
Mapping Array Communication onto FIFO Communication -
Towards an Implementation

Jeffrey Kang Albert van der Werf Paul Lippens
Philips Research Laboratories

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Jeffrey.Kang@philips.com Albert.van.der.Werf@philips.com Paul.Lippens@philips.com

Abstract

In high-throughput real-time media processing systems,
the communication between processing units is typically
specified as multi-dimensional arrays. However, the imple-
mentation of such applications is mostly FIFO-based. Map-
ping array communication onto a FIFO-based implementa-
tion requires complex address generators if the arrays have
multiple dimensions. In this paper, we present a method
for mapping array communication onto an efficient micro-
computer architecture implementation based on FIFO com-
munication via shared memory. A good hardware/software
partitioning for the address generation is proposed. Fur-
thermore, a complete design flow from specification to im-
plementation is described. We illustrate this method with a
design case: the communication of video frames between
the frontend and the compressor in an MPEG encoder.

1. Introduction

Contemporary signal processing ICs are becoming more
and more complex; the ever decreasing feature size and in-
creasing level of integration allow more functionality to be
integrated on one chip. Such a complex system consists
of many functional blocks (e.g. encoders and decoders),
which operate independently and in parallel and yet syn-
chronize with each other by data communication. In media
processing systems, such communication is mostly stream-
oriented, where an array (for example of video pixels) is
filled by a producer, which is then emptied by a consumer
(a stream model can be found in [10]). This can be viewed
as writing to and reading from a shared memory. For the
remainder of this paper we will assume that communication
between producer and consumer goes via shared memory.

An example of array-based communication can be found
in the PHIDEO technology [5] [8]. PHIDEO is a high-level
hardware synthesis design methodology, and supports the

complete design flow starting from a high-level specifica-
tion all the way down to layout1. It is mainly targeted to-
wards high-throughput applications such as video process-
ing. PHIDEO’s model of computation is based on exchang-
ing multi-dimensional arrays between processing units; the
implementation is based on a single controller which syn-
chronizes all communication. The motivation for introduc-
ing multi-dimensional arrays is that in most Digital Signal
Processing (DSP) applications, (nested) loops play an im-
portant role [5]. They originate from the repetitive nature
of DSP applications, and the way they are specified. For
example, in a given video application a certain operation
may be repeated for all pixels in a macroblock, and then for
all macroblocks in a frame. In this case, there is a three-
dimensional loop which iterates over frames, within frames
over macroblocks, and within macroblocks over pixels. Es-
pecially for high-throughput applications, the loop hierar-
chy is important since parallel execution of loops is required
for optimal implementations.

In media processing architectures, FIFO-based com-
munication is preferred as implementation model. These
FIFOs buffer data from the producers while the consumers
are emptying them. In this way the processing of the pro-
ducer and consumer can be detached and they can operate
in parallel. The communication between them is thus asyn-
chronous. Furthermore, in order to explicitly expose paral-
lelism, such applications are often modeled as a network of
parallel processes [7], which communicate via FIFO chan-
nels.

Mapping array-based communication onto FIFO-based
communication requires complex address generators on
both the producer and consumer sides, especially when the
array is multi-dimensional, and hence many iterators are in-
volved in the calculation of the physical memory addresses
of the array elements. The problem addressed in this paper
is therefore: how to come to an efficient hardware/software

1To be exact, PHIDEO supports the design flow down to RTL level, but
its output is such that other tools for generating the netlist and layout can
easily take over from there



implementation of array-based communication via shared
memory using FIFOs.

This paper is structured as follows: in Section 2, we dis-
cuss the difference between synchronous array-based com-
munication (as in PHIDEO) and asynchronous FIFO-based
communication. Section 3 describes our method to come
from a specification of array-based communication to an
implementation of FIFO-based communication. Section 4
illustrates this method with a case study. In Section 5, the
design flow from a high-level specification to a hardware
architecture implementation is described. Section 6 shows
some experimental results for different FIFO implementa-
tions. Section 7 presents the conclusions.

2. Synchronous versus asynchronous commu-
nication

The communication controller model of PHIDEO is
shown in Figure 1. The producer and consumer communi-
cate via a shared memory. Each has its own Address Gener-
ator (AG) to generate memory addresses. A controller syn-
chronizes the communication between both processes. We
can see that the communication is highly synchronous: the
timing of the producer and consumer is tightly bound by the
controller. This has the disadvantage that they cannot really
operate independently. Furthermore, the exact schedule has
to be determined at compile-time, which increases the com-
plexity of the compiler. Consequently, the PHIDEO model
can best be applied for high-throughput processing within a
task. To achieve true task-level parallelism, a different kind
of model is needed.

AG

Producer ConsumerArray

Memory

Producer Consumer

Controller

AG

Figure 1. PHIDEO controller model for array-
based communication.

In a media processing system, the following aspects of
real-time video processing applications are important:

� Video applications require fast computation on large
amounts of data. Thus a high level of parallelism in

processing and communication is essential (task-level
parallelism).

� Compared to the data processing rate, the control deci-
sions are taken with a much lower frequency.

� Each processing unit in the processing chain may have
its own latency or even its own clock domain. There-
fore, the execution schedule cannot be determined stat-
ically, because the timing relations between these pro-
cessing units are not known in advance.

Considering these aspects, a data-driven model is most suit-
able. The communication is asynchronous and the schedule
is dynamically determined based on data/space availability.
The Kahn process network model [7] is such a model for
asynchronous communication. In this model, the applica-
tions are represented as directed graphs, in which the nodes
are the processes and the edges represent the communica-
tion channels between them. Kahn process networks as-
sume channels of unlimited capacity. This means that write
operations to a channel are never blocked due to channel
overflow. However, read operations can be blocked because
of an empty input channel.

Video applications are often mapped onto Kahn process
networks. The data-flow consisting of a number of inde-
pendent processing tasks is mapped onto the nodes of the
directed graph. The communication of data is asynchronous
and is based on packets of arbitrary size, which are buffered
in the edges. These queues maintain the order in which the
packets arrive, and can be implemented with FIFO buffers.
Of course, in a real system, the channel capacity is limited,
thus the Kahn model has to be modified. In order to prevent
channel overflow, also the writes have to be blocked if the
output channel is full. This modification does not jeopar-
dize the validity of the Kahn model, see [4]. Several tools
have been developed to model Kahn process networks, an
example can be found in [3]. The strength of FIFOs is that
they are a good step towards implementation, however they
are too limited for the specification of an application.

3. From specification to implementation

We have observed that many real-time processing appli-
cations have specifications given in terms of array commu-
nication, while their implementation is based on FIFO com-
munication. This section presents a method for mapping
array-based onto FIFO-based communication in an efficient
way. We will use the example of MPEG video [6] commu-
nication to explain the basic principles.

The communication of a video frame between two pro-
cesses can be completely specified by means of multi-
dimensional arrays. For sake of simplicity, we choose the
macroblock (16�16 pixels) to be the smallest unit of data.
This leads to the following array expression:



mblocks[t][i][f][s][l][m]

The iterators and their ranges for a PAL image are shown
below:

ITERATORS RANGE

t time 0..oo (infinity)
i frame (in group) 0..2
f field 0..1
s stripe 0..35
l line 0..7
m macroblock 0..44

The time iterator corresponds with the outer loop which
repeats forever. The remaining iterators represent the units
of data into which a video stream may be decomposed. A
different decomposition may be chosen, resulting in more or
fewer iterators, however this is not important for this exam-
ple. Figure 2 shows an example of indexing a macroblock

frame: 0
time: 199

(100, 100)

frame: 2
time: 200 time: 200

frame: 1
x

y

time

(720, 0)(0, 0)

(0, 576) (720, 576)

Figure 2. Indexing a particular macroblock.

in a particular frame: a macroblock in the first frame of a
group of pictures within time unit 200, within which a pixel
with coordinates (100, 100) resides, is expressed as:

mblocks[200][0][0][6][2][6]

The filling and emptying of the array by the producer
and consumer is described as by nested loop as given by the
pseudo-code below:

Producer:
for t = 0 to oo do
for i = 0 to 2 do

for f = 0 to 1 do
for s = 0 to 35 do
for l = 0 to 7 do

for m = 0 to 44 do
put mblocks[t][i][f][s][l][m];

end for
end for

end for
end for

end for
end for

Consumer:
for t = 0 to oo do

for i = 0 to 2 do
for f = 0 to 1 do

for s = 0 to 35 do
for m = 0 to 44 do
for l = 0 to 7 do

get mblocks[t][i][f][s][l][m];
end for

end for
end for

end for
end for

end for

Note that the loop nesting structure of the producer may
differ from that of the consumer, depending on their spec-
ified functionality. For example, the producer may process
the video data line- and field-wise, while the consumer does
this macroblock- and frame-wise. This is one of the reasons
to have multiple dimensions.

Assuming communication via shared memory, we need
a scheme to transform the array indices into memory ad-
dresses. The address expression for a particular macroblock
looks as follows:

mb_addr(t,i,f,s,l,m) = (T*t + I*i + F*f +
S*s + L*l + M*m) mod K

In the above expression, the capital letters represent the off-
set contribution to the address of each iterator. The factor K
indicates the size of the allocated memory. This expression
specifies the memory map of the video frame.

To ensure that data is actually produced prior to being
consumed, some kind of synchronization functionality be-
tween the producer and consumer is needed. We prefer not
to use the PHIDEO controller model shown in Figure 1, be-
cause as mentioned before, no true task-level parallelism
can be achieved in that way. An alternative solution is to
use tokens for synchronization. They are passed between
the producer and consumer via token FIFOs (not to be con-
fused with data FIFOs as referred to in high-level models).
This is illustrated in Figure 3. Note that the controller is dis-
tributed over the tasks instead of centralized. In this way the
producer and consumer are not strictly bound and can op-
eratate independently. The status of the FIFO (full/empty)
plays an important role for the synchronization.

In the communication model shown in Figure 1, the ad-
dress generators in the producer and consumer have to com-
pute an address for each macroblock using the above ex-
pression. This may make them very complex, especially
if the number of array dimensions grows. This makes the
design and especially the verification difficult, because due
to the large state space of the address generation hardware,
long simulations have to be run before all the states have
been traversed (this can be up to several frame periods) and



FIFO

FIFO

Producer Consumer

Memory

Producer Consumer

Tokens AGAG

full emptyController Controller

Figure 3. FIFO communication model with to-
ken FIFO and distributed controller for syn-
chronization.

verified. In order to reduce the complexity of the address
generators, we apply a method called index splitting. The
addressing of the array is split into a higher level address
generation (with higher level iterators) and a lower level ad-
dress generation. In general, a split can be done at arbitrary
level. This choice depends on the grain size at which the
synchronization is done.

For instance, if we apply index splitting at stripe level
(higher iterators are f and s, lower iterators are l and m),
then we get the following address expression:

mb_addr(t,i,f,s,l,m) = base_addr +
L*l + M*m

Where:

base_addr = (T*t + I*i + F*f + S*s) mod K

Looking at the above expression, we can distinguish two
different parts:

1. A base address, which was obtained after index split-
ting at stripe level.

2. An offset (given by L*l + M*m), which calculates
addresses using the iterators l and m to determine the
exact locations of the individual macroblocks in mem-
ory.

Note that with the above definition of the base address, K
has to be chosen as a multiple of the stripe size, otherwise
the offset may cause the modulo operation to wrap around
to the beginning of the allocated memory block.

We now make a hardware/software partitioning of the
address generation. The base addresses can be calculated
once in software at startup. These addresses can be attached
to the synchronization tokens and passed between the pro-
ducer and consumer. The offset part of the address expres-
sion has to be computed by the address generators within

the producer and consumer. It can be seen that the number
of iterators used has decreased, hereby reducing the com-
plexity of the address generators.

Figure 4 shows the complete FIFO-based communica-
tion model. The address generators in the producer and
consumer are smaller than before due to the mentioned op-
timization. The synchronization of the data communication
is done via a token FIFO. The base addresses are passed
between the processes along with the tokens, and the off-
sets are calculated by the address generators to obtain the
actual memory locations of the macroblocks. After being
consumed, these base addresses can be returned to the pro-
ducer via a return FIFO, so that the memory blocks they
refer to can be reused. The interaction between the FIFOs
and the controllers are not depicted here.

AG AG

FIFO

FIFO

Tokens + base addresses

Memory

Producer Consumer

Controller Controller

Figure 4. FIFO communication model with re-
cycling of memory blocks.

The approach as has been described in this section has
several advantages. They are listed below:

� Figure 4 shows that we have separate data communica-
tion and synchronization channels. Assuming commu-
nication via shared memory and busses, the data mem-
ory and the token memory can be separated over dif-
ferent busses and memories. This reduces the load on
these (often scarce) resources. And because the token
memory is small (each token is in our case a 32-bit
address word), it can be implemented on-chip for fast
access.

� Some processes do not actually perform any process-
ing on the data, but rather just consume them and out-
put them in a different order, e.g. reshuffling of video
frames. In a straightforward implementation, this pro-
cess would copy the input data and buffer them for re-
ordering before sending the data to its consumer. This
is extremely inefficient for the bandwidth considering
that no processing is done on the data itself. In our
solution, only the base addresses are copied and re-
ordered, and their bandwidth demand is relatively low.

� In some applications a process may have multiple con-
sumers (multi-cast). Rather than maintaining multiple
copies for all consumers, only the base addresses are
copied, again reducing the amount of copying. Since



there are also multiple return FIFOs for each base ad-
dress, a mechanism is needed to check whether a par-
ticular base address has already been consumed, be-
fore it may be reused. A solution for this problem is to
add a reference counter to each token, which is set to
the number of consumers. We will not go into further
detail here.

� During hardware/software partitioning of the address
generation, the base address can be calculated by soft-
ware and put into the return channel at boot-time. Note
that the software has a lot of freedom in this, since this
is a memory allocation problem. The address offsets
are calculated at run-time by hardware within DMA
(Direct Memory Access) blocks. This address genera-
tion hardware is less complex because a part has been
taken over by software. This makes it easier to design
and verify.

In the following sections, we will illustrate the princi-
ples explained here with a small case study. We will start
from a high-level specification with array communication
and derive an implementation with FIFO communication.
Furthermore, we will perform hardware/software partition-
ing and present an architecture onto which this application
can be mapped.

4. Case study: MPEG encoder’s frontend-
compressor communication

We have applied the method described in the previ-
ous section to a case taken from an MPEG-2 video en-
coder [1] [11]. The signal path of MPEG encoding can
be roughly partitioned into a frontend, a compressor and a
backend as shown in Figure 5. Each of these parts is a pro-
cess which communicates with other processes via buffers.
The input and output buffers handle the communication be-
tween the frontend, compressor and backend, and an ad-
ditional buffer is used to store reference frames which are
needed for compression.

frames

Frontend CompressorInput
buffer buffer

Output Backend

Reference

Figure 5. The signal path for MPEG video en-
coding partitioned into processes communi-
cating via buffers.

In our case study, we concentrated on the communication
between the frontend and the compressor. The input buffer

also performs some reshuffling of the incoming frames (this
is part of the MPEG standard for IPB GOPs [6]); in this
sense it is not strictly a FIFO.

CompressorFrontend Shuffler

Figure 6. Frontend-compressor communica-
tion modeled as a Kahn process network.

When modeling this communication as a Kahn process
network, we can distinguish three different processes: fron-
tend, shuffler, and compressor, and they communicate via
FIFO channels (see Figure 6). The shuffling of the frames
by the shuffler can be specified as:

for t = 1 to oo do
get mblocks[t][0];
get mblocks[t][1]; put mblocks[t][0];
get mblocks[t][2]; put mblocks[t-1][1];

put mblocks[t-1][2];
end for

The lower iterators have been omitted here to keep the
code clear. It can be seen that the shuffling is specified by
simply manipulating the iterator t. This is one of the ad-
vantages of multi-dimensional arrays.

We have decided to perform the index splitting at stripe
level. It has been chosen because at lower levels, the syn-
chronization overhead becomes high because synchroniza-
tion tokens have to be sent more often. For larger synchro-
nization grains, the required input buffer size becomes too
large as shown in Table 1.

Grain size Compression Input buffer size
(no. of frames)

Frame Frame based 4
Field based 4

Field Frame based 4
Field based 3

Stripe Frame based 2.5 + 3 stripes
Field based 2 + 3 stripes

Table 1. Required input buffer size for various
synchronization grains.

The resulting FIFO-based communication model is
shown in Figure 7 (address generators and controllers have
been omitted). Figure 7(a) shows the result of the straight-
forward application of the techniques explained in the previ-
ous section. This implementation involves a lot of needless
copying, because the shuffler does nothing with the data.



Figure 7(b) shows the optimized solution. The shuffler shuf-
fles the addresses instead of the actual data. This optimiza-
tion is only possible because we have split synchronization
from communication. Initially, a number of base addresses
are calculated and stored in the return FIFO. Note that this
number must be at least equal to the one indicated in Ta-
ble 1, otherwise deadlock will occur. The frontend writes
the stripes into the memory and sends the base addresses of
those stripes to the shuffler. The shuffler reorders the ad-
dresses and sends them to the compressor. It only needs
the higher level iterators. The compressor reads the stripes
starting from the received base addresses and returns these
to the frontend for memory recycling.

addresses

Frontend Shuffler Compressor

Memory

(a)

Frontend Shuffler Compressor

Memory

(b)

addresses
Tokens + base

Tokens + base

Figure 7. Frontend-compressor communica-
tion by passing base addresses: (a) straight-
forward, (b) optimized.

5. Design flow

This section describes the design flow to map the
frontend-compressor communication onto a microcomputer
architecture. The used architecture template, as well as a
more detailed example of the design flow, can be found
in [2].

At the starting point of the design flow, the application
was modeled with a C-language description. An API (Ap-
plication Programmer’s Interface) has been provided, which
handles the processes’ read and write operations on the
channels. At this level, the simulation was purely func-
tional, without any link to the architectural implementation.

Next, the processes were mapped onto abstract proces-
sors (with this we mean that only the functionality is con-
tained in these processors; no choice has yet been made

about mapping onto hardware or software) and the commu-
nication was verified. Here we used a cycle-based architec-
ture simulation tool to capture and simulate the hardware
architecture. The architecture models used in this simula-
tors are written in ANSI-C. The target hardware architecture
is a heterogeneous multi-processor architecture consisting
of both dedicated hardware components and general pur-
pose processors, which communicate via shared memory
and busses. In this step, the intended processing devices are
still abstract processors, in the sense that their functionality
is still implemented using the C-code of the previous step.
The communication infrastructure (e.g. busses and memo-
ries) is modeled in a cycle-accurate way. An interface block
is used to connect the functional code of the abstract pro-
cessors to the communication infrastructure at architecture
simulator level. It is possible to annotate the functional code
with delay statements in order to model the latency of the
abstract processors. This level of simulation is used for ver-
ifying functional correctness, and to get a first estimate of
the real-time feasibility of the particular partitioning into
processes.

Further down the design flow, hardware/software parti-
tioning was done. For each task, it was decided either to
map it onto dedicated hardware, or to implement it in soft-
ware running on a general purpose processor (CPU). The
challenge here was to find a good balance between hard-
ware and software, in order to get to an optimal architecture
in terms of performance, power dissipation, and flexibility.
To this end, an instruction-set simulator for a CPU was in-
corporated in the simulation, on which the software tasks
were run. The functional code that should run on the CPU
was compiled using the compiler available for that proces-
sor. The hardware tasks were kept as abstract processors
and all was co-simulated. In our case, the frontend and
compressor were mapped onto hardware for performance
and power reasons, and the shuffler was mapped onto the
CPU to keep flexibility in the application (different shuf-
fling modes can be supported).

The resulting hardware architecture is depicted in Fig-
ure 8. The communication of tokens and video data are
split over two busses and memories. The CPU used is a
MIPS processor, on which the root task (for initialization)
and shuffler task are running. The frontend and compressor
are connected to both busses. The arbitration on the busses
is done by Bus Control Units (BCUs).

When the required performance is met, the hardware
models can be designed (in VHDL). During design, the la-
tency figures become more clear, and can be fed back to
the annotated delay statements in the abstract processors
for a more accurate simulation. The hardware blocks can
be designed and replace the abstract processors one by one,
and after each step co-simulated with the rest using the C-
VHDL interface provided by the simulator.



memory

Frontend Compressor

MIPS

Video
memory

BCU

BCU

MIPS +
token

Figure 8. The resulting hardware architecture.

6. Experimental results

We performed several simulations to evaluate the differ-
ent FIFO implementations described in this paper. The tar-
get architecture was the two-bus architecture shown in Fig-
ure 8, with a small difference that all blocks were kept as ab-
stract processors. The reason is that we were only interested
in comparing the communication overhead of the different
options and did not want to take into account the process-
ing delays. Therefore all tasks were assumed to have zero
delay. The communication, however, was simulated cycle-
accurately. Three FIFO implementations were examined:
1) passing synchronization tokens (Figure 3), 2) passing
base address tokens (Figure 7(a)), and 3) optimized pass-
ing of address tokens (Figure 7(b)). The simulations were
run for a period of four frames (1� shuffling). The results
are shown in Table 2.

Synchro. Address Addr. tokens
tokens tokens (optimized)

Total cycles 12,782,942 13,326,405 6,090,746
Token bus cycles 104,591 214,456 176,139
Data bus cycles 12,708,941 13,167,092 4,963,209

Table 2. Simulation results for different FIFO
implementations.

7. Conclusion

A method for efficiently mapping multi-dimensional ar-
ray communication onto an implementation using FIFO
communication via shared memory has been presented.
Multi-dimensional arrays make it easy to specify high-
throughput DSP applications. By manipulating the itera-
tors, we can define an optimal memory map for the applica-
tion and make use of index splitting in a very flexible way.

Index splitting can be used to separate the address genera-
tion into a base part that can be determined during startup
by software, and an offset part that is calculated by address
generation hardware at run-time. In this way, the address
generators can be kept simple to design and verify.

A FIFO communication model has been derived in
which data communication is separated from synchroniza-
tion with tokens. By attaching base addresses (obtained
after index splitting) to these tokens, we can avoid wast-
ing bandwidth due to unnecessary copy operations by pro-
cesses that do not perform any data processing. Further-
more, multi-cast can be implemented by copying the tokens,
not the data itself.

We have illustrated the proposed method with a case
study: the communication between the frontend and the
compressor in an MPEG encoder. Except for the physi-
cal hardware implementation, the complete design flow has
been described from top-level specification and simulation
down to a hardware architecture implementation.

References

[1] A. van der Werf et al. I.McIC: A single-chip MPEG2 video
encoder for storage. IEEE Journal of Solid-State Circuits,
32(11):1817–1823, November 1997.

[2] A.K. Nieuwland and P.E.R. Lippens. A heterogeneous HW-
SW architecture for hand-held multi-media terminals. 1998
IEEE Workshop on Signal Processing Systems, pages 113–
122, SiPS ’98.

[3] E.A. de Kock et al. YAPI: Application modeling for sig-
nal processing systems. Proceedings of the 37th Design Au-
tomation Conference, pages 402–405, June 2000.

[4] J.A.J. Leijten et al. Stream communication between real-
time tasks in a high-performance multi-processor. Proceed-
ings of DATE ’98, pages 125–131, February 1998.

[5] J.L. van Meerbergen et al. PHIDEO: high-level synthesis
for high-throughput applications. Journal of VLSI Signal
Processing, 9:89–104, 1995.

[6] Joan L. Mitchell, Didier Le Gall and Chad Fogg. MPEG
Video Compression Standard. Chapman & Hall, 1996.

[7] G. Kahn. The semantics of a simple language for parallel
programming. Proceedings of the IFIP Congress 74, 1974.

[8] P.E.R. Lippens et al. Allocation of multiport memories
for hierarchical data streams. Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 728–
735, 1993.

[9] W.F.J. Verhaegh et al. Modelling periodicity by PHIDEO

streams. Proceedings of the Sixth International Workshop
on High Level Synthesis, pages 256–266, November 1992.

[10] W.F.J. Verhaegh et al. Multidimensional periodic schedul-
ing: model and complexity. Proceedings of the Euro-Par,
II:226–235, 1996.

[11] W.H.A. Brüls et al. A low-cost audio/video single-chip
MPEG2 encoder for consumer video storage applications.
Proceedings of the International Conference on Consumer
Electronics (ICCE), pages 314–315, June 2000.


	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index


