
Low-Power High-Level Synthesis Using Latches

Wooseung Yang, In-Cheol Park and Chong-Min Kyung
CHiPS, Department of EECS, KAIST

373-1, Kusong-dong, Yusong-gu, Taejon 305-701, Korea
Tel:+82-42-866-0843 Fax:+82-42-866-0702

e-mail:woosee@duo.kaist.ac.kr

Abstract – High-level synthesis using latches has many
merits in power, area and even in speed. But latches cannot be
read and written at the same time and usually requires two-
phase non-overlapping clock that is unpleasant choice for
short-term design. In this paper we propose a storage allocation
method that makes it possible to use latches as storage elements
in single clocking scheme. The proposed method modifies the
lifetime of variables slightly so that it can be applied to any
high-level synthesis systems with small modification. The
experimental results show 39 ~ 65% reduction in power
consumption within almost same area compared to the
conventional power management scheme using clock gating.

I. INTRODUCTION
High-level synthesis (HLS) has been intensively researched

for the productivity of VLSI design, and many high-level synthesis
systems have been introduced. It has been shown that HLS tools
are especially good choice for specific application domains such as
digital signal processing (DSP) circuits or control-dominated
circuits. These application areas usually require low power-
consumption for its mobile characteristics. There were many
approaches in high-level synthesis to reduce the power
consumption of the generated circuit. In [5][6] functional unit
allocation and storage unit allocation algorithms to minimize the
switching activity of the nets are introduced. Various low power
techniques are applied iteratively based on the switched
capacitance calculation in [7]. In [3] inputs of functional units are
suitably controlled by changing storage allocation so that functional
units can execute only necessary operations. All these schemes
assumes flip-flops as storage elements for several reasons. First,
using flip-flops is easy to think and to apply algorithms since flip-
flops can be read and written at the same time. Second, use of
latches usually requires two phase clocking scheme which
designers are not pond of.

But power consumption of latches is about one third smaller
than that of flip-flops and area is also about one third smaller than
flip-flop[8]. In addition, the smaller clock capacitance in latch can
reduce further power consumption in clock tree. Since much of
power consumption in recent chips are due to the clock tree, using
latches in high level synthesis of data path will be very beneficial in
power point of view. There were some approaches to use latches
instead of flip-flops to get these merits. One example in [1] showed
up to 50% power saving by using latches. But using multiple-
clocking scheme is very unpleasant choice for chip designers. In
[2], storage elements implemented with flip-flops are replaced with
latches if the input/output behavior of the circuit is not affected. It
showed good results for control-dominated circuits, but in data-
dominated circuits not many of the storage elements meets the

conditions for substitution and the change in the waveform of
internal signals may cause increase in functional unit power
consumption.

With these in mind we will propose a storage allocation
method considering the latch-based storage element
implementation with single clocking scheme. This paper is
organized as follows: Section II describes previous approaches in
more detail and Section III gives motivating example showing the
possibility of power reduction using latches. Section IV described
the binding algorithm used in our approach. Some excremental
results are showed and analyzed in Section V and conclusion is
made in Section VI.

II. PREVIOUS WORKS
In [1] , circuits are partitioned into n sub-networks so that the

storage elements of each partition can be activated at n distinct time
step and each partition is clocked by n non-overlapping clock of
frequency of f/n, where f is the operating frequency of the circuit
before partitioning. With this architecture, area can be increased in
some degree since registers and functional units cannot be shared
by different partitions, but the power consumption can be reduced
since the sum of power consumption in each partition is usually
smaller than that of the original circuit for the reduced load
capacitance.

One more rationale for the power reduction in that architecture
is the reduced operating frequency. Reduced frequency means
smaller signal transition. But this is true only when the power
management scheme is not applied to the original circuits i.e. all
storage elements are clocked at every clock cycle. If power
management scheme is applied to the original circuits, the storage
elements change their values only when new values hvae to be
updated by using gated clock or input multiplexers. The minimal
required number of value change is not determined by the
architecture but by the algorithm and a simple power management
scheme guarantees that minimal required transition in the storage
elements. So the transition number of the storage element in the
partitioned circuit is not smaller than that of the original circuits.

In spite of this, the simulation results show that the partitioned
circuits consume smaller power than that of the original circuits
with conventional power management scheme. It is in one hand
due to the effect of the reduced load capacitance mentioned above
and in the other hand due to the reduction of power consumption in
storage elements. Since the storage elements in each partition are
guaranteed not to change their values in consequent clocks, all the
storage elements can be implemented with latches without affecting
the behavior of the circuit.

Similar approach to reduce power consumption in storage

elements using latch is found in [2]. Some flip-flops in synthesized
circuits are replaced with latches after high-level synthesis. Since
latches are transparent during the clock is low (or high in positive

lifetime storage allocation timing diagram

level sensitive latches), the waveforms of the outputs of the storage
elements can be changed after replacement. So this approach tried
to find out the flip-flops that do not change the behavior of the
primary output ports when replaced with latches. Two basic
conditions for the flip-flops to be safely replaced with latches are
that they should not be read and written at the same clock cycle and
that they should not be connected to the primary output directly or
through combinational logic circuits. The first is because the
storage elements can make a combinational loop during transparent
operation when they are implemented with latches and the second
is because the primary output can be advanced half cycle earlier
after replacement than before replacement. Sometimes it is difficult
to find out the flip-flops that meet those conditions. In data-
dominated applications many storage elements have self-loops, i.e.
they can be read and written at the same time thus violate the
condition. In control-dominated circuits, an additional condition on
control data flow graph (CDFG) limits the substitution chance.
Another demerit of this scheme is that unnecessary signal
propagation during the latches are transparent can cause addition
power consumption in functional units. In control-dominated
circuits the power consumption in combinational logic generating
next input values of storage elements are not so great, but in data
dominated circuits, this power consumption cannot be ignored.

In contrast with the above approaches that tries to reduce the

power consumption in storage units, there are other power
management schemes to minimize the power consumption in
functional units with the sacrifice in storage unit area. Among those,
perfect power management scheme in [3] shows most noticeable
results with negligible overhead. The key idea of perfect power
management is to allocate storage units so that all functional units
connected to each storage elements generate useful outputs. It is
done by extending the lifetime of each variable until all next time
input variables of the corresponding functional unit are available.
This method can perfectly eliminate the spurious operation of all
functional units but its lifetime modification causes increase in the
number of registers. The area increased by the added registers is
not so critical, but the power consumption in storage elements is
comparable to that of the combinational parts in many circuits. So
it gives more chance to reduce power consumption.

With all these in mind, we proposed an allocation scheme that

allows all the storage elements to be implemented in latches while
minimizing the spurious operations in functional units so that we
can achieve low power architecture.

III. MOTIVATING EXAMPLE
Data flow graph in Fig. 1 will be used as an example in this

section. Seven variables and three operations are there. Assume that
scheduling and functional unit allocation is already done. Three
operations will in executed in consequent control steps (S1, S2, S3)
and the number in each node represents the number of functional
units to execute the operations.

Fig. 2 shows the lifetime of each variable, storage allocation
result of left edge algorithm and timing diagram of the final circuit,
for original and two modified version of lifetimes. In Fig. 2 (a),
only two storage elements are required according to the left edge
algorithm. All the storage elements are implemented with positive
edge triggered flip-flops and none can be replaced with latches; for
R1 which stores a, h, i, k, the destination variable and source
variable of the operation are assigned to same storage element (a
and h for FU1 and h and i for FU2 are assigned to R1) and for R2
which stores b, c , j, the storage elements is written at the

consequent control steps— replacing the flip-flop with a latch in
this case causes the output value of the functional unit change
before that value is transferred to the storage element.

Fig. 1. Example data flow graph: variable names are attached along edges,
the kind of operations are represented with numbers inside the nodes and
control steps are notified on the right side.

In Fig. 2(b) lifetimes are modified a little bit to be able to use

latches as storage elements. The death time of each variable is
extended one control step more to hold the value one more cycle
after the cycle it was last used. The timing diagram shows the
signal status when all storage elements are implemented with
negative level sensitive latches. Assuming that all the primary
inputs and control signals are available from the negative edge of
the clock signal, we can assert that all values will be available
before the next negative edge of the clock causing no glitch at the
positive edge of the clock.

Shaded region of the timing diagram represents spurious

operation of functional units. In Fig. 2(a), functional units evaluate
8 times in total and 5 of them are unnecessary evaluation caused by
the sharing non-relevant variables in one register.
Many of them are eliminated in Fig. 2(b) since sharing is avoided
by extending lifetimes of variables. Further extending the lifetime
of variable h and c, we can remove all spurious functional unit
operation with the sacrifice of one more storage element as in Fig.
2(c).

As we can see in the example, with some modification in the
lifetimes of variables, it is possible to synthesis circuits so that all
storage elements can be implemented with latches and spurious
operation of the functional units can be minimized. In next section,
we will describe how to modify the lifetime to incorporate above
features.

a b h c i j k
a
R1 R2

b

h

i

k

c

j

a b h c i j k

a

L1 L2

b

h

i
k

c

j

L3 L4

a b h c i j k

a

L1 L2

b

h
i

k

c
j

L3 L4 L5

R1

s1 s2 s3 s4 s5

FU1

R2

FU2

a

b

h

j

a,b

a,b

h,c

h,c j,ki,j

i k

c

i,j i,k

L1

FU1

L2

FU2

a

a,b

h,c j,k

i,j

L3

L4

h

k

i

b j

c

L1

FU1

L2

FU2

a

a,b

h,c

i,j

L3

L4

h

i

b j

c

L5 k

(a)

(b)

(c)

Fig. 2. Storage allocation results of left edge algorithm and timing diagrams
of the final circuits for three different lifetimes

IV. PROPOSED METHOD
The condition for a storage element to be safely implemented

with a latch is that it should not change the output value until one
more extra cycle after its death time. Two contrasting situations are
depicted in Fig. 3. Fig. 3(a) shows the case when the two variables
(a and b) are allocated to one register so that the register changes
its value as soon as the death time of the assigned variable arrives.
In the first row labeled Reg, the output waveform of a register
implemented in a flip-flop is shown. At the first cycle the register
holds variable a, and the functional unit FU1 begins evaluation
from the positive edge of the clock and after a mean time output is
stabilized. At the next cycle, the FU1 output is transferred to
another register x, and at the same time the register holds new
variable b since the death time of the variable a arrived. In this case
the flip-flop cannot be replaced with a latch since the latch may
change its output before the relevant functiona l units transfer their
results to the other storage elements.

Fig. 3(b) shows the case when the two variables are allocated
to one register so that the register changes its value only after one
extra cycle since the death time of the assigned variable. In this
case the storage element satisfies the replacement condition.

aReg

FU1 FU1(a)

b

x x

aLat

FU1

b

aReg

FU1 FU1(a)

x

aLat b

b

x

(a) (b)

aReg

FU1 FU1(a)

b

x x

aLat

FU1

b

aReg

FU1 FU1(a)

x

aLat b

b

x

(a) (b)
Fig. 3. Condition for safe replacement of a flip-flop with a latch

This scheme can be applied to any high-level synthesis system
with small modification in lifetime of variables with the following
equation. V means the set of all variables in source description and
td(vi) and td’(vi) means death time and modified death time of the
variable vi.

td’(vi) = td(vi) + 1, for ? vi ? V (1)

Every flip-flop can be replaced with latch after the lifetime
modification. The replacement results in the reduction of overall
circuit area and power consumption. However, for the circuit in
which the functional unit power consumption is comparable to the
consumption in storage units, latch replacement can cause
additional power consumption in functional units since the latch
output changes value twice in one clock cycle; once at the positive
edge of the clock and once during the clock is low. This increase in
functional unit power consumption can be kept minimum with the
help of technique in [3]. The key idea is to allocate storage units so
that all functional units connected to each storage elements
generate useful outputs. By extending the lifetime of each variable
further to meet the following condition, the spurious operation in
functional unit can be minimized.

td’(vi) = max{ td(vi) + 1, max vj ? NEXT(vi){ tb(vj) } } (2)

In the expression, operator NEXT (vi) means a set of variables that
was used as the next operands of the functional unit processing vi
and tb (vj) means birth time of variable vj. The experimental results
will be mentioned in the next section.

V. EXPERIMENTS & RESULTS
We experimented our scheme for two HLSynth92

benchmarks[4] , DIFFEQ and ELLIPF. DIFFEQ is a differential
equation solver example and ELLIPF is an elliptical filter example.
These benchmarks are given also with suitable test vectors. Fig. 4
shows the procedure used in our experiment. In the first step, input
behavior code described in simple VHDL-like code is read in and
data flow graph (DFG) is constructed. In the next steps, given the
resource constraints, scheduling is done with ASAP algorithm and
the functional units are allocated with the appearance order in the
source description. Since the proposed scheme is only related with
the storage allocation step of high-level synthesis, we didn’t make
much effort on scheduling and functional unit allocation step. In
the forth and the fifth steps, the lifetime of each variable is
analyzed and modified with the equations in the previous section.
With the modified lifetime minimum number of storage units are
allocated using left-edge algorithm. After all these, RTL description
in Verilog HDL is generated using latches, multiplexers and
functional units such as adder, multiplier as building blocks.

Resource Constrained
Scheduling

Functional Unit
Allocation

Life-time Analysis
and Modification

Storage Allocation by
Left Edge Algorithm

DFG Generation

Verilog RTL Generation

Synthesis with Synopsys

Power Estimation
with PowerMill

Fig. 4. The experiment procedure

Generated RTL code is synthesized using Synopsys Design
Compiler for 0.65um standard cell library. After gate level
simulation for the synthesized design, the power consumption is
estimated using Epic PowerMill. The test vectors supplied with the
benchmarks are used for the gate level simulation and power
estimation.

0

1000

2000

3000

4000

5000

6000

7000

8000

1m1a1a 2m1a1s 3m1a1s 2a 3a 4a

Circuits

P
o

w
er

 C
o

n
su

m
p

ti
o

n
(u

A
)

Original

PPM

Latch

PPM+Latch

Fig. 5. Power consumption: The first three circuits are DIFFEQ and the next
three circuits are ELLIP in HLSynth92 benchmark

Fig. 5 shows the power simulation results of the two
HLSynth92 benchmark circuits for different resource constraints.
The first three circuits are DIFFEQ example synthesized with

different number of multipliers; one, two and three multipliers each.
The last three circuits are ELLIP example with two, three and four
adders. The bar graphs tagged ‘Original’ represents the circuit with
simple clock gating power management scheme. The next bars
tagged ‘PPM’ represents the circuit with perfect power
management scheme applied. All the storage elements in Original
and PPM are implemented with flip-flops. In the third and forth
bars tagged ‘Latch’ and ‘PPM+Latch’, the storage elements are
implemented with latches by applying Equation (1) and Equation
(2) respectively. In DIFFEQ example, the three low power schemes
gradually decrease power consumption. But in ELLIP example
where storage power consumption is dominant as we can see in
Table 1, PPM scheme increases power consumption by using more
storage elements than the original circuit. In any cases circuit
implementation with latches consumes less power compared to the
circuit with other power management schemes. In Fig. 6, the areas
of the synthesized circuits including the estimated interconnection
area are shown. Since the number of storage elements is increases
when we use latches, the overall area is not so much reduces. When
storage elements are more dominant than the functional units as in
ELLIP example, the area may be increased on the contrary.

0

2000

4000

6000

8000

10000

12000

14000

1m1a1a 2m1a1s 3m1a1s 2a 3a 4a

Circuits

A
re

a(
eq

u
iv

al
en

t g
at

e
co

u
n

t)

Original

PPM

Latch

PPM+Latch

Fig. 6. Area of synthesized circuits

VI. CONCLUSION
In this paper, we proposed a storage allocation method to

enable the storage element being implemented with latch. In
general, latch implementation of the circuits requires two phase
clocking scheme to correctly pass variables to the next storage
elements in consequent operation of the two storage elements. In
the proposed scheme, all the storage elements can be implemented
with latches using single clock scheme, since the lifetime of
variables are modified to guarantee that the variables are valid until
it is safely passed to the next storage elements. Since the lifetimes
of the variables are slightly modified, the proposed scheme can be
applied to any high-level synthesis systems.

According to our experiments, the proposed scheme is equally
helpful either when the storage unit power is dominant or when the
functional unit power is dominant, contrary to the perfect power
management that is useful only when functional unit power is
dominant. The power consumption in proposed low power scheme
using latch is reduced to 39 ~ 65% of the power consumption in the
circuit with simple power management by clock gating.

Table 1

AREA AND POWER CONSUMPTION OF BENCHMARK CIRCUITS FOR EACH LOW
POWER SCHEME

Circuits Resources LowPowerScheme Area(GC) Power(uA) StoragePower(uA)
Original 6710 3760 1823

PPM 6557 2984 1714
Latch 6621 2278 985

PPM+Latch 6536 2139 971
Original 9288 4817 1996

PPM 9759 3619 2182
Latch 9328 3361 1235

PPM+Latch 9559 2561 1170
Original 11645 6060 1927

PPM 12622 2984 1714
Latch 11973 2278 985

PPM+Latch 12283 2139 971
Original 7793 5159 4207

PPM 8125 5570 4626
Latch 7710 2972 2154

PPM+Latch 7710 2925 2129
Original 8772 5905 4675

PPM 9384 6584 5451
Latch 9004 3594 2478

PPM+Latch 8882 3491 2460
Original 8849 6063 4673

PPM 10267 7151 6022
Latch 9448 3710 2482

PPM+Latch 9440 3702 2541

DIFFEQ

ELLIP

1m1a1s

2m1a1s

3m1a1s

2adder

3adder

4adder

REFERENCES
[1] A Multiple Clocking Scheme for Low-Power RTL Design,Christos

A. Papachristou, Mehrdad Nourani, and Mark Spining, IEEE
TVLSI, VOL. 7, NO. 2, JUNE 1999

[2] Storage Optimization by Replacing Some Flip-Flops with Latches,
Tsung-Yi Wu, Youn-Long Lin, EDAC-96

[3] Power Management in High-Level Synthesis, Ganesh
Lakshminarayana, Anand Raghunathan, Niraj K. Jha, Sujit Dey,
TVLSI March 99

[4] “Benchmarks for the 6th International Workshop on High-Level
Synthesis,” ftp://ics.uci.edu, 1992

[5] Module Assignment for Low Power, Jui-Ming Chang and Massoud
Pedram, EDAC-96

[6] Register Allocation and Binding for Low Power, Jui-Ming Chang
and Massoud Pedram, DAC-95

[7] SCALP: An Iterative-Improvement-Based Low-Power Data Path
Synthesis System, Anand Raghunathan and Niraj K. Jha, TCAD
November 1997

[8] 0.65um Cell Based Library Databook, LG Semicon, 1995

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

