input, so that for d, only half the implementation cost is considered.

4. Code Generation with Instruction Set Extensions

Now that we have a method for finding a set of candidates for instruction set extensions, we need a way to take advantage of these custom operations in the code that is generated for our target applications. The context in which we will generate code is an instruction-level parallel list scheduler, based on the Move compiler tools [15]. This scheduler is operation-based (as opposed to cycle-based): operations are scheduled in sequence, each time the ready (i.e., without unscheduled predecessors) operation with the highest priority is chosen for scheduling. As one of the priority measures, the slack of an operation is taken, that is, the difference between the last (ALAP) and first (ASAP) cycle in which it can be scheduled, taking only data dependency constraints into account (ignoring resource constraints). The lower the slack, the higher the operation’s scheduling priority.

There are several strategies we can use to introduce custom operations into the scheduling process. The one we will use, described in this section, is based on the trace covering method introduced in section 3.3 and injects custom operations into the code before it is scheduled. Other strategies (described in [14]) introduce custom operations into the code during scheduling. However, research has shown that within the basic block scheduling scope that we will use, the method described in the following paragraphs yields the best results.

The most straightforward way to include the use of custom operations in the code generation process is to modify the data dependence graph (DDG) before presenting it to the scheduler. The DDG is in some ways similar to the execution traces we performed trace covering on. It contains operations (nodes) that use the result values of other operations as operands and are thus dependent (connected by data dependence edges). If we represent our custom operations in terms of patterns of basic\(^1\) operations, we can use the matching algorithm from section 3.1 to detect all instantiation possibilities of our custom operations in the DDG. Each operation node will be contained in at least one match (the default match, with the basic operation itself). Any other matches containing the operation node provide an implementation of the operation node as part of a custom operation. We can then use the trace covering algorithm to perform instruction selection, i.e., to make a selection of matches, covering the DDG, such that each operation node is contained in exactly one match. The matches chosen for the cover are subsequently implemented by replacing the basic operations contained in each complex pattern match with the corresponding custom operation. Figure 4 illustrates this: in (a), all matches \(m_{1-5}\) on the DDG fragment are shown, in (b) a selection of matches (cover) is made, containing only \(m_{2}\) and \(m_{4}\), and in (c) the custom operations corresponding to the matches from the cover are implemented in the graph.

Our code generation strategy attempts to find the optimal cover within each basic block that minimizes the number of selected matches. Fewer matches translates to fewer operations for the schedule, and it is expected that the increased scheduling freedom leads to better (i.e., shorter) schedules.

\(^1\)I.e., only operations from the set that was used by the compiler front-end to generate the unscheduled, sequential code.
5. EXPERIMENTS

In the previous sections, we presented a method for finding frequently occurring patterns of operations. We have used this method to find a set of custom operations for a set of benchmark applications from the digital signal processing domain. The approach taken has two steps:

1. We determine a set of frequently occurring operation patterns from the execution traces of all of the benchmarks.

2. Using the library of detected patterns and their matching and covering contributions as a guide, we construct Special Function Units (SFUs) and a testbed architecture.

An overview of the benchmark applications we will use throughout the experiments is given in section 5.1. The results for the pattern library construction experiment are presented and analyzed in section 5.2. The formation of SFUs is described in section 5.3.

5.1 Benchmark Applications

For our experiments, we use a number of common benchmarks from the digital signal processing domain. Frequently used for multimedia processing, these algorithms are good candidates for implementation on an embedded processor. It must be noted, however, that our method is not limited to finding processor optimizations for this set of benchmarks only. They are merely used to illustrate the generally applicable methodology for embedded processor customization described in this paper. An overview of the benchmarks, with their static and dynamic operation counts, is given in table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>#ops (static)</th>
<th>#ops (Dyn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpipe</td>
<td>FIR Filter</td>
<td>711</td>
<td>1552</td>
</tr>
<tr>
<td>comprv</td>
<td>Compressed (dec 2d)</td>
<td>621</td>
<td>1053</td>
</tr>
<tr>
<td>dft</td>
<td>Discrete FFT</td>
<td>39</td>
<td>666</td>
</tr>
<tr>
<td>edge</td>
<td>Edge detection</td>
<td>438</td>
<td>2297</td>
</tr>
<tr>
<td>exp2</td>
<td>Decompression (idct 2d)</td>
<td>403</td>
<td>131082</td>
</tr>
<tr>
<td>fir</td>
<td>25 pt. Linear FIR</td>
<td>110</td>
<td>30450</td>
</tr>
<tr>
<td>flaten</td>
<td>Level histogram of image</td>
<td>402</td>
<td>23990</td>
</tr>
<tr>
<td>fouro</td>
<td>5th Order Elliptic Wave</td>
<td>49</td>
<td>12067</td>
</tr>
<tr>
<td>fir</td>
<td>1IR highpass filter</td>
<td>124</td>
<td>10779</td>
</tr>
<tr>
<td>ifft</td>
<td>Interpolate w/ FFT/IFFT</td>
<td>571</td>
<td>188421</td>
</tr>
<tr>
<td>nse</td>
<td>Schne F3 filter</td>
<td>30</td>
<td>664</td>
</tr>
<tr>
<td>smooth</td>
<td>Convolution w/ 3x3 kernel</td>
<td>135</td>
<td>8220</td>
</tr>
</tbody>
</table>

Table 1: DSP benchmarks.

5.2 Pattern Construction Results

For the purposes of this paper, we have limited the number of operations per constructed pattern to three, mainly in order to reduce execution time and memory requirements, and because it is expected that larger patterns would be less generally applicable (as was shown in [14]).

The total number of (unique) new patterns found for all the benchmarks is 656. Figure 5 shows the contribution to the total number of matches vs. the contribution to the (trace)cover for each of the new patterns. All numbers are averages across all applications.

![Figure 5: Match contribution vs. cover contribution for all patterns.](image)

The first thing to observe about figure 5 is that most of the new patterns are not that often encountered or used in covers. A few patterns account for most of the matches and most of the matches chosen for covers. This indicates that a few, well-chosen custom operations can already yield large benefits.

We can now sort the library with the new patterns according to the sum of their matching contribution (position on the horizontal axis of figure 5) and their cover contribution (vertical axis). Looking only at the match contribution would be misleading, since not all matches are equally likely to be chosen for the cover. This explains why a pattern that was matched often (a high value on the horizontal axis of figure 5) is not necessarily chosen for the cover as frequently. Looking only at the cover contributions of patterns would be misleading as well: the choice of matches for the cover is made by an algorithm based on dynamic programming, and these tend to have a preference for chain-like patterns (i.e., sequential rather than parallel). By sorting by the sum of the matching and covering contributions, we get a mix of patterns with a high covering contribution (which are likely to have a good matching contribution, too) and patterns that have a high match count but were somehow not chosen by the covering algorithm.

5.3 Special Function Unit Construction

Since it is impossible to implement all patterns as custom operations, we have selected 40 patterns from the top-100 in order to create five Special Function Units (SFUs). No detailed hardware was designed, but the patterns were grouped into categories that are likely to map well onto the same hardware. Because this is difficult to do automatically it was done by hand.

The ADDSFU executes 12 patterns of up to three integer addition or compare operations. In this respect it is an extension of the 3-1 interlock collapsing ALU [17], which...
executes two chained integer operations as one. The most important
difference, apart from the pattern size, is that
our SFU also executes patterns with operations executing
in parallel (with a shared operand).

The MEMSFU is a load/store unit that also performs
address computations. It supports patterns of up to two
integer additions and one memory operation.

The FPSFU supports patterns of up to three floating
operations, at most one multiplication and up to two additions.

The MULSFU supports patterns of one integer multiplication
followed by up to two integer additions.

The ASHFSFU supports one integer addition or compare in
sequence with, or parallel to a left shift operation.

In addition to the complex operations, all SFUs also support
the individual, atomic operations that make up their
respective patterns, as well as related atomic operations that
do not appear in the patterns (e.g., although the floating-
point subtract operation did not appear in any pattern, it
is supported by the FPSFU). This is required in order to
maintain full instruction set compatibility, or in the terms
of section 4, to always allow implementation of any default
match.

The latencies of the SFU are, as a first approximation,
taken to be equal to the latencies of related basic FUs. Literature
suggest this is a reasonable assumption in many
cases. For instance, a chain of two integer additions can
be collapsed into a single-cycle operation [17], an integer
multiply-add takes the same time as an integer multiply in
most DSP architectures and floating point multiply-add
implementations (e.g. [18]) have been designed that have the
same latency as a floating-point multiplication. In [19], the
SAM or Sum-Addressed Memory technique is described. It
performs base+offset (load address) calculations using the
decoder of the RAM array, with very low latency, effectively
combining the address calculation and the actual load in a
single operation. The technique has been successfully im-
plemented in the Ultrasparc III microprocessor.

In some other cases, however, the equal-latency assump-
tion is bound to be overly optimistic. Unfortunately, the
current Move software generation tools do not allow this
latency to be specified on a per-operation basis: each FU has
a single, fixed latency which applies to all the operations
it supports. This may cause some distortion in the results
presented in the next section, particularly where execution
times are concerned.

6. DESIGN SPACE EXPLORATION

Now that a set of SFUs has been defined, we want to apply
the automatic design space exploration method, described
in chapter 7 of [15], to the problem of finding a suitable pro-
cessor architecture for our application domain. In addition,
the design space exploration process will let us analyze the
added value of SFUs, relative to regular FUs. The initial,
oversized architecture, which is used as the starting point of
the design space exploration, contains both SFUs and regular
FUs, and a number of transport buses. In the first phase
of the design space exploration, all buses are connected to all
(S)FUs.

The design space exploration process was performed twice,
once with and once without making use of SFUs. Figure 6
shows the Pareto curves[16] for the abovementioned bench-
mark set. On the horizontal axis, the architectures’ cost is
shown (in μm²), the vertical axis shows the total execution
time (in ns) of the benchmarks for the various architecture
design points.

It can be seen in figure 6 that for higher architecture cost,
the design points that include the SFUs are much more effi-
cient than those with only the basic FUs (about 30% fewer
cycles for the same cost). In the steepest part of the curve,
the architectures consist of only the smallest set of (S)FUs
necessary to execute the benchmarks. The only variation
is in the number and type (width) of transport buses that
are in the architectures. It can be seen here that the “with
SFU” architectures have a slightly better performance vs.
cost ratio that the “no SFU” architectures. This is due to the
fact that the program storage requirements are lower for
the code generated when making use of SFUs.

From the Pareto curve resulting from a design space explo-
ration, the designer can choose an architecture configuration
to perform connectivity reduction on. Connections between
(S)FUs and transport buses are iteratively removed, which
initially results in better results since the architecture’s area
and cycle time become smaller. This continues until the
transport resources are limited to a degree where they con-
strain the scheduler too much and performance deteriorates.

![Figure 6: Design space exploration results.](image)

Figure 7 shows the results for a connectivity reduction ex-

![Figure 7: Connectivity reduction on a Pareto-point from figure 6.](image)
7. SUMMARY AND CONCLUSIONS

In this paper, we set out to automatically design application domain specific processors. We demonstrated our method for the automated detection and exploitation of instruction set extensions, which led to the specification of a number of Special Function Units (SFUs). These SFUs support a number of custom operations, which can be put to use by a special instruction selection and code generation strategy.

Design space exploration showed that using SFUs can have a beneficial effect on the cost vs. performance ratio of application domain specific processors. SFUs turn out to be an effective way to expand processors while maintaining flexibility and programmability.

8. REFERENCES

Figure 8: The architecture after removing 137 connections.