
Embedded UML: a merger of real-time UML and co-design
 Grant Martin

Cadence Design Systems, Inc.
555 River Oaks Parkway
San Jose CA 95134 USA

+1-408-894-2986

gmartin@cadence.com

 Luciano Lavagno
Cadence Design Systems, Inc.

2001 Addison Street, Third Floor
Berkeley, CA 94074 USA

+1-510-647-2810

luciano@cadence.com

 Jean Louis-Guerin
Cadence Design Systems, Inc.

18 Rue Grange Dame Rose
78148 Velizy France

+33-134-885-317

jlg@cadence.com

ABSTRACT
In this paper, we present a proposal for a UML profile called
‘Embedded UML’. Embedded UML represents a synthesis of
various ideas in the real-time UML community, and concepts
drawn from the Hardware-Software co-design field. Embedded
UML first selects from among the competing real-time UML
proposals, the set of ideas which best allow specification and
analysis of mixed HW-SW systems. It then adds the necessary
concept of underlying deployment architecture that UML
currently lacks in complete form, using the notion of an
embedded HW-SW ‘platform’. It supplements this with the
concept of a ‘mapping’, which is a platform-dependent
refinement mechanism that allows efficient generation of an
optimised implementation of the executable specification in both
HW and SW. Finally, it provides an approach which supports
the development of automated analysis, simulation, synthesis and
code generation tool capabilities which can be provided for
design usage even while the embedded UML standardisation
process takes place.

Keywords
UML, embedded systems, real-time systems, HW-SW co-design,
function-architecture co-design, platforms.

1. INTRODUCTION
The last several years of development have seen the emergence
in more pragmatic form of hardware-software co-design tools
among the more ‘hardware-centric’ EDA community, for
example, Cadence’s Virtual Component Co-design tool VCC [5],
Synopsys’s CoCentric tool [31], and CoWare N2C. The software
community, after several years of work, converged on a set of
notations for developing specifications of object-oriented systems
known as the Unified Modelling Language or UML [26].
However, until recently, these worlds have remained separate.

The rise of embedded real-time systems, consisting of significant
amounts of variable hardware and software, and the introduction

of deep submicron IC processes, allowing the emergence of
complete Systems-On-Chip (or chipsets), force a unification of
these separate worlds. Functionality must be specified
independent of implementation. It must be possible to specify
flexible hardware-software architectures on which that function
will be implemented. Commitment to particular choices of
components should be delayed as much as possible to the end of
the design process. Exploration of various architectures and
component choices should be encouraged with a variety of static
and dynamic analysis techniques.

The general notion of ‘function-architecture’ co-design [2] has
been introduced within the hardware-software co-design
community and has now been widely adopted. The concept
consists of an orthogonal capture of undifferentiated system
functionality in the form of an executable specification model;
the definition of a basic HW-SW architecture on which that
system is to be realised; and the construction of an explicit
mapping between the two views which provides the essential
hardware-software partitioning and assignment of functions to
components. This then allows both formal and informal analysis
and simulation of the design to proceed, serving as the basis for
design space exploration.

The notion of flexible hardware-software architectures has been
refined into the concept of a ‘platform’ [11] and platform-based
design [6]. The concepts of platform and function-architecture
co-design can be fruitfully married together [18]. A platform,
from the viewpoint of the systems designer, can be considered as
an ‘Application Programmer’s Interface’ (API) view of the set of
resources and services offered by the platform to the system
implementers. This abstraction level or API allows the user to
configure the target system platform to best support the
application, within the limits of system configurability. It also
allows the application mapping to system resources to be
optimised either by hand or through automation-assisted means.

In the UML community, where standardisation occurs via
processes managed by the Object Management Group (OMG)
[20], many proposals have arisen for extensions to UML that
better support the development of real-time systems. In the
OMG these are called UML ‘profiles’: collections of specific
extensions to UML notations (called ‘stereotypes’, tagged values
and constraints) and associated semantic notions, bundled
together in a collection of concepts which are suitable for
expressing in an effective manner the concerns of a particular
design domain.

In the next section, we will review the UML, and then discuss a
number of the proposals made by various groups for real-time
UML profiles, including the OMG UML revision task force.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES’01, April 25-27, 2001, Copenhagen, Denmark.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

2. THE UML
The UML is a collection of notations [4, 12] for capturing a
specification of a software system. These notations have a
formal syntax defined by the OMG but often only informal
semantics. They are primarily graphical, with textual
annotation. Certain notations have particular importance for
modelling embedded systems; these include:

• Class diagrams show the static structure of the specified
system, in particular, classes, their internal structure including
attributes, their methods, and their relationships to other
classes (such as inheritance or generalisation, and associations)

• Collaboration diagrams define a specific way to use objects
in a system by showing the possible interactions between them

• Sequence diagrams (very similar to SDL’s Message
Sequence Charts or MSC’s) are another form of interaction
diagram. Sequence diagrams in particular could be used to
help create testbenches.

• Use case diagrams are a way of associating the ‘actors’ and
‘use-cases’ in a system via the use of relationships. This has
potential again in helping to create verification
scenarios/testbenches.

• State diagrams are based on Harel statecharts [15]. UML
state diagrams can model object behaviour over several use
cases.

• Deployment diagrams are a rather weak attempt at showing
the run-time configuration of software and hardware
components in a system. Deployment diagrams are often
combined with Component diagrams, which attempt to depict
packages of object implementations and their interfaces. A
much stronger notion of ‘mapping’ between a logical model
(functional blocks) and an engineering model (a platform, with
its architectural resources), and a concept of modular resource
models (also known as architectural services) in API form, are
required for effective embedded system development.

We can summarise the usefulness of the UML standard as
essentially a set of notations for specifying the requirements,
documenting the structure, decomposing into objects, and
defining relationships between objects, in a software system. By
adopting UML notations, development teams can communicate
among themselves and with others using a defined standard.
This usage seems most common among early adopters of UML.

Adopters of particular tools can also have to some extent,
executable specifications and code generation via class, state and
sequence diagrams. The lack of formalised semantics makes
these capabilities tool-dependent and proprietary, with no
guarantees of interoperability; in fact, the stereotypes proposed
are in general, mutually incompatible. Furthermore, it
complicates the communication of UML models between users.
This is a key lack of UML, which is being studied by a number
of OMG committees.

3. REALTIME UML EXTENSION
PROPOSALS
The deficiencies of standard UML as a vehicle for complete
specification and implementation of real-time embedded systems

has led to a variety of competing and complementary proposals.
Some of these have been in response to OMG RFI’s and RFP’s;
others have been proposed based on specific tool supported
methodologies. A good summary of some of the debates and
issues is found in [14]. We can classify the various proposals
into the following areas:

• Use standard UML with stereotypes for real-time support

• Functional decomposition, or object structuring, imposed on
top of UML’s object-oriented notations

• Translation from UML into other languages for real-time
implementation

• Develop well defined Action Semantics for UML

• Introduce the notions of hardware and software architecture
modelling, and a logical to engineering model ‘mapping’

• Introduce the notions of schedulability, performance and
time into UML via a profile

3.1 Use UML as is, or simplify it
This concept has been promoted by Bruce Powel Douglass, most
notably in [8]; his basic philosophy is stated very clearly: “It is
important to note that the UML is adequate for the complete
development of real-time embedded systems.” [8, p. 52]. Some
people have proposed simplifying UML – for example, state
diagrams, as in [19]. While Douglass uses UML as is for real-
time, he does take advantage of its stereotyping extension
capability, using basic UML notations, to “help explain the
purpose of model elements that occur commonly within the real-
time and embedded domains”. These include:

• UML active objects as the roots of OS threads

• A variety of UML messages to represent synchronisation
and message arrival patterns

• A guarded operation stereotype to model semaphores

• Node stereotypes to represent HW architectural elements:
processors, devices, sensors, actuators, displays, etc.

• Component stereotypes for SW components

3.2 Functional Decomposition, or Object
Structuring of System
We know of two major attempts to define ‘object structuring’ of
systems in UML – what might also be called ‘functional
decomposition’. These are the UML-RT profile, and the SDL-
UML profile, both based on existing languages (ROOM and
SDL). The UML-RT profile derives from the ObjecTime
ROOM methodology [27], which is now available as the Rose-
Real Time tool from Rational. It has been proposed as an
extension of UML for real-time in an influential white paper by
Selic and Rumbaugh [28] and an article [29]. In fact, so
influential have these papers been that many people believe that
Real-time UML has been standardised around the notions in
these books and papers. In reality, these notions are only in the
RFP stage for UML 2.0, albeit described rather cryptically as
“support encapsulation and scalability in behavioural modelling,
in particular, for state machines and interactions”, and as
architectural modelling constructs. [21]

The key concepts in functional decomposition as defined in
ROOM etc. are:

• Capsules are used to represent the major behavioural
objects of a real-time system. These may be functional
computation units, in many senses quite orthogonal to object
oriented decompositions. In ROOM, capsules incorporate state
machine functions, and can be hierarchical. They have
explicit external interfaces.

• Explicit communications structures: ports, protocols and
connectors. This provides a single queued asynchronous
communications mechanism. These are used in capsule
collaboration diagrams that graphically depict the functional
decomposition, or ‘object structure’ of a system

• ROOM and RoseRT also provide an underlying virtual
machine model and interface to runtime RTOS services such as
messaging, as a way of keeping the functional specification
layered on top of commercial processor/RTOS ports of the tool,
and supporting target-specific code generation.

The SDL-UML profile proposal is described next.

3.3 Translation from UML into other
modelling notations for implementation
A notable advocate of this approach is Telelogic in their
Telelogic Tau toolsuite. The UML suite allows a user to capture
specifications in UML (class diagrams, state diagrams and
sequence diagrams), and then via a UML to SDL translation,
move to an SDL based toolsuite for real-time code generation (in
C, C++ and other languages). The SDL suite also offers
functional simulation and test generation (TTCN). In this case,
only those UML notations that have ‘natural’ analogues in the
SDL world are translatable. The concept, called the SOMT
method (SDL-oriented Object Modelling Technique) was
described several years ago by Ek [10]. More recently, the
objective of this approach was described succinctly as to “permit
the expressive power of UML to coalesce with SDL’s strengths
of coherence and semantics” [3]. Recent work by the ITU-T has
led to a specification proposal Z.109 for SDL combined with
UML that defines the mapping of translatable concepts between
the notations.

3.4 Action Semantics for UML
This proposal is somewhat orthogonal to others, in that it applies
to all UML development, whether for real-time embedded
systems or any other software application. UML has been
defined with a formal syntax, but not formal semantics. As the
OMG RFP for action semantics stated: “the UML currently uses
uninterpreted strings to capture much of the description of the
behaviour of actions and operations. To provide for sharing of
semantics of action and operation behaviour between UML
modellers and UML tools, there needs to be a way to define this
behaviour in a well-defined, interoperable form. At such time as
the Action Semantics requested in this proposal are mapped to a
syntax, and are combined with the UML, the UML shall
constitute a computationally complete language. This language is
targeted at system analysis and behaviour description, and is not
envisioned to be language suitable for system deployment.” [22]

Clearly, the lack of defined action semantics, among many other
deficiencies, has kept UML in the documentation domain and
prevented its use for interoperable executable specifications. An
extensive response (200 pages) to the RFP has been submitted
[24]. This is not a new programming language – “Rather, the
action semantics provides for the specification of systems in
sufficient detail that they can be executed, and the actions
semantics should provide just enough semantics to enable the
specification of computation”. These semantics may be
standardised in UML 1.4, 1.5 or a later version.

3.5 Architectural Modelling and Mapping
The notion of a logical architecture, a physical or engineering
architecture, and a ‘mapping’ between them, show up in several
places in UML real-time extension proposals, as well, of course,
in the function-architecture co-design concepts discussed earlier.
Of course, the original UML specification had the weak notions
of deployment diagrams.

Artisan Software in their Realtime Studio, for example, has
added the notions of system and architecture modelling, a system
architecture diagram, and mapping of model artefacts (such as
real-time tasks) to elements (resources) on the architecture
diagram. [1]. The OMG RFP for a UML profile for Scheduling,
Performance and Time [23] asked for models of resources,
physical (HW) and non-physical (SW, e.g. semaphores, queues),
and deployment of software components to physical resources.
The joint multi-company submission in response to this RFP
includes logical (application or client) and engineering (platform)
models, representing functions and architectures, and a
relationship between elements in each called a realisation
relationship. [25] In addition, resources have services that they
offer to clients, which have a strong relationship to the co-design
notion (in VCC) of an ‘architectural service’. [32]. These
concepts are briefly summarised in [30].

3.6 Schedulability, Performance and Time
The OMG RFP for UML profile for Schedulability, Performance
and Time also deals with the notions of modelling time and
clocks, concurrency, and support for analysis of performance and
schedulability, in addition to resource modelling. This includes
scheduling policies, timing specifications and constraints, timing
services, and visual representations of these notions linked to
behaviour.

The response to the RFP discussed above has extensive
definitions of class-based stereotypes based on the notion of
Quality of Service (QoS) characteristics for resources. QoS
characteristics will serve as the base for real-time embedded
systems engineering [30]; the relationship between application
objects and resources will involve ‘required QoS’ (the constraint)
and the ‘offered QoS’. Underlying the QoS notions is an
extensive set of classes for time modelling, real-time stereotypes,
and a schedulability model [25].

4. EMBEDDED UML: THE PROPOSAL
So what is to be done? “The Philosophers have only interpreted
the world in various ways; the point, is to change it.”

Embedded UML is a research project with the goal of defining,
and proposing, a UML profile suitable for embedded real-time
system specification, design and verification. It represents a
synthesis of the best concepts in UML, real-time UML, and
function-architecture co-design, married to the concept of
platform-based design.

Embedded UML retains the best of UML and real-time UML:

• The specification of embedded systems as a collection of re-
usable communicating blocks using a functional
decomposition.

• Class diagrams for object definition

• Encapsulation of functions within a ‘block’, an extension of
a capsule

• Communications explicitly defined via ports, protocols and
connectors

• Use cases and sequence diagrams to specify testbenches and
test scenarios

• Carefully defined state diagram semantics, combined with
specified action semantics which can be used to drive code
generation, optimisation and synthesis.

• The concept of a refinement continuum, from non-
executable specifications, through formal executable
specifications, through to implementation.

Then, complementing these concepts, we add from the co-design
world what is missing:

• A rigorously defined platform model in both HW and SW
for the implementation architecture. Conceptually, this can be
thought of as a collection of resources offering services, as in
UML real-time extension profiles. The collection of platform
services can be thought of as a system platform ‘API’.

• Using ‘mapping’ as the platform-dependent refinement
paradigm for performance analysis, communication synthesis
and optimised code synthesis/generation.

• A concept of ‘reactive’ rather than UML’s ‘active’ objects,
for blocks.

4.1 Reactive Objects
Embedded UML relies on reactive, not active objects [16]. An
active object in UML is defined as “an object that owns a thread
and can initiate control activity”. Each active class owns a single
thread, and an event queue. It executes a never-ending event-
loop that takes events from the queue and injects them to the
target objects. This is one specific model of computation; to
better model embedded systems, we need multiple models of
computation with flexible communications.

Reactive objects are a better match to embedded systems
consisting of concurrent processes mapped to multiple hardware
resources with asynchronous communications between
themselves and ‘reacting’ to external events and stimuli. A
reactive class is one that can react to events; i.e., an event
consumer. Reactive objects must specify a control structure for
the object, in the form of state diagrams or code (following
formal action semantics), a communication structure between
objects with rigorous interfaces (via ports and connectors, similar

to a capsule collaboration diagram). Communications and
synchronisation mechanisms cannot be fixed, but must support a
variety of synchronous and asynchronous styles.

4.2 Communications Mechanisms
Embedded UML must support multiple means of
communications. It is important to allow customisation of the
communications protocol at the specification level of abstraction,
and its detailed implementation. Communications abstractions
must include point-to-point mechanisms, task input queues,
abstract messaging, discrete event; and a variety of
implementation styles must be able to be modelled – e.g. finite
buffers, interrupts, semaphores, shared memory, etc. This is
because different application domains and different
implementation platforms have different requirements. For
example, multimedia applications can be modelled naturally as
an interconnection of blocks (performing operations such as
filtering, decoding and so on) interconnected by FIFO queues.
Telecommunications protocols, on the other hand, are better
suited for prioritised queues for message handling. Automotive
applications require non-queued events whose priority is
determined dynamically by the receiving object, and so on.

Communication refinement must allow modelling to
incrementally define an elaboration methodology from abstract
events (with undefined protocols), through specific mechanisms
(e.g. infinite event queues or lossy buffers), through specific
implementations (for example, SW driver through a bus protocol
to a multi-write HW register). These implementations of
communications need to be able to model the implications on
Quality of Service (QoS) of shared resources – e.g. a multi-
mastered, arbitrated bus. As an example, consider the
refinement of a FIFO queue that was originally specified as
unbounded, between abstract reactive objects, without a detailed
implementation choice. The first step is the choice of an
implementation decision for the objects. If both are
implemented as software on the same processor, then a static or
quasi-static scheduling algorithm can be used to merge both into
a single task, and a shared circular buffer is the best
implementation option for the FIFO. If one is implemented in
hardware and one in software, then the FIFO communication
must be implemented using the available communication
resources: interrupts, DMA, shared memory and so on. Clearly,
a detailed specification of this implementation in early stages of
the design is an over-specification. Embedded UML supports the
user also in this refinement and implementation process.

Communications refinement involves both the communications
mechanisms and the scheduling mechanisms that control access
to the resource-bound services. We propose a communication
services stereotype in Embedded UML that is used for
implementing interfaces for communications refinement (as in
VCC), and provides via libraries common mechanisms used in
abstract specifications, such as dataflow FIFOs, SDL-type
queues, events, etc. Interface refinement involves substitution of
detailed models while preserving properties, as described for
example in [13]. In this framework, each component of the
architectural model (also known as engineering model or
platform) implements services for users (other architectural
components or functional components). For example, the CPU
architectural component offers to both user code (functional

component) and the RTOS (another architectural component, that
is part of the engineering model) a data read and write service, as
well as an instruction fetch service. These services can be
invoked by the upper layers whenever they need to model the
performance of instruction fetches and data loads and stores.
Such upper layers need not know whether the CPU has a cache
or not, whether the bus supports burst access or not, or the bus
frequency. Information hiding and modularity are essential
elements of a re-usable architectural modelling strategy. The
CPU component will in turn use cache services and bus services
to model these aspects.

A key element of an effective modelling strategy is allowing the
architectural designer to quickly change the configuration, and
thus the performance model, to reflect architectural changes. In
the mapping mechanism, the binding between service use and
implementation (determining, e.g., whether or not a cache is
used) depends on the structure of the architectural model. The
architectural netlist becomes the guide to binding the appropriate
uses to the appropriate declarations.

Synchronisation will also require the definition of a
synchronisation services stereotype used to support refinement of
scheduling requirements into implementations. For example, the
designer may want to specify that an input sampling object must
be executed once every millisecond, with a maximum jitter of
10%, or that two objects have a relative execution priority.

4.3 A Path to Implementation
Today’s state of the art for code generation involves either target-
independent automated code generation (combined with mapping
libraries that allow correct execution on particular runtime
processor/RTOS platforms), or user-defined manual optimisation
for a particular implementation architecture. In the first case, the
code is inefficient, possibly in both memory footprint and
execution performance; in the second case, the process is slow,
painful and requires considerable platform, application and
software generation expertise.

We believe that Embedded UML needs to offer a new approach.
The designer will map a functional, executable specification to a
platform architecture. This is used to derive a performance
analysis model for simulation and static analysis. In addition, the
mapping of function to architecture will be used as the basis for
automated derivation and generation of optimised target-specific
implementations of function (SW on DSPs, SW on general
processors, HW, …), communications mechanisms (SW-HW,
SW-SW, HW-HW) and synchronisation (static scheduling,
interrupts, pre-emption policies, etc.) [2, 7, 9, 17].

Mapping as an implementation paradigm is the fundamental base
for target-dependent code synthesis and optimisation. Mapping
will be used in synthesising functional blocks, with target-
specific code generators and RTOS customisation for task
creation, priorities and scheduling. It will also control
communications synthesis: using available platform resources
(memories, buses) and appropriate refinement patterns or
templates (interrupts, polling, DMA, etc.). This will not,
initially, be totally automated; user intervention to create the
mapping and set parameters will be required. However,
dramatic improvements in generated code efficiency and
footprint should be possible over target-independent automated

methods. Fewer manual changes for optimisation will be
required post facto.

4.4 Summary of Embedded UML
In summary, Embedded UML will use blocks, an extension of
the capsule notation, for functional encapsulation. Netlists, an
extension of collaboration diagrams, will be used for functional
composition. Interfaces and channels, extensions of ports and
signals, will be used for communication specification and
refinement, along with stereotypes for communication and
synchronisation services. Finally, mapping diagrams, a rigorous
extension of deployment diagrams, will be used for performance
analysis and optimised implementation generation.

5. EMBEDDED UML AND CODESIGN
We use VCC as an example of a function-architecture co-design
tool and methodology that can serve as a suitable base for the
development and elaboration of Embedded UML. VCC 2.0 is a
partial superset of the embedded UML profile, offering
customisable communication refinement (via architectural
services modelling), architectural diagrams covering HW and
SW resources, mapping diagrams, performance analysis and
links to implementation (HW and SW) flows.

In this respect VCC has similar characteristics to other co-design
concepts and tools in the literature, although in an advanced,
commercially available form. It is particularly strong in
architectural modelling, mapping, and performance analysis,
along with rich modelling capabilities for communications
refinement. Lacks in VCC and in other co-design concepts
include (currently) no equivalent to UML class diagrams (for
object-oriented model creation), class inheritance, sequence
diagrams (for testbench creation), use cases (for scenario
elaboration), and customisable abstract models of
communication. However, these kinds of capabilities could be
added to VCC and other co-design tools to support the
development of Embedded UML and its demonstration in real
product design flows.

6. CONCLUSIONS
We have analysed the deficiencies of UML to support the
specification, development and implementation of embedded
real-time software-based systems running on malleable HW-SW
platforms. We have then surveyed the wide variety of proposals
available within the real-time UML community to overcome
these lacks, and have indicated some key capabilities available in
HW-SW co-design research and tools which can provide support
for such systems. Finally, we have created a Hegelian synthesis
of the best UML/real-time UML and co-design concepts, to
propose a new merged Embedded UML profile.

The standardisation of something like Embedded UML, and its
adoption in embedded software, system and co-design tools over
the next few years will have a radical effect on system and
software design and implementation productivity. This paper is
part of a rallying cry for the disparate EDA/co-design and
SW/UML communities to unite into bringing this vision into
reality. When worlds collide, a new world can come into being.

Future areas of research that are needed to move the vision along
will include: requirements specification, recording,

decomposition and tracking from product definition through to
implementation; specific techniques for code optimisation for a
platform, especially in targeting specific compiler and processor
capabilities, memory hierarchy management, and efficient use of
RTOS APIs; and the dual problem of optimising the platform for
particular applications domains.

7. ACKNOWLEDGMENTS
Our thanks to all colleagues with whom we have discussed these
ideas; particular thanks to Ellen Sentovich and Ian Dennison.

8. REFERENCES
[1] Artisan Software, “Real-Time Studio: The Rational

Alternative”, white paper, version 3.0, 29 July 1999, URL:
http://www.artisansw.com/whitepapers.

[2] Balarin, F., Chiodo, M., P. Giusto, Hsieh, H., Jurecska, A.,
Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.,
Sentovich, E., Suzuki, K., and Tabbara, B. Hardware-
Software Co-Design of Embedded Systems: The POLIS
Approach, Kluwer, 1997.

[3] Bikander, M. “Graphical Programming Using UML and
SDL”, IEEE Computer, December 2000, pp. 30-35.

[4] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[5] Chakravarty, S. and Martin, G. A new embedded system
design flow based on IP integration, in Proceedings of
DATE 99 User’s Forum , Munich, 1999, 99-106.

[6] Chang, H., Cooke, L., Hunt, M., McNelly, A., Martin, G.
and Todd, L., Surviving the SOC Revolution: A Guide to
Platform-Based Design, Kluwer, 1999.

[7] Cortadella, J., Kondratytev, A., Lavagno, L., Massot, M.,
Moral, S., Passerone, C., Watanabe, Y., and Sangiovanni-
Vincentelli, A., “Task Generation and Compile-Time
Scheduling for Mixed Data-Control Embedded Software”,
Design Automation Conference, June 2000, pp. 489-494.

[8] Douglass, B. P. Doing Hard Time – Developing Real-Time
Systems with UML, Objects, Frameworks and Patterns,
Addison-Wesley, 1999.

[9] Edwards, S. “Compiling Esterel into sequential code”,
Design Automation Conference, June 2000, pp. 322-327.

[10] Ek, A. “The SOMT Method”, Telelogic white paper,
September 19, 1995.

[11] Ferrari, A. and Sangiovanni-Vincentelli, A., “System
Design – Traditional Concepts and New Paradigms”,
Proceedings of ICCD 99, Austin, October, 1999, pp. 2-12.

[12] Fowler, M., with Scott, K., UML Distilled, Second Edition,
Addison-Wesley, 2000.

[13] Gajski, D., Zhu, J., Dömer,, R., Gerstlauer, A. and Zhao, S.,
SpecC: Specification Language and Methodology, Kluwer
Academic Publishers, 2000.

[14] Ganssle, J. “Navigating through new development
environments”, Embedded Systems Programming, May,
1999, pp. 22-30.

[15] Harel, D. “Statecharts: A visual formalism for complex
systems”, Science of Computer Programming, Vol. 8, 1987.

[16] Lavender, R. and Schmidt, D. “Active Object: An Object
Behavioral Pattern for Concurrent Programming”, in
Pattern Languages of Program Design 2, eds. Vlissides, J.,
Coplien, D. and Kerth, M., Addison-Wesley, 1996.

[17] Lee, E. and Messerschmitt, D., “Static Scheduling of
Synchronous Data Flow Graphs for Digital Signal
Processing”, IEEE Transactions on Computers, Jan. 1987.

[18] Martin, G. “Productivity in VC Reuse: Linking SOC
platforms to abstract systems design methodology”, Forum
on Design Languages: Virtual Components Design and
Reuse, Lyon, September 1999, pp. 313-322.

[19] Mellor, S. and Selic, B., with Barr, M. “A UML
Point/Counterpoint” – “Modeling Complex Behavior
Simply” and “How to Simplify Complexity”, Embedded
Systems Programming, March 2000, pp. 37-56.

[20] OMG web site URL: http://www.omg.org/

[21] OMG Request for Proposal: UML 2.0 Superstructure RFP,
OMG document: ad/2000-08-09.

[22] OMG Request for Proposal: Action Semantics for the UML
RFP, OMG document: ad/98-11-01.

[23] OMG Request for Proposal: UML Profile for Scheduling,
Performance and Time, OMG document: ad/99-03-13.

[24] OMG Response to OMG RFP ad/98-11-01, Action
Semantics for the UML, Revised September 5, 2000. OMG
document: ad/00-09-08.

[25] OMG Response to the OMG RFP for Schedulability,
Performance and Time, Version 1.0, August 14, 2000, OMG
document: ad/2000-08-04.

[26] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified
Modeling Language Reference Manual, Addison-Wesley,
1998.

[27] Selic, B., Gullekson, G. and Ward, P. Real-Time Object-
Oriented Modeling, John Wiley and Sons, New York, 1994.

[28] Selic, B. and Rumbaugh, J. “Using UML for Modeling
Complex Real-Time Systems”, white paper, Rational
(ObjecTime), March 11, 1998.

[29] Selic, B. “Turning clockwise: using UML in the real-time
domain,” Comms. of the ACM, Oct., 1999, pp. 46-54.

[30] Selic, B., “A generic framework for modeling resources
with UML”, IEEE Computer, June 2000, pp. 64-69.

[31] Synopsy CoCentric SystemStudio can be found at the URL:
http://www.synopsys.com/products/cocentric_studio/cocentri
c_studio.html

[32] VCC information can be found at the URL:
http://www.cadence.com/eda_solutions/hcd_l3_index.htm.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

