
Run-Time HW/SW Codesign for Discrete Event Systems
Using Dynamically Reconfigurable Architectures*

Juanjo Noguera Rosa M. Badia
Univ. Autònoma de Barcelona, SPAIN

e-mail: juanjo@cnm.es
Univ. Politècnica de Catalunya, SPAIN

e-mail:rosab@ac.upc.es

* This work has been funded by CICYT-TIC project TIC-98-0410-CO2-01. Authors acknowledge ALTERA support within its

Programmable Hardware Development program.

Abstract

HW/SW codesign and Reconfigurable Computing are
commonly used methodologies for digital systems design.
However, no previous work has been carried out in order
to define a run-time HW/SW codesign methodology for
dynamically reconfigurable architectures. Besides, all
previous approaches to reconfigurable computing context
scheduling are based on static scheduling techniques.

In this paper we present a run-time HW/SW codesign
methodology for discrete event systems using dynamically
reconfigurable architectures and a dynamic approach to
reconfigurable computing multi-context scheduling. We
have applied our methodology to software acceleration,
and present the obtained results.

1. Introduction and motivation

There are a great number of approaches to HW/SW
codesign of embedded systems, which use different
techniques for partitioning and scheduling. Partitioning
and scheduling techniques can be differentiated in several
ways. For instance, partitioning can be classified as fine-
grained (if it partitions the system specification at the
basic block level) or as coarse-grained (if system
specification is partitioned at the process or task level).
Also, HW/SW scheduling can be classified as static or
dynamic. A scheduling policy is said to be static when
tasks are executed in a fixed order determined offline, and
dynamic when the order of execution is decided online
Hardware and software tasks’ sequence can change
dynamically in complex embedded systems (ie. control-
dominated applications), since such systems often have to
operate under many different conditions. Although it has
been a lot of previous work in static HW/SW scheduling,
the dynamic scheduling problem in HW/SW codesign has
only been addressed in a few research efforts.

A strategy for mixed implementation of dynamic real-time
schedulers in hardware and software is presented in [9]. In
[1] a review of several approaches to control-dominated
and dataflow-dominated software scheduling, to determine
whether a given technique can satisfy deadlines,
throughput and other constraints, is presented.

Reconfigurable Computing (RC) is an interesting
alternative to ASICs and general-purpose processor
systems, since it provides the flexibility of software
processors and the efficiency and throughput of hardware
coprocessors. Thanks to the advents of new Dynamically
Reconfigurable Logic (DRL) devices, which are run-time
reconfigurable, new and exciting challenges are presented
to embedded systems designers. In order to achieve this
run-time reconfiguration, system specification (usually, a
tasks graph) must be partitioned into temporal exclusive
segments (called reconfiguration contexts). This process is
usually known as temporal partitioning, and it is one of
the challenges presented by DRL. The other challenge
presented by DRL is to find an execution order of a set of
tasks that meets system designs objectives (i.e. minimize
the total execution time), that is DRL context scheduling.
Several references can be found in the literature
addressing these problems, see [8] as an example. These
previous approaches address the problem of temporal
partitioning and DRL context scheduling, but they do not
address HW/SW partitioning. In [4] an integrated
algorithm for HW/SW partitioning and scheduling,
temporal partitioning and context scheduling is presented.

New approaches are possible because: (1) all existing
approaches to DRL context scheduling are based on static
scheduling techniques, and (2) no previous work has been
carried out in order to define a dynamic HW/SW codesign
methodology based on DRL devices. In this paper we
address these two open problems and present: (1) a novel
run-time HW/SW codesign methodology for dynamically
reconfigurable architectures and (2) a dynamic approach

to DRL multi-context scheduling.
The rest of the paper is organized as follows: Section 2

introduces the run-time HW/SW codesign methodology.
In section 3 we explain a list-based HW/SW partitioning
algorithm. Section 4 presents a dynamic DRL context
scheduling approach. In section 5, we apply our
methodology to the software acceleration of telecom
networks simulation, and give the obtained results.
Finally, section 6 presents the conclusions of this work.

2. HW/SW codesign for discrete event systems

Discrete Event (DE) systems design has been recently
addressed using HW/SW codesign techniques [6, 7, 11].
However, none of these approaches is based on DRL
devices as hardware platform. The proposed methodology
addresses the problem of run-time HW/SW codesign for
DE systems using an heterogeneous architecture that
contains a standard off-the-shelf processor and a DRL
based architecture. It is important to note that the proposed
methodology follows an object orientation paradigm.

2.1. Definitions

Def. 1: a Discrete Event Class is a concurrent process
type with a certain behavior, which is specified as a
function of the state variables and input events.

Def. 2: a Discrete Event Object is a concrete instance
of a DE class. Several DE objects from a single DE class
are possible. Given two DE objects (DEO1 and DEO2) they
may differ in the value of their state variables.

Def. 3: an Event E is a member of T × C × O × V
where C is a given set of DE classes, O a set of DE
objects, T a set of tags, T ∈ ℜ + (the real numbers) and V a
set of values. Tags are used to model time, and values
represent operands or results of event computation.

Def. 4: an Event Stream (ES) is a list of events
sequentially ordered by tag. Tags can represent, for
example, event occurrence or event deadline.

Def. 5: Discrete Event Functional Unit is a physical
component (i.e. DRL device or SW processor) where an
event e = (t, c1, o1, v1) can be executed. A functional unit
has an active pair (class, object), p = (ca, oa).

 Our methodology assumes that: (1) several DE classes
could be mapped into a single DE functional unit. (2) all
DE objects from a DE class are mapped into the same DE
functional unit where the DE class has been mapped.

Def. 6: an Object Switch is the mechanism that allows
a DE functional unit to change from one DE object to
another, both DE objects belonging to a same DE class.
For example, if an input event e = (t, c1, o1, v1) have to be
processed in a DE functional unit with an active pair p =
(c1, o2) then an object switch should be performed.

Def. 7: a Class Switch is the mechanism that allows a
DE functional unit to change from one DE class to
another. For example, if an input event e = (t, c1, o1, v1)
should be processed in a DE functional unit with an active
pair p = (c2, o2), then a class switch should be performed.

Class switch, in case of a DRL device, means a context
reconfiguration. Object switch means to change the values
of the state variables from the ones of a concrete DE
object (o1) to the others of another DE object (o2).

2.2. Run-time HW/SW codesign methodology

The proposed methodology is depicted in figure 1. It is
divided into three stages: Application Stage, Static Stage
and Dynamic Stage. The key points in our methodology
are: (1) application and dynamic stages handle DE classes
and objects, and (2) static stage only handles DE classes.

The application stage includes Discrete Event System
Specification and Design Constraints. We assume the use
of an homogenous modeling language for system
specification, where a set of independent DE classes must
be firstly modeled. Afterwards, these DE classes are used
to specify the entire system as a set of interrelated DE
objects, which communicate among them using events.
These DE objects are interrelated creating a concrete
topology. A DE object computation is activated upon the
arrival of an event. By design constraints we understand
any design requirement necessary when synthesizing the
design (ie. timing or area requirements).

The static stage includes typical phases of a codesign
methodology: (1) estimation, (2) HW/SW partitioning, (3)
HW and SW synthesis, and (4) extraction.

As stated, the static stage handles DE classes and the
system has been specified as a set of interrelated DE
objects, which are instances of also specified DE classes.
The final goals of the methodology’s extraction phase are,
for a given DE class, to obtain: (1) a list of all its instances

Application
Stage

Static
Stage

Dynamic
Stage

Design
Constraints

DE Class
Estimation

HW/SW Class
Partitioning

SW Synthesis

Discrete Event System
Specification

Discrete Event Class &
Object Extraction

HW Synthesis

HW/SW
Scheduling

DRL
Multi-Context
Scheduling

Figure 1. HW/SW codesign methodology.

(DE objects), and (2) a list of all different DE classes and
objects connected to it. Both lists are afterwards attached
to each DE class found in the system specification. Once
this phase has finished, DE classes can be viewed as a set
of independent processes or tasks.

We classify our HW/SW partitioning approach as
coarse-grained, since it works at the DE class level.
Different HW/SW partitioning algorithms can be applied
depending on the discrete event application to be solved.
The solution given by the partitioning algorithm should
meet design constraints. In section 3, we propose an
example of HW/SW partitioning algorithm.

Note that in our methodology, although addresses DRL
architectures, a temporal partitioning phase is not present.
The DE object/class extraction phase should be viewed as
the temporal partitioning. Indeed, the temporal partitioning
algorithm is included within our concept of DE class,
because DE classes are functionally independent tasks.

The estimation phase also deals with DE classes, and
used estimators depend on the application. Typically used
estimators (HW/SW execution time, DRL area, etc) can be
obtained using high-level synthesis and profiling tools.

The dynamic stage includes HW/SW Scheduling and
DRL Multi-Context Scheduling. Both schedulers base their
functionality on events present in the event stream. Our
methodology assumes that both of them are implemented
in hardware using a centralized control scheme. As it is
shown in figure 1, these scheduling policies (HW/SW and
DRL) co-operate and run in parallel during application
run-time execution, in order to meet system constraints
(i.e. minimize the total application execution time
parallelizing event executions with DRL reconfigurations).

The aim of the HW/SW scheduler is to decide at run-
time the execution order of the events stored in the event
stream, in order to meet system constraints. Diverse
policies could be implemented by the HW/SW scheduler
based on the final application requirements (ie. earliest
deadline first using or not of a pre-emptive technique).

In the other hand, the DRL multi-context scheduler
should be viewed as a tool used by the HW/SW scheduler.
A tool in the sense that its goal is to facilitate or minimise
the class switching mechanism to the HW/SW scheduler.
We assume that different DRL schedulers can be defined
depending on the application. In section 4, we present a
dynamic DRL multi-context scheduler as an example.

2.3. Target architecture

The target architecture is depicted in figure 2. It is an
architecture which comprises a software processor, a
DRL-based hardware architecture and shared memory
resources. The software processor is a uniprocessing
system and it can execute only one event at a time. The

DRL-based hardware co-processor can execute multiple
events concurrently. Hardware and software co-operate
(interact) via a DMA based memory sharing mechanism.

The DRL-based hardware co-processor architecture is
divided into: (1) HW/SW and DRL Multi-Context
Scheduler, (2) DRL array, (3) Object State memory, (4)
DRL Context memory and (5) Event Stream memory.

The HW/SW and DRL Multi-Context Scheduler must
implement functions associated to the dynamic stage of
our methodology, as explained above. Events get the
central scheduler through I/O ports or as a result of a
previous event computation. The Event Stream is stored in
the Event Stream memory. DRL contexts (which
correspond to several DE classes from an application) are
stored in the DRL Context memory. Finally, DE objects
states are stored into the Object State memory.

The DRL array communicates with these memories and
the central scheduler through several and functionally
independent busses (Object, Class and Event busses). We
assume that each DRL array element, named DRL cell, can
implement any DE class with a required area ≅ 20K gates.

The proposed DRL co-processor architecture is
scalable, and it is possible to implement any associative
mapping between DE objects/classes and DRL cells.
Please, note that this mapping is not only fixed by the
structure of the DRL Context memory. It also depends on
the structure of the Object State memory.

3. HW/SW partitioning algorithm

In this section, we present a resources (object and class
memory) constrained HW/SW partitioning algorithm as an
example for our methodology.

HW/SW & DRL
Multi-Context

Scheduler

DRLCell0 DRLCell1 DRLCellN

Object State
RAM

DRL Context
(Class) RAM

 Event Stream
RAM

CPU System RAM

 · · ·

DRL-based Hardware Co-processor Architecture

System Bus

Object Bus

Event Bus

Class Bus

 ·
 ·

 ·I/O0

I/OL

DRL Array

 Figure 2. DRL target architecture.

3.1. Problem statement

Lets consider a set of independent DE classes C = (C1,
C2, ..., CL), where each class, lets say Ci, is characterized
by a set of estimators Ei,

),,,(ii
SW

i
HW

ii DRLASVMWCETWCETE =
where:

� HW
iWCET stands for Worst Case Execution Time

for a hardware implementation of the DE class Ci.
� SW

iWCET stands for Worst Case Execution Time for

a software implementation of the DE class Ci.
� SVMi stands for State Variables Memory size

required by the class.
� DRLAi stands for DE class DRL required Area.

Lets also consider the design constraints to be object
memory and class (DRL context) memory constraints.
That is, the total object state memory is denoted by OSMA
(Object State Memory Available). CMA stands for the
total amount of Class Memory Available.

We state our problem as maximizing the number of DE
classes mapped to the DRL architecture while meeting
memory resources constraints and DRL cell available area.

),..|),(|
1

CMADRLAOSMASVMtsCMax j

M

j
j

HW ≤<∑
=

where:
� CHW is the set of DE classes mapped to hardware,

),...,,(21
HW
M

HWHWHW CCCC = , CC HW ⊆

3.2. List-based HW/SW partitioning algorithm

The proposed HW/SW algorithm is a list-based
partitioning algorithm. The algorithm maps more time
consuming DE classes to hardware, in order to minimize
the total execution time at run-time, which will be
responsibility of the HW/SW and DRL context scheduler.
Thus, the set of input DE classes must be sequentially
ordered and more time consuming DE classes should be
prioritized when mapping to hardware. This objective is
implemented using a cost function. For this example we
propose the following cost function, although other cost
functions could be applied.

i
SW

i
HW

ii SVMWCETWCETF ⋅+−⋅= βα)(

Indeed, this cost function prioresses DE classes with
significant difference in its HW and SW execution times.
We assume that lower values, as result of applying this
cost function, are better that higher values. So, our sort
function classifies values from lowest to highest.

The pseudo-code of the proposed HW/SW partitioning
algorithm is shown in figure 3. It obtains the initial
sequentially ordered list (PINITIAL) after the cost function has

been applied to all DE classes. Afterwards, the algorithm
performs a loop, and tries to map as many DE classes to
hardware as possible while memory and DRL area
constraints are met. AvailableResources() function is
responsible of design constraints checking. Mainly, it
checks that the current hardware partition plus DE class Ci

complies with design constraints.

4. Run-time DRL multi-context scheduler

In this section we present a run-time event-driven DRL
multi-context scheduler. The presented scheduler assumes
that the Event Stream is sorted. In this example, we also
assume that only the first event of the event stream is been
processed on a DE functional unit (DRL cell or CPU) at
the same time. Modifications of this scheduler are possible
in order to have several events being processed in parallel
within the target architecture.

The key idea of the scheduler is to minimize class
switching (DRL reconfiguration) overheads, in order to
minimize the total application execution time. This
objective is accomplished using a lookahead strategy into
the event stream memory (see figure 4). Event Window
(EW) describes the number of events that are observed in
advance and is left as a parameter of our scheduler.

From the DRL array state (that is, from the DE classes
that are active) and the event window, the DRL scheduler
must decide which DE class should be removed (replaced)
from the DRL array, and which DE must be loaded into.

HW/SW & DRL
Multi-Context

Scheduler

DRL0 DRL1 DRLN

DRL Context
(Class) RAM

 · · ·

Event Window (EW)

 · · · · · ·

Event Stream RAM

Figure 4. HW/SW & DRL dynamic scheduling.

ListBasedPartitioningAlgorithm(ED_Classes)
{
 PSW = { ø }; PHW = { ø };
 PINITIAL = Sort_DE_Classes_List (DE_Classes,
 FSORT);
 Ci = GetFirst(PINITIAL);
 for i = 2 to L loop
 if Ci.DRL_RequiredArea > DRL_Area then
 PSW = PSW U Get(Ci, PINITIAL);
 else
 if AvailableResources(Ci)) then

 PHW = PHW U Get(Ci, PINITIAL);
 else

 PSW = PSW U Get(Ci, PINITIAL);
 end if;
 end if;
 end loop;
}

Figure 3. List-based partitioning algorithm.

4.1. Multi-context scheduling algorithm

The pseudo-code for the dynamic DRL scheduling
algorithm is shown in figure 5. As stated above, this
scheduler depends on the size of the event window.

The basis for the behavior of the proposed DRL multi-
context scheduling algorithm is the use of the array
DRLArrayUtilization, which represents the expected state
(active DE classes or contexts) of the DRL array within
the event window. This array is obtained from the current
state of the DRL array and the event window, using the
function ObtainDRLArrayUtilization.

Afterwards the algorithm calculates the number of DRL
cells that will not be used within the event window
(variable K). These K DRL cells (if there is anyone) are
available for a class (context) switch. So, this is the first
condition that the algorithm checks.

If there are not any DRL cells available for a class
switch, the algorithm selects (to be replaced) the DRL cell
which has an active DE class that will be required latest.
The algorithm also selects a DE class to be placed as
active. The first DE class in the event stream which is not
active within the DRL array will be selected. Finally, it
performs the class switch with function DRL_Behavior().

On the other hand, if there are K DRL cells available
for a class switch, the algorithm enters into a loop that
goes through all the event window. If it finds a DE class
(associated with an event) which is not active within the
DRL array, the algorithm selects the first available DRL
cell to be set as active.

5. A case study: telecom networks simulation

It is widely accepted that software acceleration is an
important field which hardware/software codesign can
address. An example of this can be found in [5].

In this section, we explain a case study of software

acceleration of broadband telecom networks simulation.
With the emergence of new packet networks and gigabit-
per-second links, the network simulation community is
faced with new challenges. The capabilities of sequential
simulation techniques are inefficient to address such
simulation requirements, due to the several days-long
simulation execution time. Parallel computing [2] and
reconfigurable computing techniques [10] can be used for
simulation execution time improvement.

5.1. Introduction and simulation model

For our case study we have chosen the SONATA1

network [3]. It is a network based on the switchless
network concept. The "switchless" network concept is
based on a mixture of WDMA (Wavelength Division
Multiple Access) and TDMA (Time Division Multiple
Access) methods (see figure 6).

Note that the proposed simulation model has been left
to depend on a parameter, N. This parameter will be used
afterwards in order to perform several experiments to test
and obtain results from applying our methodology.

The key point of this case study is how to apply the
methodology proposed in section 2 to the simulation of
broadband telecom networks. Specially, it is important the
mapping between network elements (found in the network
model) and DE objects and classes which are the basic
elements that our methodology deals with. From figure 6,
as an example, we can affirm that there are network
elements which are instances from certain networks
element types. For example, from figure 6 it is possible to
find 7 different network element types: Tx, Rx, network
control, passive wavelength router, etc. In this sense, these
network element types should be viewed as DE classes

1 Switchless Optical Network for Advanced Transport Architecture, is
partially funded by the European Commission under ACTS program.

Rx

ampl.
gating

Rx

Rx

ampl.
gating

converter

Tx

network
control

wavelength
converter

array

Passive
Wavelength

Routeing
Node

Tx

ampl.
gating

Tx

Tx

ampl.
gating

Tx

Tx

ampl.
gating

Tx

Tx

ampl.
gating

Rx

Rx

ampl.
gating

Rx

Rx

ampl.
gating

Rx

wavelength

array

·
·
N
·
·

·
·
N
·
· ·

·
N
·
·

·
·
N
·
·

·
·
N
·
·

·
·
N
·
·

Input PON Output PON

Figure 6. SONATA Network Architecture.

DynamicDRLSchedulingAlgorithm (EW)
{
 ObtainDRLArrayUtilization(EW);
 K = NumberOfAvailableDRL();

 if K = 0 then
 DRLCell = GetLatestRequiredClass();
 Class = GetFirstClassNotInDRLArray(EW);
 DRL_Behaviour(DRLCell, Class);
 else
 CE = GetCurrentEvent();
 for Class = CE to CE+EW loop
 if ActiveClass(Class) = FALSE then
 DRLCell = GetFirstAvailableDRL(Class);
 DRL_Behaviour(DRLCell, Class);
 end if;
 end loop;
 end if;
}

Figure 5. DRL dynamic scheduling algorithm.

within the scope of our methodology. In the same way,
network elements should be viewed as DE objects. For
this case study we don’t consider the wavelength converter
array network elements, so that in this case study we
assume to have 6 different network element types.

Finally, let’s give a short review to DE simulation
concepts. A DE simulator is a concrete application of DE
systems, where the events are ordered following a policy
of Shortest Tag First. Moreover, a simulation scheduler is
the responsible for the execution of the simulation.
Typically, a sequential scheduler is used.

5.2. Developed codesign framework

In order to test our proposed methodology, HW/SW
partitioning algorithm and run-time DRL context
scheduler, we have implemented a whole codesign
framework, which is depicted in figure 7.

In the proposed methodology, DRL target architecture
and run-time context scheduler, several parameters where
left without a fixed value. For example: (1) the number of
DRL cells within the target architecture and its
reconfiguration time, and (2) the size of the event window
used by the DRL context scheduler. Moreover, the
simulation model depends on parameter N, too. So, it is
obvious that a framework where to study the effects and
impact of these parameters into our proposals is necessary.
We mainly have implemented two different tools: (1) a
HW/SW partitioning tool, and (2) a HW/SW co-simulation
tool. Within both tools we have implemented the
algorithms described in this paper, but new algorithms can
be easily included into these tools, as they have been
implemented in a modular manner.

In the developed framework, all parameters can be
fixed using configuration files. File DRL_Architecture.cfg
is used to set-up parameters like the number of DRL cells,
their reconfiguration time and the size of the event

window used by the DRL context scheduler. In file
PartTool.cfg it is specified the cost function and
parameters that HW/SW partitioning algorithm should use.

The developed codesign framework assumes that the
methodology’s estimation and extraction phases have
already been performed. So, a set of independent DE
classes with its estimators (file DE_Classes.lst), is the
input to the HW/SW partitioning tool.

Each one of the several network elements found in the
SONATA network has been modeled using the
telecommunication description language TeD [2]. TeD
simulator runs on top of a parallel computer, and we have
performed real simulations of our SONATA model, in
order to obtain real simulation event traces (event stream).
Afterwards, these event traces were adapted (using a DE
generator tool) to be an input to our co-simulation tool.
This tool is responsible to implement the described
dynamic stage of our methodology.

5.3. Experiments and results

We carried out several experiments on top of this
framework. In this sense, two groups of experiments
(named, group I and II) have been performed varying the
parameter N found in the SONATA network simulation
model (see figure 6). Once fixed this parameter, several
experiments have been performed varying the DRL
architecture parameters (file DRL_Architecture.cfg). For
all experiments the the object state memory and class
(context) memory have a size of 128Kx32 bits.

We set N=100 for experiments of group I, and N=150
for experiments in group II. Given these values the
HW/SW partitioner for group I experiments maps all DE
classes to hardware. In the other hand, for group II
experiments the HW/SW partitioner maps 4 DE classes to
hardware and 2 DE classes to software.

Results for group I experiments are shown in figure 8.
This figure shows three different reconfiguration times:
2000ns, 1000ns and 500ns, as we wanted to evaluate the
impact of this parameter, too. Figure 8.a shows the total
network simulation execution time when the number of
DRL cells increases (EW is fixed to 4). A DRL=0 value
means an all software simulation execution. From figure
8.a, it is seen that using a single DRL cell with a
reconfiguration time of 2000ns, give worst results than an
all software solution. Clearly, with a single DRL cell, it is
not possible to perform in parallel, event computation and
DRL cells reconfiguration. So, fast reconfiguration times
are needed in order to obtain any improvement. When the
number of DRL cells increases both event execution and
DRL reconfiguration can be performed in parallel, so
reconfiguration overhead effects are minimized and
improvement is obtained. Specially interesting are figures

HW/SW
Partitioning Tool

DE_Classes.lst PartTool.cfg

DRL_Architecture.cfg

DE_Classes_HW.lst DE_Classes_SW.lstEventStream.lst

Discrete Event
Generator Tool

HW/SW
Scheduling

DRL
Multi-Context

Scheduler

HW/SW Co-Simulation Tool

LogFile Results

Figure 7. Developed codesign framework.

8.b and 8.c. They show the effect of the event window size
on the execution time for a fixed number of DRL cells.

The obtained results demonstrate that the optimum
event window size depends on the number of DRL cells.
They do present really different behaviors for DRL=2 and
DRL=3 cells. For DRL=2 cells, the event window size
must keep under 3 events, otherwise execution time gets
worst due to an excessive reconfiguration overhead.
However, when DRL=3 cells simulation execution gets
betters results as EW size increases. It is important to note
that these results are not affected by the DRL cell
reconfiguration time. We can conclude from these results
that our dynamic DRL multi-context scheduler requires, at
least, DRL=3 cells in order to exploit its possibilities.

6. Conclusions

In this paper, we have presented two major
contributions: (1) a novel run-time HW/SW codesign
methodology for discrete event systems using dynamically
reconfigurable architectures, and (2) a novel approach to
dynamic DRL multi-context scheduling.

We have applied our methodology to the software
acceleration of broadband telecom networks simulation.
We have developed a whole codesign framework, in order
to perform an exhaustive study of our methodology and
proposed algorithms and schedulers. This exhaustive
study has been carried out, performing two major groups
of experiments. Results demonstrate the benefits of our
approach. Further research will be carried out, in order to
propose alternative HW/SW and DRL context schedulers.

7. References

[1] F. Balarin et al. “Scheduling for Embedded Real-Time
Systems”, IEEE Design and Test, Jan-March, 1998.

[2] S. Bhatt, R. Fujimoto, A. Ogielski, K. Perumalla, “Parallel
Simulation Techniques for Large-Scale Networks”. IEEE
Communication Magazine, pp. 42-47. August 1998.

[3] N. Caponio et al., "Single Layer Optical Platform Based on
WDM/TDM Multiple Access for Large Scale Switchless
Networks", European Transactions on
Telecommunications.

[4] K. S. Chatta, R. Vemuri, “Hardware-Software Codesign for
Dynamically Reconfigurable Architectures”. Proc. of
FPL’99. Glasgow, Scotland. September, 1999.

[5] M. D. Edwards et al., “Acceleration of software algorithms
using hardware/software co-design techniques”, Journal of
Systems Architecture, Vol. 42, No. 9/10, pp. 1997.

[6] R. Gerndt, R. Ernst “An Event-Driven Multi-Threading
Architecture for Embedded Systems”. Codes/CASHE '97,
pages 29-33, Braunschweig, Germany, March 1997.

[7] E. A. Lee, “Modeling Concurrent Real-Time Processes
using Discrete Events”. Annuals of Software Engineering,
Special Volume on Real-Time Software Engineering. 1998.

[8] R. Maestre, F. J. Kurdahi, M. Fernandez, R. Hermida, “A
Framework for Scheduling and Context Allocation in
Reconfigurable Computing”, Proc. of the International
Symposium on System Synthesis, pp. 134-140. 1999.

[9] V. Mooney and G. De Micheli, ``Real Time Analysis and
Priority Scheduler Generation for Hardware-Software
Systems with a Synthesized Run-Time System,''
(ICCAD'97), 605-612, November 1997.

[10] J. Noguera, R. M. Badia, J. Domingo, J. Sole,
“Reconfigurable Computing: an Innovative Solution for
Multimedia and Telecommunication Network Simulation”.
IEEE Proc. 25th Euromicro Conference. Milan, Italy. 1999.

[11] Stefan Petters et al. “The REAR framework for emulation
and analysis of embedded hard real-time systems”. IEEE
Proc. Int. Workshop RSP'99, pp. 100-107, Florida. 1999.

E x ec u tio n T im e (E v e n t W in d o w , E W = 4)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 1 2 3 4

#DRL

E
xe

cu
ti

o
n

 T
im

e
(n

s)

T_Rec onf_500 T_Rec onf_1000 T_Rec onf_2000

 (a)

E x e c u tio n T im e (# D R L = 2)

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1 2 3 4

Ev e n t W in d o w (EW)

E
x

e
c

u
ti

o
n

 T
im

e
 (

n
s

T_Rec onf_500 T_Rec onf_1000 T_Rec onf_2000

 (b)

E x e c u tio n T im e (# D R L = 3)

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4

Ev e n t W in d o w (EW)

E
x

e
c

u
ti

o
n

 T
im

e
 (

n
s

T_Rec onf_500 T_Rec onf_1000 T_Rec onf_2000

 (c)

Figure 8. Results for group I experiments

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

