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ABSTRACT
We address the problem of computing critical area for miss-
ing material defects in a circuit layout. The extraction of
critical area is the main computational problem in VLSI
yield prediction. Missing material defects cause open cir-
cuits and are classi�ed into breaks and via-blocks. Our ap-
proach is based on the L1 medial axis of polygons and the
weighted L1 Voronoi diagram of segments. The critical
area problem for both breaks and via-blocks is reduced to a
weighted L1 Voronoi diagram of segments. This reduction
results in a plane sweep algorithm to compute critical area
in one pass. The time complexity is O(n log n) in the case of
breaks and O(n log n +K) in the case of via-blocks, where
n is the size of the input and K is bounded by the number
of interacting vias (in practice K is small). The critical area
computation assumes square defects and reects all possible
defect sizes following the D(r) = r20=r

3 defect size distribu-
tion. The method is presented for rectilinear layouts.

1. INTRODUCTION
VLSI yield prediction is based on the concept of critical area
which reects the sensitivity of a design to spot defects oc-
curring during the manufacturing process (see for example
[2; 6; 7; 13; 16; 17; 18; 11]). Yield prediction is of growing
importance in modern VLSI design due to the need to con-
trol the cost of manufacturing. Spot defects are caused by
particles such as dust and other contaminants in materials
and equipment. They are classi�ed into \extra material"
defects causing shorts between di�erent conducting regions
and \missing material" defects causing open circuits. This
paper addresses the problem of computing critical area for
missing material defects in a single layer. In combination
with [11] for extra material defects, it provides a unifying
approach to critical area extraction via Voronoi diagrams.
The critical area in one layer of a circuit layout C is de�ned
as

Ac =

Z
1

0

A(r)D(r)dr
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where A(r) denotes the area in which the center of a defect
of radius r must fall in order to cause a circuit failure and
D(r) is the density function of the defect size. The defect
density function has been estimated as follows [2; 3; 17; 18]:

D(r) =

�
crq=rq+10

; 0 � r � r0
cr

p�1

0 =rp; r0 � r �1
(1)

where p; q are real numbers (typically p = 3; q = 1), c = (q+
1)(p�1)=(q+p), and r0 is some minimum optically resolvable
size. Using typical values for p; q, and c we derive the widely
used defect size distribution D(r) = r20=r

3. A circuit failure
in this paper represents an open circuit. Defects of size r are
modeled as squares of side 2r (i.e., squares of radius r). As
discussed in [11], modeling defects as squares corresponds
to computing critical area in the L1 metric1 instead of the
Euclidean geometry. In reality spot defects have any kind
of shape thus, the square defect model is good enough for
all practical purposes. The worst case bound of [11], Ae

c �

A1c � 2Ae

c, where A
1

c and Ae

c denote the critical area for
missing material defects in L1 and the Euclidean metric
respectively, can be shown similarly.
Missing material defects cause open circuits by breaking in-
tended connections. On a metal interconnect layer an open
is created by a defect breaking the continuity of an inter-
connection or a contact plug; on a via or contact layer an
open is a defect destroying a contact. Thus, we have two
types of missing material defects: breaks, interfering with
the continuity of an interconnect, and via-blocks, destroying
contacts on via layers.
Existing methods of extracting critical area for opens can
be summarized as follows: 1) Monte Carlo simulation [19]:
Draw a large number of defects with their radii distributed
according to D(r), check for each defect if it causes an open.
2) Geometric methods: Compute the area of critical region
A(r) for several di�erent values of r independently; use the
results to approximate the total critical area. They are usu-
ally based on shape manipulation tools providing operations
such as shrink-shape-by-r and �nd-area (see [8; 10]). The
time complexity for each defect radius depends on the un-
derlying shape manipulation algorithms. In [13], A(r) is
computed using a more e�cient scan-line method. 3)Grid
method [18]: A �ne grid is assumed over the layout and the
critical radius2 for every grid point is computed. The run-

1The L1 distance between two points p = (xp; yp) and
q = (xq; yq) is the maximum of the horizontal and
the vertical distance between p and q i.e., d(p; q) =
max fjxp � xqj; jyp � yqjg.
2The critical radius at point t is the radius of the smallest
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Figure 1: D is a minimal break.

time is O(I1:5) time, where I is the number of grid points.
4) A more thorough analysis is given in [15]. A(r), for a
given defect radius r, is calculated strictly over each shape
(critical regions expanding in the free space are ignored).
This method (unlike the geometric ones) considers actual
breaks of connectivity and runs in O(n2 log n) time.

In this paper we present a geometric modeling of breaks
and via-blocks and reduce the problem of computing criti-
cal area into variations of (weighted) L1 Voronoi diagrams.
For a via-block we follow the de�nition of [9] which is more
involved but more realistic than the one in [8]. Once the
Voronoi diagrams are computed the total critical area for
opens can be computed analytically as a function of Voronoi
edges similarly to shorts [11]. The reduction of the critical
area computation problem to Voronoi diagrams results in a
plane sweep algorithm to compute critical area for opens in
one pass. The time complexity is O(n log n) for the Voronoi
diagram of breaks and O(n log n+K) for via-blocks, where
n is the size of the input and K is bounded by the total num-
ber of interacting vias. (See section 5 for the de�nition). In
practice K is small and should be negligible. In combina-
tion with [11] this algorithm forms the �rst low polynomial
algorithm to compute critical area accurately in irregular
layouts. Note that all previous methods (except the Monte
Carlo simulation and the grid-based method) compute only
the critical region A(r) for a given defect size r. The method
is presented for rectilinear layouts.

2. GEOMETRIC MODELING OF BREAKS
AND VIA BLOCKS

Let's �rst consider a layer where missing material defects
break the continuity of interconnections and contact plugs.
A simple shape corresponds to a simple polygon and con-
tains no holes. A shape with hole(s) is called complex.

For a simple shape, a defectD is aminimal break, ifD breaks
the shape into two or more pieces, and D has minimal size
i.e., if D is shrunk by � � 0 then D will be entirely contained
in the interior of the shape. A piece of a shape may trivially
consist of a single edge. Figure 1 shows examples of defects
considered to be minimal breaks. A minimal break is called
strictly minimal if it contains no other minimal break in
its interior. A break is any defect totally covering a strictly
minimal break. For a complex shape, a break is additionally
any defect overlaping the outer and inner boundary of the
shape or any two distinct inner boundaries. Figure 2 shows
examples of defects that are not considered to be breaks.

A limitation to the geometric modeling of breaks is that, by
ignoring the actual connections, critical area may be overes-
timated in case of interconnect shapes that contain redun-
dant or non-conducting regions. Here, similarly to existing

defect centered at t causing an open.
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Figure 2: D is not a break.

unified contactsredundant vias

Figure 3: A contact as the minimum enclosing rectangle of
redundant vias.

geometric methods, we ignore such redundant regions since
their identi�cation can be treated as a separate problem and
be removed prior to critical area calculations.
Let's now consider a via or contact layer. Vias between
di�erent layers are typically realized by square shapes. To
reduce the probability of missing contacts or to achieve a de-
sired resistance designers often use redundant vias, a group
of multiple vias that connect two shapes on di�erent layers.
Redundant vias are usually grouped together side by side
and thus they can be regarded as a single via of larger size
(see �gure 3). Because of redundant vias, contacts can not
be assumed to be squares but rectilinear shapes (often rect-
angles) of any size. A via-block (for brevity block) is a defect
that completely destroys a contact i.e., a defect that com-
pletely covers a whole via or a group of redundant vias [9].
A square defect completely covers a rectilinear shape if and
only if it totally covers its minimum enclosing rectangle. In
this paper we assume that redundant vias have been identi-
�ed in a preprocessing step and have been grouped together
into atomic shapes represented by their minimum enclosing
rectangle. (These operations are available in existing shape-
processing tools e.g., [10]). In other words, we assume that
a via layer has been preprocessed into a collection of dis-
joint rectangles of various sizes, referred to as contacts; A
via-block is a defect totally covering a rectangular contact.

3. L1 VORONOI DIAGRAMS
The Voronoi diagram of a set of polygonal sites is a parti-
tioning of the plane into regions, called Voronoi cells, such
that the Voronoi cell of a site s is the locus of points closer
to s than to any other site. The boundary that borders
two Voronoi cells is called a Voronoi edge, and consists of
portions of bisectors between the owners of the cells. The
point where three or more Voronoi edges meet is called a
Voronoi vertex. In the interior of a simple polygon P the
Voronoi diagram is also called medial axis3 ([4]). For more
information on Voronoi diagrams see e.g. [14; 1].
The use of the L1 metric simpli�es the Voronoi diagram of
polygonal objects and makes it simple to compute in practice

3There is a minor di�erence in the de�nition which we ignore
in this paper.

Figure 4: TheL1 medial axis of rectilinear polygons.
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Figure 5: The L1 bisector of additively weighted points
(wp < wq � wp + d(p; q)).
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Figure 6: L1 bisector of weighted lines.

[12]. Intuitively, the L1 distance between two points p and
q (denoted d(p; q)) is the side of the smallest square touching
p and q. The L1 distance between a point p and a line l

is d(p; l) = minfd(p; q); 8q 2 lg. The L1 bisector of two
polygonal elements (points or lines) is the locus of points at
equal L1 distance from the two elements.
Let's now assume that points p and q are weighted with
additive weights wp and wq respectively, such that 0 � wp �

wq � wp + d(p; q). The (weighted) L1 bisector of p; q is
the locus of points equidistant from p and q in a weighted
sense i.e., b(p; q) = ft j d(t; p) + wp = d(t; q) + wqg. Note
that if wq > wp + d(p; q) there is no bisector between p
and q: all points in the plane (including q) are closer to
p than q. If wq = wp + d(p; q) then the area enclosed by
the 45� rays4 through q is equidistant from both points.
Figure 5 shows L1 bisectors of additively weighted points
as wq increases (wp < wq). Without creating any signi�cant
di�erence, when a whole region is equidistant from both
points (shaded regions in �gure 5) we assign it to one of
the points and consider only the outermost boundary of the
bisecting region as the bisector (thick rays in �gure 5). Thus,
the L1 Voronoi diagram of additively weighted points is
similar to the unweighted one. The main di�erence is that
an arbitrarily weighted point may or may not have a Voronoi
region.
The Voronoi diagram of additively weighted segments has
not been given any attention in the literature (to the best
of our knowledge). Figure 7 illustrates the L1 Voronoi di-
agram of arbitrarily weighted axis-parallel segments. The
shaded regions depict the Voronoi cell(s) of the horizon-
tal segment. As �gure 7 illustrates, the Voronoi cell of a
weighted segment need not be connected. Note that the
Voronoi region(s) of an additively weighted segment may

4A 45� ray is a ray of slope +1 or �1.
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Figure 7: The L1 Voronoi diagram of weighted segments
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Figure 8: rc(t) = d(t; e)

Figure 9: The core of simple shapes.

be induced by only a portion(s) of the segment or have no
Voronoi region at all. The portion of a segment inducing
a Voronoi region is called active and is clearly contained
within that region. Voronoi edges consist of portions of
bisectors between additively weighted lines and points. A
weight along an axis parallel line corresponds to shifting the
line in parallel according to the weight. The de�nition of a
bisector remains the same : B(l1; l2) = fy j d(l1; y)+w(l1) =
d(l2; y)+w(l2)g where w(l1); w(l2) denote the weights of two
lines l1; l2. Figure 6 illustrates the bisector of two additively
weighted orthogonal lines where w(l1) < w(l2).

4. CRITICAL AREA FOR BREAKS
We have a layer in a circuit layout consisting of a collection
of rectilinear polygons C. We assume that overlapping poly-
gons have been uni�ed into single shapes and thus all poly-
gons are disjoint. The boundary of the layout is assumed to
be a rectangle B. Our goal is to compute the critical area
for breaks i.e., to evaluate the integral Ac =

R
1

0
A(r)D(r)dr,

where D(r) = r20=r
3. Recall that A(r) denotes the area of

the critical region for square defects of radius r. The critical
region for a defect D of radius r is the locus of points where
if the center of D is placed it causes a break. The critical ra-
dius of a point t is the radius of the smallest defect centered
at t causing a break. The defect inducing the critical radius
of t is called the critical break for t. Note that the critical
radius of a point over a shape S need not be determined by
defects breaking edges of the same shape. In �gure 8, the
critical radius of t 2 S is determined by edge e in P .
Let P be a rectilinear shape (simple or complex). Consider
the Voronoi diagram (medial axis) in the interior of P (�gure
4). By the de�nition of the medial axis, any minimal break
must be centered along the medial axis of P . Let the Voronoi
vertices and Voronoi edges induced by parallel edges form a
set of elements called the core of P , denoted as core(P ). In
�gure 9, core(P ) is shown thickened. Essentially, the core
is a generator of breaks for shape P since it generates all
strictly minimal breaks. A defect of radius w(s) centered
along s 2 core(P ) is said to be generated by s.

Lemma 1. For any break B there is a core element s 2
core(P ) such that the radius of B is r � d(t; s) +w(s).

The following notation is used throughout the paper: Given
a rectangle R, the north, south, east and west edge of R
are denoted as Rn;Rs;Re, and Rw respectively. The north,
south, east and west side of the core segment, s = core(R)
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Figure 11: The weighted Voronoi diagram of core elements.

are denoted as sn; ss; se; sw respectively. The same notation
is used to also denote the y-coordinate of Rs;Rn; ss; sn and
the x-coordinate of Re;Rw; se; sw.
Consider a single rectangle R such that s = core(R) is hor-
izontal (see �gure 10). The four 45� rays emanating from
se; sw partition the plane into four quadrants. For any point
t in the north (resp. south) quadrant the critical radius
of t is (resp. Rn) i.e., rc(t) = d(t;Rs) = d(t; s) + w(s).
For a point t in the west (resp. east) quadrant the criti-
cal break has to overlap with the minimal break centered
at sw (resp. se). Thus, rc(t) = d(t; sw) + w(sw) (resp.
rc(t) = d(t; se)+w(se)). In all cases, rc(t) = d(t; s)+w(s).
Let G = [P core(P );P 2 C, be the union of the core ele-
ments of all polygons on the given layer. The weighted L1
Voronoi diagram of G, V(G), provides a partitioning of the
plane into regions where the critical radius within each re-
gion is easy to derive (see lemma 2). Figure 11 illustrates
the weighted L1 Voronoi diagram of a set of core elements
where the numbers indicate weights. The 45� dashed lines
are bisectors between the endpoints and the open part of a
segment.)

Lemma 2. The critical radius for breaks of any point t
in the Voronoi cell of a core element s, s 2 G, is rc(t) =
d(t; s) + w(s).

Given V(G), the critical area integral can be discretized as a
summation of Voronoi edges similarly to [11]. Core elements
and the 45� rays emanating from their endpoints are con-
sidered to be part of V(G) and are treated as Voronoi edges.
Voronoi edges are classi�ed as red and blue. The classi�ca-
tion can be summarized as follows: All core segments are
colored red. A 45� ray emanating from an endpoint of a
core element s is called converging if it forms an acute an-
gle with the segment; otherwise it is called diverging. Given
the Voronoi cell of a core element the incident diverging 45�

Voronoi edges are colored red; the remaining Voronoi edges
are colored blue. Boundary edges parallel to the owner are
colored blue. Note that there may be 45� Voronoi edges
that get di�erent coloring with respect to the two adjacent
cells. The contribution of these edges to critical area gets
cancelled and thus, they are colored neutral and treated as
not contributing to critical area. The result is as follows:
(see [11] for the derivation)

Theorem 1. Given the (weighted) L1 Voronoi diagram
of all core elements of shapes in a layer C of a circuit layout,

west

South

west

north

core(R)

east

north
core(R)

South

east

Figure 12: The core of a contact R.

and assuming that defects are squares following the \r20=r
3"

defect density distribution, the critical area for breaks in that
layer is given by the following formula:
Ac = r20(
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where l and rc denote the length and the critical radius of
an orthogonal Voronoi edge, rx; rn denote the maximum and
the minimum critical radius of a 45� Voronoi edge, and lb; rb
denote the length and the critical radius of a boundary edge.
The �rst two summations are taken over all red and all blue
orthogonal Voronoi edges respectively. The third and forth
summations are taken over all red and all blue 45� Voronoi
edges respectively. The last summation is taken over all blue
boundary edges.

5. CRITICAL AREA FOR VIA-BLOCKS
A via layer, V , is assumed to have been preprocessed into
a collection of rectangular contacts of various sizes. A via-
block (for brevity block) is a defect (square) totally covering
a contact. Clearly, the radius of any block for a contact R is
at least l=2, where l is the length of R. A block of radius l=2
is referred to as a minimal block. The width of R is denoted
by w (l � w). We de�ne the max-distance of t from contact
R to be the maximum L1 distance of t from any point of R
i.e., dmax(t;R) = maxfd(t; y);8y 2 Rg. The critical radius
of a point t is the radius of the smallest defect centered
at t totally covering a contact. The critical radius of t with
respect to a single contact R is dmax(t;R). Thus, the critical
radius for any point t is rc(t) = minfdmax(t;R);8R 2 V g.
Let the core of a contact R, denoted core(R), be the locus
of centers of minimal blocks for R. core(R) has opposite
orientation than R i.e., if the longer side of R is horizontal
(resp. vertical) core(R) is vertical (resp. horizontal) (see
�gure 12). Note that if R is a square core(R) is a single
point. As in the case of breaks, core(R) can be regarded
as a generator of via-blocks for contact R. The segment
s = core(R) is weighted by w(s) = l=2.

Lemma 3. The locus of centers of minimal blocks for con-
tact R (core(R)) is an axis-parallel segment of length l� w

centered at the same point as R, where l; w denote the length
and the width of R (l � w).

Lemma 4. The critical radius of t with respect to contact
R is rc(t) = dmax(t;R) = d(t; s)+w(s), where s = core(R).

By lemma 4, the critical radius of any point on a via layer is
rc(t) = minfd(t; s) + w(s);8s 2 G = [core(R)g. Thus, the
weighted Voronoi diagram of all core elements, V(G), gives
a partitioning of the plane into regions where the critical
radius is easy to compute. Due to the nature of the weights



Figure 13: The L1 weighted Voronoi diagram for via-blocks.
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Figure 14: The core-rectangle of R containing interacting
contacts.

V(G) is di�erent than the case of breaks. First, a core seg-
ment need not have a Voronoi cell of its own e.g., the core
of a large enough R. Furthermore, a core segment s having
a Voronoi cell need not be totally contained within its cell.
The portion of s contained within its Voronoi cell is called
active. A contact having no Voronoi cell is called useless. As
lemma 5 indicates, Voronoi cells remain connected having at
most one Voronoi cell per core element. Figure 13 illustrates
the L1 weighted Voronoi diagram of core elements of a set
of contacts.

Lemma 5. The weighted Voronoi diagram of via core seg-
ments has at most one Voronoi cell per core segment. A
core segment with a non-empty cell has exactly one active
sub-segment enclosed within its cell.

Let the core-rectangle of a contact R denote the rectangle
obtained by two squares of side l centered at the endpoints
of core(R) (see �gure 14). Let lo-square denote the left-
most (resp. bottommost) square and hi-square denote the
rightmost (resp. topmost) square. The core-rectangle is the
union of all minimal blocks for R. Note that core(R) is part
of the medial axis of the core-rectangle. If R is a square
via then the core-rectangle is identical to R. A contact to-
tally contained within the core-rectangle of R is said to be
interacting with R. We have the following properties:

Lemma 6. A contact R is useless if and only if there are
at least two interacting contacts within the core-rectangle of
R, at opposite sides of R, within max-distance l from each
other, where l is the length of R.

Lemma 7. The core segment s = core(R) is entirely ac-
tive if and only if the core-rectangle of R contains no inter-
acting contacts.

The active portion of a core segment s = core(R) can be
determined by the interacting vias within the core-rectangle
of R. Without loss of generality let's assume that s is hor-
izontal. Let s1; s2 denote the endpoints of the active sub-
segment where s1 is to the left of s2. As the following lemma
shows, s1 (resp. s2) is determined by the rightmost Rw

j

(resp. leftmost Re

j) where Rj is a rectangle within lo-square

(resp. hi-square) of R. Equivalently for a vertical core seg-
ment. Let s1:x; s2:x denote the x-coordinates of s1; s2 re-
spectively.

Lemma 8. Assuming that s = core(R) is horizontal, s1:x =
maxfRw

j j Rj 2 lo�square(R)g+w(s) and s2:x = minfRe

j j

Rj 2 hi� square(R)g � w(s).

6. COMPUTING THE L1 VORONOI DIA-
GRAM OF CORE-SEGMENTS

A plane sweep algorithm to compute the L1 Voronoi dia-
gram of rectangles and arbitrary line segments was given in
[11; 12]. We briey review, here, the main points of the al-
gorithm. Imagine a sweepline sweeping the layout from left
to right. Associated with a plane-sweep algorithm there are
two major components: a sweep-line status, T , maintaining
the status of the sweeping process, and an event list,Q, con-
taining the events where the sweep-line status changes, or-
dered in increasing priority value. Throughout the sweeping
process, a partial Voronoi diagram of all segments to the left
of the sweeping line, including the sweepline, is maintained.
The wavefront is the collection of Voronoi edges (portions of
bisectors) bounding the Voronoi cell of the sweepline. The
bisectors incident to the wavefront are called spike bisectors.
As the sweepline moves to the right the wavefront as well
as the endpoints of spike bisectors also move to the right.
The sweep-line statusmaintains the combinatorial structure
of the wavefront. We have two types of events: site events
and spike events. Site events are caused by the endpoints of
segments and correspond to new waves entering the wave-
front. Spike events correspond to potential Voronoi vertices
and are caused by the intersection of two neighboring spike
bisectors. The priority of a site event is given by its x-
coordinate. The priority of a spike event s is s:x + d(e; s)
where e is the owner of s and s:x denotes the abscissa of s.
This corresponds to the rightmost abscissa of the square in-
duced by the spike event i.e., the square de�ned by the tree
neighboring sites de�ning the intersecting spike bisectors.
Computing the weighted Voronoi diagram of core elements
for breaks requires only a minor modi�cation to the algo-
rithm described above: the weight of a core element s needs
to be added to its priority i.e., the priority of a site event
is s:x + w(s) where s:x is the x-coordinate of an endpoint
of s. In other words, a core endpoint is not processed as
soon as it is reached by the sweep-line but later when the
sweep-line reaches position s:x+ w(s). The remaining part
of the algorithm is identical to [11]. When bisectors are com-
puted the weights of core elements are always added to the
equations. Note that here the weights of core elements are
such that w(q) � w(p) + d(p; q) for any two core elements
p; q. This implies that the invariance of the unweighted case
holds also here: when a site event s is processed at time
s:x + w(s), s has not been covered by the wavefront yet.
The reader is referred to [11] for the details of the algorithm.
The time complexity is O(n log n) where n is the number of
core-segments.
Computing the weighted Voronoi diagram of core segments
for via-blocks requires to identify the endpoints of the ac-
tive portions of core segments (referred to as active end-
points). For this purpose additional active events need to
be generated. Given a core-segment s = core(R) recall that
sn; ss; se; sw denote the north, south, east, and west side of
s respectively. Recall also that the same notation is used
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Figure 15: The wavefront at instance priority(sw) = sw +
w(s) = Re.

to denote the y-coordinate of ss; sn and the x-coordinate of
se; sw. Note that si + w(s) = Rj for i = s;w and j = n; e

respectively, and si � w(s) = Rj for i = n; e and j = s;w
respectively.
In summary we have three types of site events: left, right,
and active events. A left event and a right event correspond
to sw and se respectively and have priority priority(sw) =
sw+w(s) = Re and priority(se) = se+w(s) = Rw+2w(s).
In other words, the priority of a left event is reached when
the sweep-line reaches Re and the priority of a right event
is reached when the sweepline reaches the right edge of hi-
square. An active event corresponds to the leftmost active
endpoint, sa, of a potential active portion of a horizontal
core segment and has priority sa+w(s) (sa denotes also the
x-coordinate of the active endpoint).

Lemma 9. For a vertical s = core(R), the active subseg-
ment of s (if any) is given by the intersection of s with the
wavefront at instance priority(sw) = sw +w(s) = Re.

Lemma 10. For a horizontal s = core(R), the wavefront
overlaps s at instance priority(sw) = sw + w(s) = Re, if
and only if the lo-square of R contains interacting contacts
with R.

Let a0 and b0 denote the intersection of the wavefront with
b(Rn;Re) and b(Rs;Re) at instance priority(sw) = sw +
w(s) = Re where a0 is above b0 (see �gure 15). (Recall that
b(Ri;Rj) denotes the bisector of Ri;Rj; i; j = n; e; s;w and
is a 45� line.) If both a0; b0 are to the left of sw we have
the ordinary case described in [11; 12]. Otherwise we use
a0; b0 to determine the active subsegment of a vertical core
segment and to generate an active event for a horizontal core
segment.

Lemma 11. The contact inducing the leftmost active end-
point (if any) of a horizontal core segment s must have a
node in the wavefront between a0 and b0.

Lemma 12. At instance priority(sw) = sw + w(s) = Re,
the contacts interacting with R (if any) must have consecu-
tive waves in the wavefront.

In the following we give pseudo-code describing the handling
of site events. Su�x :x denotes the x-coordinate of a point.
The reader is referred to [11] for details on the basic plane-
sweep algorithm.
Procedure Process-Left-Event(sw)
begin

1. R = rectangle s.t. s = core(R) induces the event;

2. a0 = intersection(wavefront, b(Rs;Re));

3. b0 = intersection(wavefront, b(Rn;Re));

4. if (s is horizontal) AND (a0:x > sw OR b0:x > sw)
then

5. q = CreateActiveEvent(T , a0; b0; s);

6. push(q; Q);

7. Return;

8. if (s is vertical) AND (a0:x > sw) then
a0= upper-intersection(wavefront, s);

9. if (s is vertical) AND (b0:x > sw) then
b0= lower-intersection(wavefront,s);

10. if no intersection was detected at steps 8,9 Return;
(* s is totally covered by wavefront; R is useless *)

11. W = fw j w = segment of the wavefront between a0

and b0g;

12. Initialize reg(s) to W ; (* reg(s): Voronoi region of s*)

13. Update reg(s0) 8s0 2W ;

14. Invalidate active, right events for core segments inter-
sected by W ;

15. Delete the elements of T between a0 and b0;

16. if a0 62 s then

17. b1 = b(ea; s
n) = b(ea;R

s); (*ea = owner of a0*);

18. Insert b1; s
n in T ; (* sn corresponds to Rs *)

19. s1 = intersection(b1 ; prev(b1));

20. Insert in Q a spike event corresponding to s1;

21. If b0 62 s then

22. b2 = b(ea; s
s) = b(eb;R

n), (*eb = the owner of b0*);

23. Insert b2; s
s in T ; (* ss corresponds to Rn *)

24. s2 = intersection(b2 ; next(b2));

25. Insert in Q a spike event corresponding to s2;

end

Procedure Process-Right-Event(se)
begin

1. if se is invalid Return; (* the wavefront covers se*)

2. if s is horizontal then

3. a0 = b0 = se;

4. else

5. a0 = upper active endpoint (* a0 may be sn *)

6. b0 = lower active endpoint (* b0 may be ss *)

7. b1 = b(ea; s
e); (*ea = the owner of a0 *);

8. b2 = b(eb; s
e); (*eb = the owner of b0 *)

9. Update the nodes of ea; eb by inserting b1; b2 in T ;

10. Insert the node of se in T between ea; eb; (* the weighted
se is equivalent to Rw *)

11. s1 = intersection(b1 ; prev(b1));

12. s2 = intersection(b2 ; next(b2));

13. Insert in Q spike events corresponding to s1; s2;

end

Let sa 2 s denote the potential active endpoint of s corre-
sponding to an active event. If sa is covered by the wavefront
when its priority is reached (priority(sa) = sa:x+ w(s)), it
is invalid. Note that active events are marked invalid at step
14 of procedure process-Left-Event. Alternatively the valid-
ity of an event can be determined by checking the wavefront.
Procedure Process-Active-Event(sa)
begin

1. if sa is invalid Return; (*R is useless*)

2. b1 = b(ea; s
n); (* ea = the owner of sa *)



3. b2 = b(ea; s
s);

4. Initialize reg(s) to b1 [ b2;

5. Split the node of ea into two nodes bounded by b1; b2;

6. Insert nodes for sn; ss between the nodes of ea in T ;

7. s1 = intersection(b1 ; prev(b1));

8. s2 = intersection(b2 ; next(b2));

9. Insert in Q spike events corresponding to s1; s2;

end

Function CreateActiveEvent linearly scans T between a0 and
b0 to determine the contact inducing the active event i.e., the
contact Ri with the rightmost Rw

i . The coordinate of the
event is given by lemma 8. By lemmas 11, 12, the number of
nodes visited in this step cannot exceed the number of inter-
acting vias with R. Similarly, functions upper-intersection()
and lower-intersection() identify the active endpoint(s) of
a vertical core-segment by linearly scanning nodes between
a0 and b0. Once a non-interacting via is visited the search
stops (lemma 12). If no active endpoint is found during the
search the contact is useless and processing of the event ends
(step 10). Functions CreateActiveEvent, upper-intersection
and lower-intersection are responsible for the extra K factor
in the time complexity of the algorithm. Any other opera-
tion requires O(logjWF j) time, where jWF j denotes the size
of the wavefront. In practice the number of nodes between
a0 and b0 must be rather small making K negligible. Spike
events are treated as in the unweighted case and we skip the
discussion. Thus, the time complexity of the algorithm is
O(n log n + K), where K is upper bounded by the number
of interacting contacts

7. EXPERIMENTAL RESULTS
We are currently developing a tool to compute Critical Area
for shorts, breaks, and via-blocks based on L1 Voronoi dia-
grams. Preliminary experimental results on computing the
Voronoi diagram of axis-parallel layouts have been obtained
and verify the almost linear performance of the algorithm.
Our tool has the overhead of computing unions of shapes
and extracting nets on the y as the sweeping process pro-
ceeds. Running times (including the overhead) for the M1
layer of IBM Macros on a 7043-260 server machine are as
follows.

Macros #Shape-Edges Time

system 390

Macro1 11,562 1:96 secs

Macro2 13,090 2.22 secs

Macro3 18,608 3.22 secs

Macro4 28,714 4.99 secs

Macro5 68,210 12.37 secs

Power PC

fpu 1,095,924 4:15 mins

data-cache 2,721,230 11:40 mins
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