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Abstract – High-level synthesis using latches has many 
merits in power, area and even in speed. But latches cannot be 
read and written at the same time and usually requires two-
phase non-overlapping clock that is unpleasant choice for 
short-term design. In this paper we propose a storage allocation 
method that makes it possible to use latches as storage elements 
in single clocking scheme. The proposed method modifies the 
lifetime of variables slightly so that it can be applied to any 
high-level synthesis systems with small modification. The 
experimental results show 39 ~ 65% reduction in power 
consumption within almost same area compared to the 
conventional power management scheme using clock gating. 

 

I. INTRODUCTION 
High-level synthesis (HLS) has been intensively researched 

for the productivity of VLSI design, and many high-level synthesis 
systems have been introduced. It has been shown that HLS tools 
are especially good choice for specific application domains such as 
digital signal processing (DSP) circuits or control-dominated 
circuits. These application areas usually require low power-
consumption for its mobile characteristics. There were many 
approaches in high-level synthesis to reduce the power 
consumption of the generated circuit. In [5][6] functional unit 
allocation and storage unit allocation algorithms to minimize the 
switching activity of the nets are introduced. Various low power 
techniques are applied iteratively based on the switched 
capacitance calculation in [7]. In [3] inputs of functional units are 
suitably controlled by changing storage allocation so that functional 
units can execute only necessary operations. All these schemes 
assumes flip-flops as storage elements for several reasons. First, 
using flip-flops is easy to think and to apply algorithms since flip-
flops can be read and written at the same time. Second, use of 
latches usually requires two phase clocking scheme which 
designers are not pond of.  

But power consumption of latches is about one third smaller 
than that of flip-flops and area is also about one third smaller than 
flip-flop[8]. In addition, the smaller clock capacitance in latch can 
reduce further power consumption in clock tree. Since much of 
power consumption in recent chips are due to the clock tree, using 
latches in high level synthesis of data path will be very beneficial in 
power point of view. There were some approaches to use latches 
instead of flip-flops to get these merits. One example in [1] showed 
up to 50% power saving by using latches. But using multiple-
clocking scheme is very unpleasant choice for chip designers. In 
[2], storage elements implemented with flip-flops are replaced with 
latches if the input/output behavior of the circuit is not affected. It 
showed good results for control-dominated circuits, but in data-
dominated circuits not many of the storage elements meets the 

conditions for substitution and the change in the waveform of 
internal signals may cause increase in functional unit power 
consumption. 

With these in mind we will propose a storage allocation 
method considering the latch-based storage element 
implementation with single clocking scheme. This paper is 
organized as follows: Section II describes previous approaches in 
more detail and Section III gives motivating example showing the 
possibility of power reduction using latches. Section IV described 
the binding algorithm used in our approach. Some excremental 
results are showed and analyzed in Section V and conclusion is 
made in Section VI. 

II. PREVIOUS WORKS 
In [1] , circuits are partitioned into n sub-networks so that the 

storage elements of each partition can be activated at n distinct time 
step and each partition is clocked by n non-overlapping clock of 
frequency of f/n, where f is the operating frequency of the circuit 
before partitioning. With this architecture, area can be increased in 
some degree since registers and functional units cannot be shared 
by different partitions, but the power consumption can be reduced 
since the sum of power consumption in each partition is usually 
smaller than that of the original circuit for the reduced load 
capacitance.  

One more rationale for the power reduction in that architecture 
is the reduced operating frequency. Reduced frequency means 
smaller signal transition. But this is true only when the power 
management scheme is not applied to the original circuits i.e. all 
storage elements are clocked at every clock cycle. If power 
management scheme is applied to the original circuits, the storage 
elements change their values only when new values hvae to be 
updated by using gated clock or input multiplexers. The minimal 
required number of value change is not determined by the 
architecture but by the algorithm and a simple power management 
scheme guarantees that minimal required transition in the storage 
elements. So the transition number of the storage element in the 
partitioned circuit is not smaller than that of the original circuits.  

In spite of this, the simulation results show that the partitioned 
circuits consume smaller power than that of the original circuits 
with conventional power management scheme. It is in one hand 
due to the effect of the reduced load capacitance mentioned above 
and in the other hand due to the reduction of power consumption in 
storage elements. Since the storage elements in each partition are 
guaranteed not to change their values in consequent clocks, all the 
storage elements can be implemented with latches without affecting 
the behavior of the circuit. 

 
Similar approach to reduce power consumption in storage 

elements using latch is found in [2]. Some flip-flops in synthesized 
circuits are replaced with latches after high-level synthesis. Since 
latches are transparent during the clock is low (or high in positive 
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level sensitive latches), the waveforms of the outputs of the storage 
elements can be changed after replacement. So this approach tried 
to find out the flip-flops that do not change the behavior of the 
primary output ports when replaced with latches. Two basic 
conditions for the flip-flops to be safely replaced with latches are 
that they should not be read and written at the same clock cycle and 
that they should not be connected to the primary output directly or 
through combinational logic circuits. The first is because the 
storage elements can make a combinational loop during transparent 
operation when they are implemented with latches and the second 
is because the primary output can be advanced half cycle earlier 
after replacement than before replacement. Sometimes it is difficult 
to find out the flip-flops that meet those conditions. In data-
dominated applications many storage elements have self-loops, i.e. 
they can be read and written at the same time thus violate the 
condition. In control-dominated circuits, an additional condition on 
control data flow graph (CDFG) limits the substitution chance. 
Another demerit of this scheme is that unnecessary signal 
propagation during the latches are transparent can cause addition 
power consumption in functional units. In control-dominated 
circuits the power consumption in combinational logic generating 
next input values of storage elements are not so great, but in data 
dominated circuits, this power consumption cannot be ignored. 

 
In contrast with the above approaches that tries to reduce the 

power consumption in storage units, there are other power 
management schemes to minimize the power consumption in 
functional units with the sacrifice in storage unit area. Among those, 
perfect power management scheme in [3] shows most noticeable  
results with negligible overhead. The key idea of perfect power 
management is to allocate storage units so that all functional units 
connected to each storage elements generate useful outputs. It is 
done by extending the lifetime of each variable until all next time 
input variables of the corresponding functional unit are available. 
This method can perfectly eliminate the spurious operation of all 
functional units but its lifetime modification causes increase in the 
number of registers. The area increased by the added registers is 
not so critical, but the power consumption in storage elements is 
comparable to that of the combinational parts in many circuits. So 
it gives more chance to reduce power consumption. 

 
With all these in mind, we proposed an allocation scheme that 

allows all the storage elements to be implemented in latches while 
minimizing the spurious operations in functional units so that we 
can achieve low power architecture.  

III. MOTIVATING EXAMPLE 
Data flow graph in Fig. 1 will be used as an example in this 

section. Seven variables and three operations are there. Assume that 
scheduling and functional unit allocation is already done. Three 
operations will in executed in consequent control steps (S1, S2, S3) 
and the number in each node represents the number of functional 
units to execute the operations.  
 

Fig. 2 shows the lifetime of each variable, storage allocation 
result of left edge algorithm and timing diagram of the final circuit, 
for original and two modified version of lifetimes. In Fig. 2 (a), 
only two storage elements are required according to the left edge 
algorithm. All the storage elements are implemented with positive 
edge triggered flip-flops and none can be replaced with latches; for 
R1 which stores a, h, i, k, the destination variable and source 
variable of the operation are assigned to same storage element (a 
and h for FU1 and h and i for FU2 are assigned to R1) and for R2 
which stores b, c , j, the storage elements is written at the 

consequent control steps— replacing the flip-flop with a latch in 
this case causes the output value of the functional unit change 
before that value is transferred to the storage element.  

 

 
Fig. 1. Example data flow graph: variable names are attached along edges, 
the kind of operations are represented with numbers inside the nodes and 
control steps are notified on the right side. 

 
In Fig. 2(b) lifetimes are modified a little bit to be able to use 

latches as storage elements. The death time of each variable is 
extended one control step more to hold the value one more cycle 
after the cycle it was last used. The timing diagram shows the 
signal status when all storage elements are implemented with 
negative level sensitive latches. Assuming that all the primary 
inputs and control signals are available from the negative edge of 
the clock signal, we can assert that all values will be available 
before the next negative edge of the clock causing no glitch at the 
positive edge of the clock. 

 
Shaded region of the timing diagram represents spurious 

operation of functional units. In Fig. 2(a), functional units evaluate 
8 times in total and 5 of them are unnecessary evaluation caused by 
the sharing non-relevant variables in one register. 
Many of them are eliminated in Fig. 2(b) since sharing is avoided 
by extending lifetimes of variables. Further extending the lifetime 
of variable h and c, we can remove all spurious functional unit 
operation with the sacrifice of one more storage element as in Fig. 
2(c). 
 

As we can see in the example, with some modification in the 
lifetimes of variables, it is possible to synthesis circuits so that all 
storage elements can be implemented with latches and spurious 
operation of the functional units can be minimized. In next section, 
we will describe how to modify the lifetime to incorporate above 
features. 
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Fig. 2. Storage allocation results of left edge algorithm and timing diagrams 
of the final circuits for three different lifetimes 

 



IV. PROPOSED METHOD 
The condition for a storage element to be safely implemented 

with a latch is that it should not change the output value until one 
more extra cycle after its death time. Two contrasting situations are 
depicted in Fig.  3. Fig.  3(a) shows the case when the two variables 
(a and b) are allocated to one register so that the register changes 
its value as soon as the death time of the assigned variable arrives. 
In the first row labeled Reg, the output waveform of a register 
implemented in a flip-flop is shown. At the first cycle the register 
holds variable a, and the functional unit FU1 begins evaluation 
from the positive edge of the clock and after a mean time output is 
stabilized. At the next cycle, the FU1 output is transferred to 
another register x, and at the same time the register holds new 
variable b since the death time of the variable a arrived. In this case 
the flip-flop cannot be replaced with a latch since the latch may 
change its output before the relevant functiona l units transfer their 
results to the other storage elements.  

Fig.  3(b) shows the case when the two variables are allocated 
to one register so that the register changes its value only after one 
extra cycle since the death time of the assigned variable. In this 
case the storage element satisfies the replacement condition. 
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Fig.  3. Condition for safe replacement of a flip-flop with a latch 

This scheme can be applied to any high-level synthesis system 
with small modification in lifetime of variables with the following 
equation. V means the set of all variables in source description and 
td(vi) and td’(vi) means death time and modified death time of the 
variable vi. 

td’(vi) = td(vi) + 1, for ? vi ? V   (1) 

Every flip-flop can be replaced with latch after the lifetime 
modification. The replacement results in the reduction of overall 
circuit area and power consumption. However, for the circuit in 
which the functional unit power consumption is comparable to the 
consumption in storage units, latch replacement can cause 
additional power consumption in functional units since the latch 
output changes value twice in one clock cycle; once at the positive 
edge of the clock and once during the clock is low. This increase in 
functional unit power consumption can be kept minimum with the 
help of technique in [3]. The key idea is to allocate storage units so 
that all functional units connected to each storage elements 
generate useful outputs. By extending the lifetime of each variable 
further to meet the following condition, the spurious operation in 
functional unit can be minimized. 

td’(vi) = max{ td(vi) + 1, max vj ?  NEXT(vi){ tb( vj ) } }     (2) 

In the expression, operator NEXT (vi) means a set of variables that 
was used as the next operands of the functional unit processing vi  
and tb ( vj ) means birth time of variable vj. The experimental results 
will be mentioned in the next section. 

V. EXPERIMENTS & RESULTS 
We experimented our scheme for two HLSynth92 

benchmarks[4] , DIFFEQ and ELLIPF. DIFFEQ is a differential 
equation solver example and ELLIPF is an elliptical filter example. 
These benchmarks are given also with suitable test vectors. Fig. 4 
shows the procedure used in our experiment. In the first step, input 
behavior code described in simple VHDL-like code is read in and 
data flow graph (DFG) is constructed. In the next steps, given the 
resource constraints, scheduling is done with ASAP algorithm and 
the functional units are allocated with the appearance order in the 
source description. Since the proposed scheme is only related with 
the storage allocation step of high-level synthesis, we didn’t make 
much effort on scheduling and functional unit allocation step. In 
the forth and the fifth steps, the lifetime of each variable is 
analyzed and modified with the equations in the previous section. 
With the modified lifetime minimum number of storage units are 
allocated using left-edge algorithm. After all these, RTL description 
in Verilog HDL is generated using latches, multiplexers and 
functional units such as adder, multiplier as building blocks. 

 

Resource Constrained
Scheduling

Functional Unit
Allocation

Life-time Analysis
and Modification

Storage Allocation by
Left Edge Algorithm

DFG Generation

Verilog RTL Generation

Synthesis with Synopsys

Power Estimation
with PowerMill  

Fig. 4. The experiment procedure 

Generated RTL code is synthesized using Synopsys Design 
Compiler for 0.65um standard cell library. After gate level 
simulation for the synthesized design, the power consumption is 
estimated using Epic PowerMill. The test vectors supplied with the 
benchmarks are used for the gate level simulation and power 
estimation. 
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Fig. 5. Power consumption: The first three circuits are DIFFEQ and the next 
three circuits are ELLIP in HLSynth92 benchmark 

Fig. 5 shows the power simulation results of the two 
HLSynth92 benchmark circuits for different resource constraints. 
The first three circuits are DIFFEQ example synthesized with 



different number of multipliers; one, two and three multipliers each.  
The last three circuits are ELLIP example with two, three and four 
adders. The bar graphs tagged ‘Original’ represents the circuit with 
simple clock gating power management scheme. The next bars 
tagged ‘PPM’ represents the circuit with perfect power 
management scheme applied. All the storage elements in Original 
and PPM are implemented with flip-flops. In the third and forth 
bars tagged ‘Latch’ and ‘PPM+Latch’, the storage elements are 
implemented with latches by applying Equation (1) and Equation 
(2) respectively. In DIFFEQ example, the three low power schemes 
gradually decrease power consumption. But in ELLIP example 
where storage power consumption is dominant as we can see in 
Table 1, PPM scheme increases power consumption by using more 
storage elements than the original circuit. In any cases circuit 
implementation with latches consumes less power compared to the 
circuit with other power management schemes. In Fig. 6, the areas 
of the synthesized circuits including the estimated interconnection 
area are shown. Since the number of storage elements is increases 
when we use latches, the overall area is not so much reduces. When 
storage elements are more dominant than the functional units as in 
ELLIP example, the area may be increased on the contrary.  
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Fig. 6. Area of synthesized circuits  

 

VI. CONCLUSION 
In this paper, we proposed a storage allocation method to 

enable the storage element being implemented with latch. In 
general, latch implementation of the circuits requires two phase 
clocking scheme to correctly pass variables to the next storage 
elements in consequent operation of the two storage elements. In 
the proposed scheme, all the storage elements can be implemented 
with latches using single clock scheme, since the lifetime of 
variables are modified to guarantee that the variables are valid until 
it is safely passed to the next storage elements. Since the lifetimes 
of the variables are slightly modified, the proposed scheme can be 
applied to any high-level synthesis systems.  

According to our experiments, the proposed scheme is equally 
helpful either when the storage unit power is dominant or when the 
functional unit power is dominant, contrary to the perfect power 
management that is useful only when functional unit power is 
dominant. The power consumption in proposed low power scheme 
using latch is reduced to 39 ~ 65% of the power consumption in the 
circuit with simple power management by clock gating. 
 

Table 1  

AREA AND POWER CONSUMPTION OF BENCHMARK CIRCUITS FOR EACH LOW 
POWER SCHEME 

Circuits Resources LowPowerScheme Area(GC) Power(uA) StoragePower(uA)
Original 6710 3760 1823

PPM 6557 2984 1714
Latch 6621 2278 985

PPM+Latch 6536 2139 971
Original 9288 4817 1996

PPM 9759 3619 2182
Latch 9328 3361 1235

PPM+Latch 9559 2561 1170
Original 11645 6060 1927

PPM 12622 2984 1714
Latch 11973 2278 985

PPM+Latch 12283 2139 971
Original 7793 5159 4207

PPM 8125 5570 4626
Latch 7710 2972 2154

PPM+Latch 7710 2925 2129
Original 8772 5905 4675

PPM 9384 6584 5451
Latch 9004 3594 2478

PPM+Latch 8882 3491 2460
Original 8849 6063 4673

PPM 10267 7151 6022
Latch 9448 3710 2482

PPM+Latch 9440 3702 2541

DIFFEQ

ELLIP

1m1a1s

2m1a1s

3m1a1s

2adder

3adder

4adder
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