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Abstract

This paper addresses the problem of estimating lower
bounds on the power consumption in scheduled data flow
graphs with a fixed number of allocated resources prior to
binding. The estimated bound takes into account the
effects of resource sharing. It is shown that by introducing
Lagrangian multipliers and relaxing the low power bind-
ing problem to the Assignment Problem, which can be
solved in , a tight and fast computable bound is
achievable. Experimental results show the good quality of
the bound. In most cases, deviations smaller than 5% from
the optimal binding were observed. The proposed tech-
nique can for example be applied in branch and bound
high-level synthesis algorithms for efficient pruning of the
design space. The estimated lower bound can also be used
as a starting point for low power binding heuristics to find
optimal or near optimal binding solutions.

1. Introduction

For most problems in high-level synthesis (HLS) no poly-
nomial time algorithms are known [1]. In order to find
optimal or near optimal solutions for this class of prob-
lems strategies like branch and bound are applied. A
branch and bound algorithm traces a decision tree whose
leaves represent all possible solutions. Design decisions
are made at each internal node while the leaves of the sub-
tree rooted at an internal node are the solutions due to that
decision. Given a best solution found during execution of
the branch and bound algorithm, a subtree can be pruned if
a lower bound estimate of the cost function of all solutions
of the subtree is higher than the cost of the current best
solution. Tight and fast computable lower bounds there-
fore improve the run time requirements of such algo-
rithms.

†This work has been funded by the Commission of the European
Community as part of the ESPRIT IV programme under contract no.
26796.

This paper addresses the problem of lower bound
estimates for low power HLS and related applications. In
particular, a lower bound estimation procedure for the
power consumption of datapath resources, i.e. registers
and functional units (FUs) like adders and multipliers, in
scheduled data flow graphs (DFGs) with resource con-
straints for a given input data stream is given. In the
assumed design flow the binding of operations and vari-
ables to functional units and registers respectively follows
allocation and scheduling. This is a typical flow if, for
example, resource constrained scheduling is performed.
Conditional branches and loops within a DFG are not con-
sidered here. Different bindings produce most probably
different datapath activities due to the varying data multi-
plexing schemes if resources are shared.

The lower bound estimation procedure is not
restricted to a specific power cost function of the datapath
resources. In this paper we apply two different power met-
rics: The average Hamming distance of consecutive input
vectors (switching activity for short) and a characteriza-
tion based RTL power model [5]. Most HLS for low power
algorithms use the switching activity at the inputs of data-
path resources or simple functions thereof as a cost func-
tion of the power consumption of the design [2,3,4]. The
switching activity is a good indicator of the power require-
ments and often the only power indicating information
available at the higher levels of abstraction as considered
here. Accurate RTL power models can be applied in case
the resource types (e.g. a CLA scheme for adders etc.) are
fixed prior to the binding step [6,7].

The remainder of the paper is organized as follows:
section 2 describes the relation of our approach to previous
work. In section 3 the representation and calculation of the
power cost information is introduced. The new lower
bound estimation procedure is presented in section 4. Sec-
tion 5 shows experimental results and conclusions are
drawn in section 6.

2. Previous Work

Lower bound estimation (LBE) techniques are often
applied to guide HLS. As examples, the authors of [8]
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present procedures to estimate lower bounds on the
resource requirements from a given DFG with a perfor-
mance goal. In [9] a technique is described that estimates a
lower bound on the performance of schedules from a DFG
with resource constraints. To the best of our knowledge,
LBE techniques for low power at the higher levels of
abstraction are first addressed in [10]. Lower and upper
bound estimation procedures are given for scheduled
DFGs without resource constraints. This paper extends the
work of [10] by improving the bounds if the number of
resources is constrained.

Some researchers have addressed HLS for low power
problems that are closely related to our work. In [2] the
problem of binding the n variables of a DFG to m registers
under the constraint of minimum switching activity at the
register inputs is formulated as a max-cost network flow
problem. The problem can be solved in . The
drawback of this approach, however, is that inter-iteration
switching activity cannot be considered. Inter-iteration
activity is defined as the switching activity resulting from
successive executions of the DFG. For instance, let:

• , , be the value of the binary variable
 at iteration  of the DFG,

•  be the concatenation of the binary variables  and
,

•  be the Hamming distance between the values
of variables  and .

Suppose that operations +1 and +3 of the DFG depicted in
Fig. 1 are bound to the same adder. One part of the switch-
ing activity at the inputs of the adder is:

, (intra-iteration activity),

where  is the length of the input stream. The inter-itera-
tion part is defined as:

,

e.g. the switching from the values of iteration  to the new
ones of iteration .

The same authors investigate the problem of binding
operations to a fixed number of resources in a functionally
pipelined DFG taking inter-iteration effects into account
[3]. Due to the inter-iteration constraint the problem can
only be transformed to a max-cost multi-commodity net-
work flow problem which is in general not solvable in
polynomial time. An integer linear program (ILP) for the
problem of binding n operations/variables to m functional
units/registers is formulated in [6]. The inter-iteration
effects are considered but no polynomial time algorithm
for solving the ILP is given.

3. Power Cost Function

The power cost function is stored in matrices in order to
take all input data correlations into account. Its calculation
follows the approach described in [10] that originates from
the work presented in [2,3,6]. A square power cost matrix
(PCM) for the variables and for each operation type
present in the DFG (e.g. addition, subtraction, multiplica-
tion, etc.) is defined. We first describe the formal definition
of the PCM if switching activity is used as a metric.
In the sequel, we only deal with operations. Variables can
be handled in the same way. We index the n operations of
one operation type according to the execution order of the
given schedule. Operations scheduled into the same c-step
are called incompatible and are indexed arbitrary.

Switching activity information about operation  is
stored in column and row  of the PCM of the correspond-
ing operation type. An entry ,
is set to infinity ( ) if operations  and  are exe-
cuted in the same c-step and therefore cannot share a
resource. Otherwise if  (i.e.  is executed before

), the entry stores the average Hamming distance
between the input vectors of operations  and  from
the same iteration (intra-iteration activity). If ,

 is set to the average Hamming distance
between the inputs of  from iteration t and the inputs
of  from iteration  (inter-iteration activity). The
elements on the main diagonal  store the activ-
ity at the inputs of operation , e.g. the activity at the
inputs of a FU if only  is bound to it. Formally:

with:

•  the concatenation of the input vectors of opera-
tion  in iteration t of the DFG, and

• T the total number of vectors in the input data stream,
e.g. the number of iterations of the DFG.
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Figure 1. DFG with operation and variable order.
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For example, the average switching activity per DFG itera-
tion at the inputs of a resource with operations

 mapped onto it in that order can now be
computed by  [6].
The Hamming distances can be computed by simulating
the DFG with the input stream or by using statistical tech-
niques as for example proposed in [2,3]. Note that two
dimensions suffice to store all necessary information.

If we use a more accurate power model as a cost
metric, the terms  in (3.1)
above are replace by the estimated power consumption for
the corresponding resource type and the multiplexed input
data streams of the specified operations  and

.

4. Binding for Low Power with Resource
Constraints

4.1. Problem formulation

For a given operation type we define the low power
binding problem with resource constraints as follows:

Given a power cost matrix  of n
scheduled operations . Which is the minimum
power consumption of the resources if these n operations
are bound to m resources.

An equivalent problem can be stated for binding
variables to  registers. There are

possibilities to map  operations onto  resources if all
 operations are compatible. The proof is omitted due to

space limits. For example, there are more than
combinations to map 20 operations onto 4 resources.

The low power binding problem with resource con-
straints can be expressed as a graph problem by defining
an arc labeled directed graph  with

the set of nodes (one node for each
operation) and  the set of arcs. Each arc

 is labeled with a weight
. The optimization problem is then to

cover all nodes with exactly  (node disjoint) cycles with
minimum total cost under the constraint that each cycle
contains exactly one backward arc, e.g. an arc
with . The total cost is the sum of the arc weights of
all cycles. Each cycle of a solution to this problem repre-
sents one resource while the nodes of a cycle are the oper-
ations bound to it. A possible solution of the optimization
problem with four operations and two resources is
depicted in Fig. 2.  and  are the two
backward arcs.

The constraint that each cycle ,
 must have exactly one backward arc reflects

the precedence constraints of the operations within the
schedule of the DFG. Inter-iteration switching activity
(  in this case) can only occur after all opera-
tions  are executed in one iteration of the
DFG on one resource. Loops  represent
resources with exactly one operation  bound to it.

Note that as a by-product, minimizing power based
on reducing switching input bits of datapath resources also
reduces power in the multiplexers. This is because output
activity of multiplexers (which is the input activity of the
resources) is a good power model for multiplexers [16].

4.2. Bounding the solution space

We first repeat Theorem 4.1 without proof from [10]
which defines a lower bound on the power consumption of
the low power allocation and binding problem, i.e. the
binding problem without resource constraints:

Theorem 4.1 A solution of the integer linear program

subject to

provides a lower bound of the low power binding problem
(without resource constraints) with power cost matrix

.
In this ILP, the (binary) variable  is associated with arc

. The solutions to the ILP describe node disjoint
cycles covering all nodes.  equals 1 in a solution if and
only if the corresponding arc belongs to a cycle, otherwise
the variable is zero. The n constraints (4.1.A) guarantee
that there is exactly one arc incident from node  while
constraints (4.1.B) insure that exactly one arc leaves node

. However, it is not guaranteed that the precedence
constraints are fulfilled. Hence a solution to the ILP deliv-
ers only a lower bound  on the switching activity and not
necessarily the minimum.
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Figure 2. Possible solution of a low power
binding problem with resource constraints by
covering operation nodes with cycles.
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The precedence constraints are excluded because oth-
erwise the ILP would not be solvable in polynomial time
[6]. As stated in [10] the ILP of Theorem 4.1 can be effi-
ciently solved by the Hungarian Method in
because it describes the Assignment Problem [11].

The following ILP improves the lower bound of The-
orem 4.1 with additional constraints on the number of
resources:

Theorem 4.2 A solution of the integer linear program

subject to

provides a lower bound of the low power binding problem
with m resources and power cost matrix

.
Proof: Constraints 4.2.A and 4.2.B are identical to the con-
straints 4.1.A and 4.1.B respectively and guarantee that all
nodes are covered by node-disjoint cycles. 4.2.C insures
that exactly  backward arcs are included in a solution of
the ILP. However, no constraints exist that forces each
cycle to have exactly one backward arc which is a neces-
sary condition of the low power binding problem with
resource constraints. The ILP is therefore a relaxation of
the original problem and a solution provides a lower
bound q.e.d.

As an example, assume that 6 operations must be
bound to 3 resources. A possible solution of Theorem 4.2
which also represents a legal binding would be 3 cycles:

,  and .
 and  are bound to the first resource, and so on.

Note that the precedence constraints are fulfilled in each
cycle. Another solution of Theorem 4.2 which is not a
legal binding could be:  and

. This solution consists of only 2 cycles
wit a total of 3 backward arcs. However, the first cycle has
2 backward arcs  and . The first cycle
therefore violates the precedence constraints.

Instead of solving the ILP of Theorem 4.2 directly, a
polynomial time bounded approach is proposed which
approximates the ILP based on Lagrangian Relaxation
[12], i.e. the original binding problem is relaxed two
times. Lagrangian Relaxation explores the fact that for a
given ILP  of the general form

with w and x vectors of dimension , b being a vector of
dimension , and d being a vector of dimension . The
set of constraints is partitioned into two sub-sets. A and B
are matrices with conformable dimensions describing
these two sub-sets.

In Lagrangian Relaxation, a vector y of multipliers is
defined and one of the two constraints sub-sets, say

, is moved into the objective function by adding
the term  :

 is called vector of Lagrangian multipliers. The
motivation for doing this is that the modified ILP  is
easier to solve.

A solution of  provides a lower bound for
for all values of . This property follows because all feasi-
ble solutions of  are also feasible for  with the
same objective function value. In these cases, the term

 is zero because  is true. The solution
of  can become lower than the solution of  if

 is negative. The best lower bound is found by
maximizing , i.e. solving:

The function  is not differentiable but piecewise lin-
ear and concave. Therefore, a gradient cannot be com-
puted. However, the maximization can be performed with
subgradient maximization [14].  is subgradient of  at

 iff  for all . It can be shown
that if  minimizes  for some  than  is a
subgradient of . The subgradient method iteratively
solves  at points:

where  is a subgradient of  at  and  is a suitable
step width in that direction ( ). The
Lagrangian multipliers are adapted until the solutions con-
verge to the maximum. Convergence can be guaranteed if
the step width  is reduced according to
and  [14].

Applying the Lagrangian method to the ILP of Theo-
rem 4.2 by relaxing 4.2.C delivers:
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subject to 4.2.A and 4.2.B.  can again be solved by
the Hungarian Method in  with the objective func-
tion  and subtracting the constant
afterwards. Note the similarity to the ILP of Theorem 4.1.
The subgradient at iteration  is  if

 is the minimizer of , i.e. the number of back-
ward arcs of the solution minus the number of resources.

Fulfilling the conditions  and
 might result in very slow convergence

rates. An approximation is used throughout the experi-
ments instead by dropping the condition .
The sequence

is a widely used formula [12] where U is a simple upper
bound of  and  is a constant which is peri-
odically decreased. We use a simple patching heuristic to
estimate U. See [13] for details.

Since we are only interested in an approximation of
the solution from below, we perform the iterations only a
fixed maximum number of times. This guarantees that the
method has polynomial complexity.

5. Experimental Results

The experiments were performed on 3 benchmarks inves-
tigating the binding of additions and multiplications: a one
dimensional FDCT [15] as a part of a 2D-FDCT with cor-
related input data of 3 different images I1, I2, and I3 (13
additions and 16 multiplications), a low pass image filter
(LPF) applied to the same 3 input images (8 additions,
multiplications are not needed), and the Elliptic Wave Fil-
ter (EWF) HLS benchmark as specified in [16] with modi-
fied coefficient set and a speech signal as input (10
additions and 12 multiplications).

Table 1 shows the deviations of the computed lower
bounds from the best binding using the switching activity
cost function for a sequential schedule of the FDCT
benchmark, i.e. only one addition/multiplication per c-
step, depending on the number of allocated resources. The
trivial cases of  and  are not considered (the
first is trivial due to the precedence constraints of the oper-
ations). The best bindings were found by exhaustive
search. The deviations are clearly below 2% for the addi-
tion operations while for the constant multiplications, the
deviation increases in a few cases up to 13.4%. The largest
deviations occur if the number of available resources
equals about half the number of operations. In these cases,
the solution space of the binding problem is largest. The

ILP of Theorem 4.2 is approximated without significant
error by the proposed Lagrangian Relaxation in all experi-
ments. The deviations therefore result from the relaxation
of the precedence constraints of the binding problem by
the ILP of Theorem 4.2.

Table 2 presents the results of the same analysis for
the low pass filter and the EWF benchmark. The devia-
tions are below 5% in these experiments. In Table 3 the
deviations averaged over all resource constraints between
the lower bounds and the best bindings are shown if a
more accurate power model is applied as a cost function
[5]. For comparison, the average deviations for the switch-
ing activity cost function are also reported. The results
show that the proposed technique delivers tight bounds
also for this cost metric.

In order to measure the cpu time requirements, we
generated larger PCMs with random contents. For

 and  with 10
Lagrange iterations each, the proposed technique required
0.2 s and 8.1 s, respectively (Ultra-Sparc 10, 300 MHz).
Solving the ILP of Theorem 4.2 directly with a fast ILP
solver [17] took 2.2 s and 101.5 s, respectively. The pro-
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Table 1.  Deviation of lower bound from best
binding in % for sequential schedule of additions
and multiplications (FDCT) with switching activity

PCM.

# res. Additions Multiplications

I1 I2 I3 I1 I2 I3

2 0 0 0.2 0 0 0

3 0 0 1.4 0 0 0

4 0.3 0 0 1.9 2.0 2.3

5 0 1.0 0 4.6 3.3 5.1

6 0 0.6 0 6.5 4.4 6.8

7 0.1 1.0 0.3 9.2 5.2 9.2

8 1.3 1.3 0.3 10.1 6.5 12.9

9 0 0 0 9.5 6.2 13.4

10 0 0 0.1 8.1 4.9 12.1

11 0.3 0 0.5 6.7 3.3 9.3

12 0.4 0 0.7 5.9 2.7 7.7

13 - - - 4.5 2.0 5.6

14 - - - 3.1 1.3 3.8

15 - - - 1.5 0.6 2.0

n 60 m, 5= = n 200 m, 20= =



posed technique is for these cases more than 10 times
faster than solving the ILP directly. For comparison:
exhaustive search was only feasible upto . It
required more than 8 hours to find the optimal binding for

.

6. Conclusion

This paper presented a fast estimation technique that pro-
vides tight lower bounds on the power consumption of
datapath resources for a given schedule with resource con-
straints. The low power binding problem under resource
constraints was formulated and relaxed to the Assignment
Problem with Lagrangian multipliers. A few number of
iterations suffice to achieve estimates that are very close to
the best possible solution.

The proposed technique can be applied in HLS to
reduce the power consumption in datapath components.
Typical applications are branch and bound based algo-
rithms or binding heuristics which transform a lower
bound solution into a constraint satisfying binding with an
additional optimization step.

Future work will be devoted to extend the presented
approach to handle multi-functional units and conditional
execution of operations in branches and loops.
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Table 2.  Deviation in % for sequential schedule
of operations of LPF and EWF benchmarks with

switching activity PCM.

# res. LPF
I1

LPF
I2

LPF
I3

EWF
ADD

EWF
MUL

2 0 0 1.0 0.4 0

3 0 0 3.1 0.7 0

4 0 0 0 0.7 2.1

5 0 0 0 0.7 2.6

6 0 0 0 0.6 4.0

7 0.1 0.1 0 0.7 4.1

8 - - - 0.4 3.3

9 - - - 0.4 0.6

10 - - - - 0

11 - - - - 0

Table 3.  Deviation of lower bound from best
binding in %, averaged over all possible resource

constraints.

switching
activity

power
model

LPF add 0.2 0.4

FDCT
add 0.3 0.4

mul 4.9 0.6

EWF
add 0.6 0.5

mul 1.7 0.3

n 16=

n 16 m, 8= =
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