
122

Datapath Routing Based on a Decongestion Metric
Suresh Raman

University of Minnesota
Minneapolis, MN 55455 USA
suresh@mail.ece.umn.edu

Sachin S. Sapatnekar
University of Minnesota

Minneapolis, MN 55455 USA
sachin@mail.ece.umn.edu

Charles J. Alpert
IBM Austin Research Laboratory

Austin, TX 78660 USA
calpert@us.ibm.com

Abstract
For a four-layer datapath routing environment, we present an
algorithm that considers all the nets simultaneously. Routing
probabilities are calculated for potential routing regions and
consolidated into a congestion metric. This is followed by an
iterative diversion technique where the region with the maximum
congestion metric is repetitively relaxed until the track
probabilities crystallize into integer values of 1 and 0. We have
run the algorithm on large test cases and achieved significant
routability within a small number of available tracks.

1. Introduction
A typical datapath circuit consists of a set of bit-slices that are
replicated several times. The regularity of datapath circuits is
frequently exploited in their design, and the problem of datapath
layout is often solved simply by performing physical design on a
single bit slice and then replicating this bit slice as many times as
necessary. Apart from the ease of design effort provided by this
approach, such a procedure also ensures that the regularity of the
structure can be exploited to obtain accurate estimates of the
layout area and parasitics for further analysis.

In this work, we consider an environment used to design
datapaths and address the problem of routing the interconnect nets
within a single bit slice. The routing paradigm can be considered
to be over-the-cell routing with each cell interfacing with the rest
of the chip by means of a structure, known as a pinrail. We
present an algorithm for simultaneously routing wires in a
datapath environment using a probabilistic technique.

The datapath environment under consideration permits wires to
be routed in four layers along a given set of tracks. All
connections in the direction orthogonal to these tracks are made
by a set of prefabricated metal bands referred to as pinrails.
Pinrails can traverse a set of adjacent tracks, and all points on a
pinrail are electrically equivalent. An example of such a routing
scheme for two layers is illustrated in Figure 1, where the tracks
run along the vertical direction in a reserved vertical layer and the
pinrails are placed horizontally in a reserved horizontal layer.

Figure 1: A routing environment showing tracks and pinrails

A few properties and definitions related to the routing
environment are listed below:
• The pinrails divide each track into several track segments as

illustrated in Figure 1 using bold lines.
• Wires may run along the direction of a track, and can change

tracks only by connecting to a pinrail using vias. Such
pinrails facilitate routing and improve routability.

• A pinrail may be used by at most one net.
• The vertical span of a wire may pass over a pinrail without

utilizing it since a via must be made to use the pinrail.
• The nets to be routed are specified in terms of their pins, that

would typically consist of a source and multiple sinks, each
of which is a pinrail.

As in other routing paradigms, our router must resolve the issue
of contention between multiple nets for a limited set of routing
resources. Previous approaches to solving the problem of
simultaneously routing multiple nets have applied techniques that
either sequentially route the nets in some predetermined order [1-
6], or attempt to tackle the routing problem simultaneously, often
using flow-based formulations [7-11]. For the problem here, the
use of a sequential approach is impractical since the use of a
pinrail by one net disallows its use by another. Therefore, we are
forced to adopt a simultaneous routing approach to solve this
problem.

Our approach addresses the net ordering problem by adopting a
probability-based model that considers all the nets concurrently,
thus monitoring routing congestion from a global perspective. Our
routing process is divided into two phases:
• Phase 1: We compute the probability of each track segment

being utilized by a given net. These probability values are
aggregated over all nets to compute a total congestion metric for
each track segment, so that track segments that are candidates for
use by a large number of nets are assigned larger congestion
values.

• Phase 2: An iterative improvement approach is adopted, in
which congestion is diverted to areas with a lower routing
resource contention. The above process is repeated and at every
step, the “amorphous” data is increasingly “crystallized” until, for
every net, every track has a probability of either 1 or 0.

This research was supported in part by the Semiconductor Research
Corporation under contract 98-DJ-609 and by the National Science
Foundation under award CCR-9800992.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD 2000, San Diego, CA
Copyright 2000 ACM 1-58113-191-7/00/0004…$5.00

tracks

pinrails

track segments
p1

p3

S1

p2

D1

123

2. Phase I: Congestion Estimation
The input to the problem is a set of nets N with the source and
sink pinrails located in the lowest layer, i.e., layer 1, and the exact
locations of a set of free pinrails P in layers 1 and 3. Our objective
is to route the nets along tracks in layers 2 and 4, using the fewest
pinrails, and maximizing the number of routable nets.

Our initial description will focus on pin-to-pin connections, and
this will later be generalized for multi-pin nets. The computation
involved in this process can be significantly reduced, at the cost of
some loss of optimality, by assigning directions to each track for a
given pin-to-pin connection. This procedure is described in the
following subsection. For ease of explanation, we will initially
assume that we are operating in a two-layer environment. The
extension to four layers is described in Section 2.3.

2.1 Direction Assignment
We can observe that for a given source-sink pair, there are
instances where a track can be assigned a specific direction. For
example, in Figure 1, since D1 is in a higher row than S1, we can
assign a direction from pinrail p1 to p3 for each track between
them. It is certainly possible to envisage situations where a
source-sink pair may use a track in either direction as the case
when the route D1→p3→p1→S1 is used. However, connections
using the “wrong” direction along a wire segment would result in
a significantly larger wire length and larger utilization of pinrails,
both of which are undesirable. An algorithm that considers all of
these indirect connections is likely to have a large computational
complexity. Therefore, we heuristically assign a direction to each
track for a given source-sink pair.

We introduce another heuristic to control the computational
complexity, by restricting the routing region for a net to a
specified bounding rectangle, so that the algorithm needs to
assign directions and compute probabilities only for those tracks
that lie within this rectangle. Additionally, we ascribe the same
direction to each track that lies between a given pair of pinrails to
reduce the amount of data to be stored.

2.1.1 Choosing the Bounding Rectangle
We define a pinrail set of a net as the set of pinrails that fall
within its bounding rectangle. We select this bounding rectangle
by relaxing the bounding box of the net by a user-defined factor,
δ. We observe that it is not necessary to assign directions to all
tracks within the bounding rectangle, for two reasons: (1) some
tracks may never lead to a valid route, and (2) the use of some
pinrails is provably suboptimal. To illustrate these ideas, we
consider the configuration in Figure 2.

S

D

p1

p2 p3

p4
Expanded
rectangle

Figure 2: An example that shows redundant directions

The bounding box for the net in Figure 2 includes pinrails p1
through p4. The source D may connect to pinrails p1 or p3 and
sink S may connect to p4. It can be observed that a wire from D

using pinrail p3 can never reach S. Hence, directions need not be
assigned to track segments connected to p3. An example of a
provably suboptimal choice corresponds to pinrail p2 since any
route using p2 must utilize both p1 and p4 to connect to D and S,
and could be improved upon by directly connecting p1 to p4.

2.1.2 Identifying Suboptimal Connections
We will now describe an algorithm for identifying suboptimal
connections for two-pin nets. We handle multi-pin nets in a very
similar way in that we decompose them into several two-pin nets.
However, since these pairs belong to the same net, they cannot be
considered to be mutually independent, and this is handled in the
phase where track probabilities are computed. For any multi-pin
net, we arbitrarily choose the highest source/sink pinrail of the net
on its bounding box as the source.

Having decided to treat multi-pin nets as an aggregate of two-
pin nets, the basic problem remains that of solving the problem
for a two-pin net. Initially, all tracks within the bounding
rectangle of net n are assigned directions that lead from the source
to the sink. Following this, a directed pinrail graph Gjn = (V, E) is
built, where the vertex set, V, comprises the pinrails in the pinrail
set for the net. The existence of an edge e ∈ E between vertices va

and vb implies that there is a horizontal overlap between the spans
of the pinrails corresponding to va and vb. All vertices that can
never lead to a valid route are identified using a traversal on Gjn,
and subsequently pruned so that each of the remaining vertices are
on some path from D to S.

A group of pinrails, p(i), 1 ≤ i ≤ n-1, p(i)∈ V(Gjn) are identified
as provably suboptimal if they lie on a path in a subgraph of Gjn

that is isomorphic to the graph G’(u,w) that is as defined in Figure
3. The indegree of each of the vertices p(1) … p(n-1) in Gjn

(hence, also in G’(u,w)) must be exactly 1 for them to be
identified as suboptimal. It is easily verified that pinrail p2 in
Figure 2 satisfies this property.

Figure 3: Graph G’(u,w) for identifying suboptimal connections

The requirement of an indegree of 1 for p(1)…p(n-1) is essential
and if this is not satisfied, it is easy to build counterexamples to
show that not all pinrails are redundant. We now motivate the
precise algorithm for identifying provably suboptimal pinrails for
a given two-pin net through the example in Figure 4.

Figure 4: A pinrail graph, Gjn

The algorithm begins by performing a reverse BFS on the
pinrail graph Gjn, originating at the sink S. Pinrails such as p6 and
p9 are pruned in the above step since they cannot be reached from
S. In order to identify subgraphs isomorphic to G’(u,w) within
Gjn, we tag each vertex with a parent field that indicates its

u p(1) p(2) p(3) p(n-1) w

S

D

p0
p1

p2p3
flag=

flag=1

flag=1

p9
pp5

p7
p6

p8
flag=1

124

predecessor and a distance field that corresponds to its shortest
distance from S, following which we identify forward edges (u,v) such
that distance(u) ≥ distance(v). In Figure 4, edges (p2,p1); (D,p7);
(p3,p2) and (p4,p2) are identified as forward edges. We associate each
of these forward edges with an attribute, flag, equal to one plus the
difference in distances of its head and tail vertex. These values for the
forward edges are shown in dotted lines in Figure 4.

For each forward edge (u,v), we traverse in the BFS tree, starting
from the vertex v in a direction from D to S, through a number of
edges equal to flag(u,v) using the parent information stored at each of
the intermediate vertices to reach a vertex that we denote as w.
Simultaneously, we store the intermediate vertices (including v) until
we reach a vertex with indegree not equal to 1; all of these vertices will
be removed from the graph if the edges are found to be redundant.
Next, we check for presence of an edge (u,w); if it exists, then the edge
(u,v) and the stored vertices are identified as suboptimal and pruned
from Gjn.

As an example, consider the forward edge (p2,p1) with flag=1.
We move one edge unit to the parent of p1 to reach vertex p0,
simultaneously storing p1 since its indegree is equal to 1. Since
(p2,p0)∈ E(Gjn), we identify the pinrail p1 as suboptimal, and its
vertex is removed from the graph. For the forward edge (p3,p2)
with flag=2, p2 does not have an indegree of 1, and hence, we do
not need to store any more pinrails. However, moving forward
two edge units from p2, we reach the vertex S and since
(p3,S)∈ E(Gjn), we have a subgraph G’(p3,S) within Gjn rendering
the edge (p3,p2) as redundant. Note, however, that no vertices are
removed from the graph in this case. It can also be verified that
forward edges such as (D,p7) and (p4,p2) do not yield any
suboptimal subgraphs of our interest.

The above process is repeated until all subgraphs in Gjn,
isomorphic to G’(u,w) are removed. This repetition is needed only
in cases where there exists a subgraph of interest embedded within
another subgraph of interest. In our experiments, we have noticed
that the number of such iterations is small in practice. The
pseudocode for the algorithm is shown in Figure 5.

Algorithm Identify_Suboptimal_Connections
Input : Net n ; Sink j
Output : Graph Gjn

1. Build graph Gjn=(V,E).
2. do
3. Perform a reverse BFS on Gjn.

Let R ← predecessor vertex set
F ← set of forward edges

4. Gjn ← Gjn\{v} where v∈ Gjn and v∉ R
5. for each edge (u,v)∈ F do
6. Initialize count←0; T←φ; add_Element←true
7. while (count < flag(u,v))
8. w←parent(v)
9. if (indegree(w) = 1) and add_Element)
10. T ← T ∪ {w}
11. else add_Element ← false
12. count ← count + 1
13. if (u,w)∈ E(Gjn)
15. Remove (u,v) from Gjn

16. Gjn ← Gjn\{v} where v∈ T
17. while subgraphs of Gjn isomorphic to G’(u,w) exist
end

Figure 5: Pseudocode for identifying suboptimal connections

2.2 Probability Computation
For a given two-pin net (or for any pair of pins for a multiterminal
net), the procedure described so far assigns directions to each
track within the bounding rectangle. In the next step, the
algorithm computes the probability of using each possible
candidate route that lies within the search region. This
probability-based approach is used to develop a congestion metric
for each track segment, so that the final route is not greedily
chosen, but is constructed using this congestion information. This
global use of the probability information makes it possible that a
source-to-sink route may not ultimately choose tracks with the
highest probabilities, as a greedy approach might.

We illustrate the process of assigning probabilities through an
example pinrail configuration shown in Figure 6. Let Tuv denote a
set of edges in Gjn between the vertices corresponding to pinrails
pu and pv where j and n indicate the sink and net numbers
respectively. As mentioned earlier, all elements of Tuv are
assigned the same direction; we will refer to pu as the parent
pinrail of this set if Tuv is assigned a direction from pu to pv.

p1

p2

p3

p4

S

D

0.5

0.25 for
T12, T13

0.167 for T24

0.125 for T34

1

0.5

Figure 6: An example for probability computation

The process of computing probabilities begins by assigning a
probability of 0.5 to each of the two tracks in TDp1. At p1, there are
two sets of edges to choose from, namely, T12 and T13. Hence, a
probability of 0.25 is assigned to each of the four connections (two
each in T12 and in T13); thus the total probability of leaving p1 is 1.
The total probability of tracks incident on p2 is then calculated to be
0.5, and this is further distributed over T24, assigning each of the
three connections in T24 a probability of 0.167. Similarly, an input
probability of 0.5 for p3 is propagated to T34 giving the four tracks
in T34 a probability of 0.125. Note that a connection to p3 from p2
can be detected as being provably suboptimal from Algorithm
Identify_Suboptimal_Connections, and therefore not considered.

From the above example, two observations can be made. First, the
input probability of a pinrail is propagated to all pinrails in its
downstream path. Second, the probability of a track can be
computed only when the input probability of its parent pinrail is
known. This entails processing the pinrails using a PERT-traversal
method. We formulate the above observations mathematically as
follows:

Σ prob((D,v) | (D,v)∈ E(Gjn)) = 1. (1)
and for every vertex v∈ V(Gjn),
Σ prob((u,v)|(u,v)∈ E(Gjn))=Σ prob((v,w)|(v,w)∈ E(Gjn)) (2)

Supplementing the above procedure, we use two heuristics while
computing track probabilities. We associate a higher cost function
with a path that uses a larger number of pinrails in order to
discourage excessive pinrail utilization. We make an estimate of the
relative number of pinrails used in one path over the other using the
flag values of the forward edges computed during the direction
assignment stage. Since these values were computed using a reverse
BFS traversal on the pinrail graph, it provides a reasonable estimate
to the number of pinrails that the path will use, while being

125

computationally inexpensive. As an example, in Figure 4, a path
from D to S using p7 may be expected to use more pinrails owing to
a higher flag attribute of 2 on (D,p7) than the one using p8 that has a
flag value of 0. Second, since sinks of the same net may share a set
of pinrails, we attempt to maximize the vertex intersection of the
pinrail graphs by associating a pinrail with a slightly larger weight if
it is utilized for a previously processed sink of that net.

We incorporate both of the above factors for an edge (u,v) using a
function parameter weight as follows:

weight(u,v) = λ-[flag(u,v)*(1-util(v))]

where util(v) is empirically chosen as 0.1 if v is utilized for a
previous sink of the same net and chosen as 0 otherwise. λ is
empirically chosen to be a value slightly greater than 1, and is set to
1.1 in our experiments.

2.3 Layer Issues
Our discussion until now, has been restricted to a two-layer
environment. The use of four layers introduces an additional degree
of complexity in that it does not permit a certain set of routing
configurations to coexist.

The extension to four layers from a two-layer environment does
not affect the process of assigning directions to tracks. While
computing track probabilities, we initially distribute the probabilities
equally to both the layers. As a next step, we handle certain
conflicting configurations occurring in a four-layer situation, as
follows. Consider one such conflicting configuration shown in
Figure 7. Figure 7(a) shows the three-dimensional view of a pinrail
configuration across four layers and Figure 7(b) shows its
corresponding two-dimensional view in the y-z plane where the x, y
and z-axes are as indicated.

layer 4

layer 3

layer 2

layer 1

p4

p3p1

p2x

y
z p4

p2

p3

p1

y

x

Figure 7(a): 3D view of Figure 7(b): Corresponding
the 4-layer configuration 2D view

Under the following set of conditions for the pinrail structure as laid
out in Figure 7(a), a violation occurs and has to be taken into account
as a special case.

a) Pinrail p4 used by net n1 connects to p2 with a layer 2 track.
b) Pinrail p3 used by net n2≠n1 connects to p1 using a track in layer

4.
c) The tracks ultimately chosen to connect p2 to p4 and p1 to p3

have the same y-coordinates.

This violation occurs because in such a situation, nets n1 and n2 will
be shorted. There are three other similar configurations that differ
with the case above only in the pinrail layers. If we represent the
layers of the pinrails in the order p1, p2, p3, p4 as a four-integer
vector, Figure 7(a) represents (1, 3, 1, 3). The other three cases then,
correspond to (3, 3, 1, 3); (1, 1, 1, 1) and (3, 1, 1, 1) respectively.

It can be observed that each of the four conflicting pinrail
structures has a layer 1 to layer 4 interconnection. Hence, we handle
such layer conflicts by decreasing the probability of a layer 1 to 4
connection and redistributing the remaining probability to the other

layer. Such a redistribution discourages conflicting connections
while enhancing the possibility of finding valid routes.

2.4 Congestion Computation
In the last stage of Phase I of our algorithm, the utilization
probabilities for each source-sink pair are used to estimate a metric
that measures the congestion in each track segment. The demand on
track segment set TS due to sink j of net n is

Dm(TS, j, n) = Σ∀ (u,v)∈ Y prob(u,v)
where Y is a set of all tracks, i.e., edges (u,v)∈ E(Gjn) that span the
track segment TS. This metric encapsulates the information about all
possible routes utilizing a particular track segment and hence
provides a good estimation of the demand.

For multi-pin nets, this information is generated for each
connection from the source to a pin of the net. We consolidate these
demand values due to the various sinks of a net to generate a
demand metric for the entire net. We compute demand on a track
segment due to the entire net n as the maximum of the demand
values on the segment due to all the sinks of the net as :

Dm(TS, n) = max∀ j∈ sink(n) (Dm(TS, j, n))
To understand the rationale behind the “max” operator, consider

Case A where a track segment has demand metrics of 0.9 and 0.1
due to two different sinks, and Case B where the corresponding
values are 0.5 and 0.5. An averaging operator would give each the
same demand metric, but the value for Case A should be higher
since one of the two connections with a probability of 0.9 has few
other alternative routes.

The final step is to compute the total congestion on a track segment
set using the computed demand values for each net. Two factors must
influence this computation. Firstly, congestion is higher if a larger
number of nets access a given track segment. Secondly, if the demand
values of different nets for a given track segment has a wider variance
in its range of values, it must be given a lower priority than another
track segment that has a comparable net utilization but with a lower
variance. Both of these factors, in decreasing order of importance, can
be captured using the metric as shown:

C(TS) = (Σ∀ n∈ M Dm(TS, n)).{1+α.(|M|-1)} - β.var(Dm(TS, n))

where |M| is the number of nets accessing segment set TS; var
indicates the variance; β and α are positive user defined parameters
less than 1, chosen empirically as 0.25 and 0.5 respectively in our
experiments. The pseudocode for the congestion computation stage
is shown in Figure 8.

Algorithm Congestion_Compute
Input: Set of pinrails, P ; Set of nets, N
Output: Congestion metrics on the track segments.
1. for each net n∈ N do
2. Choose source for net n as highest pinrail on bounding box.
3. for each sink j of n do
4. Gjn = Identify_Suboptimal_Connections()/*Sec 2.1.2*/
5. Probability_Compute(Gjn) /*Sec 2.2 */
6. Resolve Layer Conflicts /*Sec 2.3 */
7. for each set of track segments TS do
8. Dm(TS,n) = Σ∀ (u,v)∈ Y max{prob(u,v)}

where Y: set of (u,v)∈ E(Gjn) that spans TS
9. for each set of track segments TS do
8. C(TS) = (Σ∀ n∈ M Dm(TS,n))*{1+(α*(|M|-1))} –

(β*variance(Dm(TS,n))) where M: set of nets accessing TS
end

Figure 8: Pseudocode for congestion computation

126

3. Phase II: Diverting Congestion
Phase II of the algorithm is an iterative step whereby areas with
maximum congestion are iteratively decongested. The step begins
by identifying the most congested set of track segments and the
number of nets accessing that set of segments. If more than one
net has a non-zero probability of using the track segment, then
there is a contention for the resource.

We apply a heuristic that is based on the observation that a net
with a smaller probability of using a track segment has a larger
number of alternative routes available to it than one with a larger
probability. We proceed by identifying the net that has the
smallest probability of utilizing the segment set H under
consideration and forbid it from using these track segments.
Practically, this is accomplished by forcing the probability that the
net uses H to zero; to maintain the correctness of the other
probabilities, we then redistribute this probability among the other
alternative routes for that net and update the congestion metrics. If
the set of track segments having the maximum congestion metric
happens to be accessed by only one net, then we assign a track
spanning the segment set to that net.

Thus, the procedure of diverting congestion entails a
modification of the input probabilities to some of the pinrails.
Since equation (2) must be satisfied at any stage of the algorithm,
we must propagate the altered probabilities recursively to other
pinrails in the downstream path. If at any stage of the algorithm, a
pinrail is reserved for a net, i.e., a track connecting to the pinrail
achieves a probability of 1, then this pinrail must be removed
from all possible candidate routes of the other nets. These updates
may require the propagation of the changed probabilities both
upstream and downstream of the pinrail under consideration. We
present the pseudocode for integerizing probabilities in Figure 9
and for propagation of probabilities in Figure 10.

Algorithm Integerize_Prob
Input: Congestion metrics in different track segments.

Output: Tracks used in routing of nets.

1. iteration ← 0

2. while (all probabilities ≠ 1 or 0)

3. Identify TSc such that C(TSc) ≥ C(TS) ∀ TS

4. Let Sn ← set of nets accessing TSc.

5. If (|Sn| = 1)

6. Assign net in Sn to track spanning TSc

7. else

8. Identify sink k and net m where

probTSc[k,m]≤probTS[j,n] ∀ n∈ Sn; j∈ sink(n)

9. Find edge e∈ E(Gkm) where e spans TSc

10. Remove e from Gkm

11. Propagate_Prob(k,m,iteration) /* Sec 3 */

12. If pinrail p reserved for net m

13. If p∈ V(Gki), i≠m ∀ i∈ N, ∀ t∈ sink(i)

14. Remove p from Gti

15. Propagate_Prob(t,i,iteration) /* Sec 3 */

16. iteration ← iteration + 1

end
Figure 9: Pseudocode for integerizing probabilities

Algorithm Propagate_Prob
Input: iteration count i ; sink j ; net n;

inputProb(p,0) = probabilities as obtained in Sec 2.2

Output: modified track probabilities

1. Identify Q ← {p | inputProb(p,i) ≠ inputProb(p,i-1);

p∈ pinrail set of net n}

2. Initialize processed(p)←false ∀ p∈ pinrail set of net n

3. while (Q ≠ φ) do

4. p ← Head(Q)

5. processed(p) ← true

6. change_ratio ← inputProb(p,i)/inputProb(p,i-1)

7. for all pinrails r such that (p,r)∈ E(Gjn) {

9. if (processed(r) = false)

10. add_to_tail(Q,r)

10. prob[(p,r)] ← prob[(p,r)] * change_ratio

11. inputProb(r,i) ← inputProb(r,i-1) + prob(p,r)*

(1-(1/change_ratio))

12. Q ← Q\{p}

end

Figure 10: Pseudocode for propagation of probabilities

4. Convergence and Computation Complexity
We state the following result on the convergence of the procedure.
The proof is omitted due to space limitations.

Lemma: At the end of the algorithm, all of the probabilities
converge to integer values of 0 or 1.

Since we always work on a source-sink pair basis, we only
process pinrails within the pinrail set of a net n that we denote as
ps(n). The run time of Phase I is governed mainly by three
procedures, namely, those for direction assignment, track
probability computation and congestion metric computation.
Direction assignment for sink j of net n takes O(ps(n).d(n)) time,
where d(n) is the average outdegree of a pinrail in Gjn. The
probability computation step takes a time proportional to the
number of edges in Gjn, i.e., O(ps(n).d(n)). Lastly, the congestion
metric computation step takes an O(ps(n)2) time. Hence, the total
run time for Phase I becomes O(Σi=1..N Σj=1..sink(i) [ps(i)2]).

The complexity of Phase II is governed by the product of the
number of iterations and the time for a single iteration. The
number of iterations is proportional to the number of tracks and
hence, is O(P). Identifying the most congested track segment
takes a time proportional to the number of such segments that is
O(P). Propagating modified probabilities for pinrails within the
pinrail set of the net gives a O(ps(n)2) worst case time. Lastly,
removing a utilized pinrail from all other nets can be executed at
most O(P) times and a single run of such a removal step takes
O(Σi=1..N Σj=1..sink(i) ε.ps(i)) time. A factor of ε has been added
since in practice, the utilized pinrail lies within the pinrail set of
only a small number of nets, making ε much less than 1. Hence,
Phase II of the algorithm takes an O((P.Σi=1..N Σj=1..sink(i) ε.ps(i)) +
P.Σi=1..N Σj=1..sink(i) ps(i)2). Therefore, the total worst case running
time of the algorithm is governed by Phase II and is O(P.Σi=1..N

Σj=1..sink(i) ps(i)2).

127

5. Results
We have implemented this algorithm in C++ and conducted our
experiments on a SUN Ultra-1 workstation. Due to unavailability
of benchmark circuits, we have generated test cases with random
locations of pinrails and nets. The nets taken into consideration
are restricted to 5-pin nets with 2-pin nets forming the majority
number; the pinrail locations are generated in a manner that
closely simulate a bit slice of a datapath. One example test case
with 40 nets and 50 available pinrails is shown in Figure 11(a);
the bounding box expansion factor, δ, is taken as 0.3. Another
example test case with 60 nets and 60 pinrails is shown in Figure
11(b); the bounding box expansion factor, δ, here too is 0.3. The
number of available tracks for routing in the bit slice is taken as
20 for both the test cases, which reflects the typical number of
tracks that are available in a realistic problem instance.

Figure 11(a): Test case comprising of 40 nets
and 50 pinrails

Figure 11(b): Test case comprising of 60 nets
and 60 pinrails

Unlike in the preceding discussion, the vertical segments in the
figures correspond to pinrails, while the horizontal segments are
tracks. In the examples of Figures 11(a),(b), it was observed that
some of the free pinrails, which serve to facilitate routing
completion, are left unused. The CPU times for the test cases in
Figures 11(a),(b) were observed to be 70s and 89s, respectively.

We ran the test case with 60 nets and 60 pinrails for various
values of the bounding box expansion factor. We observed, as
expected, that a lower value of δ yields lower CPU times since a
smaller bounding box leads to a smaller number of routing
choices and hence, a lower computational complexity. Therefore,
there is an implicit trade-off between the chosen value of δ, the
quality of the routing solution, and the CPU run times. This can
be noted from Table 1 where we list the number of routable pins
along with the respective CPU times for different values of δ; the
total number of pins to be routed for this test case is 110. The
number of utilized pinrails is listed in the third column and is
equal to the number of indirect connections made during the
routing; this is an indicator of the ability of the algorithm to
explore additional routing choices. The number of pins using
connections that use pinrails outside the bounding box of the net
is reported in the last column. As mentioned earlier, the total
number of available tracks in this example is 20.

Table 1: Experimental results for different values of δδδδ

δ
routable

pins
used
pinrails

CPU time
(s)

pins using
detours

0.0 73 36 1.51 0
0.1 88 56 8.38 15
0.2 93 65 42.65 20
0.3 97 65 88.91 24
0.4 93 60 298.24 20

It can be noted that the CPU times show a great amount of
variation with the value of δ chosen for the pinrail configuration
due to the larger number of routing choices that get included as a
result of a larger bounding box. A large value of δ may also result
in extensively large detours and the utilization of a large number
of vias, which is undesirable. In such a case, it may be desirable to
modify the design manually by inserting more free pinrails.

6. References
[1] B. S. Ting and B. N. Tien, “Routing techniques for gate

array,” IEEE Trans. on CAD, vol. CAD-2, pp. 301-312, Oct.
1983.

[2] T. C. Hu and M. T. Shing, “A decomposition algorithm for
circuit routing,” in VLSI Circuit Layout: Theory and Design,
T. C. Hu and E. S. Kuh, eds. New York: IEEE, 1985, pp.
144-152.

[3] J. Cong and B. Preas, “A new algorithm for standard cell
global routing,” Proc. ICCAD, pp. 176-179, 1988.

[4] P. Raghavan and C. D. Thompson, “Multiterminal global
routing: A deterministic approximation scheme,”
Algorithmica, vol. 6, pp. 73-82, 1991.

[5] C. Chiang, M. Sarrafzadeh and C. K. Wong, “Global routing
based on Steiner min-max trees,” IEEE Trans. on CAD, vol.
9, pp. 1318-1325, Dec. 1990.

[6] J. Heisterman and T. Lengauer, “The effective solution of
integer programs for hierarchical global routing,” IEEE
Trans. on CAD, vol. 10, pp. 748-753, June 1991.

[7] F. Shahrokhi and D. W. Matula, “The maximum concurrent
flow problem,” in Journal of the ACM,, vol. 37, pp. 318-334,
Apr. 1990.

[8] G. Meixner and U. Lauther, “A new global router based on a
flow model and linear assignment,” Proc. ICCAD, pp. 44-47,
1990.

[9] E. Shragowitz and S. Keel, “A global router based on a
multicommodity flow model,” Integration, the VLSI Journal,
vol. 5, pp. 3-16, 1987.

[10] R. C. Carden IV, J. Li and C. K. Cheng, “A global router
with a theoretical bound on the optimal solution,” IEEE
Trans. on CAD, vol. 15, pp. 208-216, Feb. 1996.

[11] S. S. Yoichi, F. K. Junya, “Global routing based on the
multi-commodity network flow method,” IEICE Trans. on
Fundamentals of Electronics Communications and
Computer Sciences,, pp. 1746-1754, Oct. 1993.

	Main Page
	ISPD'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

