
99

Methodology for Repeater Insertion Management in the RTL,
Layout, Floorplan and Fullchip Timing Databases of the

Itanium™ Microprocessor
Rory McInerney Kurt Leeper Troy Hill

Intel Corp. Intel Corp. Intel Corp.
SC12-408 SC12-405 RA2-350

408-765-6341 408-765-8512 503-613-3389
rory.mcinerney@intel.com kurt.leeper@intel.com troy.hille@intel.com

Heming Chan Bulent Basaran Lance McQuiddy
Intel Corp. Intel Corp. Intel Corp.

AN1 SC12-601 SC12-405
512-314-0058 408-653-7245 408-765-6948

heming.chan@intel.com bulent.basaran@intel.com lance.mcquiddy@intel.com

ABSTRACT
In this paper, we describe a methodology for inserting repeaters
into the RTL, Layout, Floorplan and Fullchip timing databases of
the Itanium™ processor.

Keywords
Microprocessors, floorplan, repeaters, routing, timing, estimation,
RC delay.

1. INTRODUCTION
Most microprocessors designed at Intel require repeating signals
at the Fullchip level to some degree. On the Itanium™ processor,
85% of the Fullchip level routes require one or more repeaters.
Previous papers on repeater insertion primarily concerned
themselves with the proper placement of repeaters on a single net
using various algorithms that optimized such electrical constraints
as RC delay, power and placement in a repeater station among
others.

This paper will discuss the Itanium™ processor repeater
estimation techniques and will also address new aspects of
repeater insertion. It will develop a repeater solution for a net that
is electrically sound and will then deal with the problem of
implementing thousands of such solutions in the microprocessor’s
floorplan, RTL, schematic, layout and timing databases. As will
be shown the sheer magnitude of the number of nets requiring
repeaters requires a dramatic modification to some of the design
flows.

There were six challenges that need to be addressed in order to be
able to successfully manage the repeater solution of the Itanium™
processor.

• Early in the design phase the designer needs to have a good
repeater estimation capability. Repeaters are needed to improve
the speed of a net and to improve signal slopes. The estimation
tool on the Itanium™ processor was able to deal with both of
these constraints in addition to the constraint of where the
repeater stations are placed. It also helped the designer specify
where the best location of a repeater station would be for that
particular signal.

• Traditional works on repeater insertion deal with cases where
the signal is not functionally changed by the repeater. On the
Itanium™ processor many of the nets require solutions that
involve clocked and enabled elements such as latches and flip-
flops. A methodology that incorporates these types of repeaters
is needed.

• The actual design environment into which the repeaters are
being inserted is not stable. Typically you can generate
reasonably accurate specifications to an LBF (Layout Bridging
Fub: an Intel® acronym for a layout building block that
corresponds to a functional block in RTL) for implementation.
While RC specifications can also be generated, the repeater
implementation to meet those specifications can have multiple
solutions depending on actual route, metal layers used,
additional electrical constraints such as robustness and others
that are not always well understood at the beginning of the
project. Therefore there is a need to have a repeater
implementation methodology that is highly flexible and isn’t
frozen until the end of the project.

• The design flow for repeaters is fundamentally backwards.
Typically a design starts with an RTL functional description and
then it migrates to schematics, layout and finally into the
floorplan. In repeater design, the flow is reverse. The repeater
solution is dependent on the floorplan being routed and the
fixes are then back propagated into the layout, schematic and

Copyright is held by author/owner.
ISPD 2000, San Diego, CA.
ACM 1-58113-191-7/00/0004.



99

RTL databases. Given the inter-connected nature of design
tools, this back-propagation is not trivial.

• The analysis loop for repeater analysis is long. The analysis
requires a full set of fullchip netcells, which is the product of a
Physical Integration (explained further in the paper). A netcell is
the electrical equivalent of a fullchip route. It is a distributed
network of resistances and capacitance. Typically once these
netcells are generated they are fed back into the timing model.
However when repeaters are introduced this critical feedback
loop can be delayed. The repeater methodology needs to have a
good estimation approach and also needs to feed real data into
the timing model on a regular basis.

• The repeater solution freezes late in the design stage.
Therefore the repeater stations themselves tend to be the latest
LBFs to be finished in the design. The schematic and physical
implementation therefore needs to be fast and should not cause
any timing surprises once completed.

The Itanium™ processor team developed a comprehensive
repeater methodology that addresses all of the challenges listed.
This paper will discuss each aspect of the solution, will present
results on how successful the methodology was implemented and
finally will summarize the key findings that can be applied to
other projects.

2. Outline of paper
Five aspects of the Itanium™ processor repeater methodology
will be discussed.

• A description of the repeater estimation tools will be given.
These tools were used from the early stages of the design to help
plan the routing and the placement of repeater stations.

• A description of the repeater station design will be reviewed
in addition to how the repeater stations are incorporated into the
floorplan and how the repeated nets are implemented in the
floorplan.

• A description of how the repeaters are incorporated into the
RTL model.

• A description of the physical layout implementation of the
repeater stations and the schematic generation

• A description of the floorplan-timing interaction that
surrounds repeater insertion.

3. Repeater Estimation
There are two types of estimation used on the Itanium™
processor, unconstrained and constrained based. In the early
phase of the design the floorplan is very immature and has no
repeater stations. A tool was developed that places the repeaters in
their ideal location on a net based on the input slope on the
receiver. This is the first pass repeater assignment and with
appropriate guard-banding it will suffice until a constrained based
solution can be developed.

As the floorplan matures and repeater stations are inserted it is
necessary to constrain the repeater solutions to actual repeater
stations. A software tool called MARS (Merced™ Automatic
Repeater Solution) was developed that used the location of the
repeater stations to generate a solution that met the signal timing
and quality requirements with the minimum number of repeaters.
Keeping the number of repeaters low is good as it minimizes the

number of times the route has to drop down through all the
different metal layers thus adding via resistance and impacting the
routability of the lower level metals.

4. Floorplan and Repeater station design
The basis of the repeater station (RPS) is the repeater standard
cell library and the standard RPS template design. The repeater
standard cells all fit into a standard layout template. Regular
structures and arrays set groundwork for automation. In repeaters,
automation can be taken advantage of and increase productivity.

Repeater standard cells must be designed robust enough to handle
electrical and physical design constraints. Regular standard cell
libraries deal with leaf cell design problem. Repeater Standard
cells need to be designed for Full Chip design problems such as
noise and inductance. The cells are pre-characterized for noise
concerns and the P/N ratio is skewed to deliver an equal rise and
fall time.

The library supports inverters and buffers in both static and
domino designs. It also has Flip-Flops, Latches and some other
specialized cells. There is a standard selection of cell strengths
that are required for driving Full Chip nets. The ability to create
custom designed cells is easy; the only requirements being that
they conform to the standard repeater cell template.

All repeater standard cells follow the standard repeater cell
template. Standard cells are placed in the RPSs by flip arraying, or
mirroring each cell with respect to the cell next to it.

.

.

.
...8 9 10 141312

I8
I9
I10

i14

O8
O9
O10

O14

.

.

.
...1 2 3 765

i1
i2
i3

I7

.

.

.
...1 2 3 765

i1
i2
i3

I7

O3

RPSs are mostly abutted to Unit boundaries. Because of the M2
and M3 signals that come out of Units, the Repeater standard cells
need to have a high level of porosity for feed-throughs. This is
done by predefining the I/O, Power, and Ground, Enable and
Clock tracks for each repeater standard cell in the repeater
standard cell template. The RPSs then have regular patterns of
feed through such that unit physical designer can create M2 and
M3 pins on their units and not collide with internal repeater
routing. The level of porosity is 70%, or 21/30, Metal three
tracks, and 50%, or 9/18, Metal two tracks. This high level of
porosity allows the repeaters to be inserted anywhere in the
floorplan and not constrict the M2 or M3 routing in that area.
This template works for both Horizontal and Vertical RPSs.

The need for the repeater standard cells to fit into a standard
template is evident when the design of the repeater station itself is
reviewed. The fundamental concept behind the RPS station

Figure 1: Repeater station template



99

design is that ANY signal in Metal4, Metal 5 that crosses over the
station can be repeated. This means there needs to be enough
repeater standard cells in the station to accommodate repeaters on
every wire.

In the example of a Vertical repeater station slice, the wires are
bundled into groups of fourteen signals between power rails. Each
repeater standard cell (marked 1 through 14) is designed to be the
width of fourteen wires. Therefore a stack of seven by two
repeater standard cells is needed in order to repeat all of the Metal
4 wires in a metal 4-power grid pitch. The RPS station can be as
long as needed as the template just repeats itself. The strong
advantage of this design concept is that the repeatability of the
wires crossing the station is guaranteed thus allowing the
possibility of late changes in the design to be accommodated.

The RPS is also designed to be able to accommodate repeaters for
metal layer 4 (m4); m5 and m6 interconnect layers. On
Itanium(tm) processor™ the m4 and m6 signals run in the same
direction. Software determines which cells the repeater solution
needs to ensure there are no m4/m6 collisions, that is to ensure a
m6 wire isn’t “double-booking” a repeater location reserved for
the m4 directly beneath it. To avoid such cases the software has
the concept of “borrowing”. It looks for a free repeater standard
cell within a defined distance of the collision and uses that
location instead. Once again the repeater standard cell library
needs no adjustments in order to fit stations that run in the vertical
or horizontal directions on the floorplan.

The repeater stations themselves are placed in the floorplan at the
top level of the hierarchy. They are not placed inside units, as was
the case in previous designs. This is done for two reasons.

• The repeater station does not finalize at the same time as the
unit; therefore the unit level completion does not become gated
by the repeater design. By keeping the RPS stations at the top
level, this problem is avoided and the station design can remain
flexible for a longer period.

• An Electrical Change Order (ECO) doesn’t require a unit to
be opened up. In many cases on Itanium™ a wire needs to use
multiple repeater stations, if the repeater solution were to
change late in the game or the wire needs to be moved, all the
units that have the RPS stations embedded would have to be
opened up.

On the Itanium™ processor there are forty five-RPS. Most were
pre-placed on the floorplan based on a manual signal plan study
of the chip and use of the estimation tools. There are distributed
evenly throughout the design and are usually adjacent to unit
edges. Figure 2 has a detailed plot of the Itanium™ processor
with the RPS shown. While the stations reside next to channels
their area is not for free because of the internal wiring
requirements in hooking up the repeaters prevents extensive use
of metal tracks as feed-through.

Since the RPS reside at the top level it is relatively easy to add,
move or resize stations. This has proved to be invaluable as the
design progresses and there is a greater emphasis on ensuring all
the wires that need repeaters can be implemented. The Itanium™
processor accommodated changes in RPS up-to 3 months before
tape release. Through constant iterations of the repeater insertion

tools, RPS have been modified and added to where the present
placement meets the design demand.

A fundamental feature of the Itanium™ processor methodology is
that the wires in the floorplan are not actually connected to the
repeaters until late in the design stage. This allows the wiring
design to proceed in the floorplan without the overhead of dealing
with number of wires that result from inserting repeaters. A
floorplanner can move wires at will, only having to ensure that the
resultant move still has the wire crossing a RPS, thereby ensuring
repeatability. The estimation software will recalculate the optimal
repeater size and location based on the new route. An extensive
suite of software has been developed to automatically connect the
wires to the inserted repeaters at any point in time in order that
netcells can be extracted and sent to the timing model.

Bus breaking automates the repeater insertion into the floorplan
database. The tool operates on the layout database, which is
maintained in ChPPR, the full-chip layout tool used at Intel. Bus
breaker has three major modules, which help automate repeater
insertion into floorplan:

• Bus breaking: The bus breaking module processes nets one
at a time. Given a net and the coordinates where it needs
repeaters, first it finds the buses that route over these
coordinates. Each such bus is split into two at the specified
coordinate. Note that, depending on the coordinate points, a bus
may have to be split more than once.

• Net Renaming: Once a repeater is inserted in a net, all the
layout data that belongs to the downstream portion of this net
requires a name change. There are three components to this
renaming: 1) renaming the net in the broken bus, 2) renaming
the net in all the buses tapped into the broken bus, 3) renaming
the terminals on the receivers, if any, on the downstream portion
of this net.

Figure 2: Itanium™ processor floorplan



99

• Repeater interface generation: At the repeater station full-
chip interface, we create pins for IO of each repeater on the
RPS. The required schematic connectivity and also the actual
layout data for each pin are created. Once the pins and ports are
created as such, the ICC router from Cadence is run within each
RPS to connect ports to the pins. The interface generator also
has novel heuristic to maximize number of nets that can be
repeated over a repeater station while minimize the routing
distance to the repeater cell.

5. Repeaters and RTL
There are two types of repeaters, those that change the
functionality of the signal, such as latches or flops, and those that
don’t, such as buffers. Any functional change needs to be
reflected in the RTL for proper logical operation but it is
questionable as to whether it is necessary to insert repeaters in a
non-functional case. The Itanium™ processor team chose to insert
all repeaters into RTL. The primary reason is that on the
Itanium™ processor the RTL is the primary source of
connectivity information for all design tools and flows. In
particular the floorplan and timing teams receive a set of .sch files
(connectivity files) from the RTL integration team and it was
decided that these .sch files should have the repeater information
so as to ensure consistency between the databases.

The methodology requirement to insert all repeaters has resulted
in a mixed approach of manually inserting some types of repeaters
and automatically inserting others. A decision flow diagram
outlining which approach to use for a particular repeater solution
is shown in the figure below.

Signals requiring
Inverters, Latches,

Flip Flops

Signals requiring
repeaters

Manual
entry by
RTLer

Signals requiring
Buffers & even #

of Inverters

Busses

Single Signals
Automatic
Repeater
Insertion

Split busses
Non-contiguous

Busses

Contiguous
Busses having

similar
repeaters/station

Auto-insertion
feasibility to

be
investigated

The fundamental rule is that any repeater which changes the
functionality or polarity of the signal needs to be manually coded
in RTL. All other repeaters can be automatically inserted, unless
the automation fails, in which case it is manually coded. In
general it was estimated that about 10% of the signals would
require manual insertion and of the remaining 90%,
approximately 4/5 of them could be automatically inserted with
the remaining 1/5 needing to use the manual insertion flow.

The essential elements of an RTL insertion flow are: -

• A robust naming convention

• RTL and grafting changes to support insertion. Grafting is
the process of integrating an incremental change to the RTL
model.

Naming convention: Since a signal may pass through several
repeater stations on the way to the receiver it is important to
ensure that the propagation history is maintained in the final
name. In other words as the designer attempts to trace to origin of
the signal he or she needs to be able to derive not only the original
driving LBF but also the repeater stations that were used. The
naming convention used on the Itanium™ processor is: -

Signalname_[##F]C

• Signalname is the original signal name that is output of
the driving unit.

• ## is the Number of the repeater station

• F is the Repeater function where B=Buffer, I=Inverter,
F=Flipflop, O=Other

• C is the coloring information (timing phase information)

• [##F] is added to the signal names at each repeater
station.

RTL and grafting changes: All unit level input signals must
appear in the unit’s lbf.param file (a file that describes the I/O). In
order to support the lbf.param file and also to enable easier
renaming in the future these signals need to be scoped (defined) in
the unit.sig (a file that describes the unit I/O) file. To enable unit
level grafting, the RPS needs to be at the unit level. This allows
easier grafting, removes dependencies of signals from other units
and aids RTL simulation performance. When generating
connectivity the designers would then use a specially generated
xxx_external.sig file, which contains the new signal names and
ensures that all the repeated signals are connected correctly.

With the naming convention in place and the support
infrastructure in the RTL, it becomes an automation challenge to
do the automatic renaming. The Itanium™ processor team
developed the necessary software to successfully complete this
task. The manually and automatically inserted repeaters are both
coded the same way and into the same repeater stations. The
insertion flow is shown in figure 4.

Current RTL Model

Run
Regression

New RTL model
with manual
insertions

Functional
checking

Merge auto-
repeaters into

the model

DA builds RTL
model with auto-

repeaters
inserted

Regular model
builds continue Iterates till repeater

solution stable
Model/solution
stable

FullChip Timing work
sch files

Mars over-rides

FP/IBD generated
NTCL/over-rides

Net.spec from FCT

RPS stations +
auto-insertion changes

The flow chart shows how the repeater stations are added to the
RTL, and the manually coded repeaters are inserted into the “live”

Figure 3: RTL insertion decision flow

Figure 4: RTL insertion flow



99

model. This is needed as the manually inserted nets change the
functionally of the signal and therefore the full regression test
suite needs to be run. The auto-inserted repeaters are inserted into
a parallel model to allow several iterations and changes to occur
without destabilizing the production model. At a given point
when the RTL has stabilized and the repeater solution is also
stable both models are merged and this becomes the production
model. The connectivity information of the chip comes from this
production model.

It should be noted that the auto-inserted repeaters can be
completely removed from RTL and the code is returned to the
exact state as it was before insertion.

6. Physical implementation of repeater
stations
In order to physically implement the repeater stations and
generate timing data, a schematic file needs to be generated. No
visual schematics for repeater stations are drawn so the file is
generated from the RTL model. During the insertion process the
repeater size and cell name is coded. This is similar to a physical-
block implementation in synthesis. With this information it is
relatively simple to generate a .sch file with the relevant
information to generate a file that can be fed into an auto-place
and route tool.

The Itanium™ processor team developed its own placement tool.
The reason was the desire to have a deterministic placement of
cells in order to ensure there was no additional routing inside the
repeater station. This would ensure there was no surprise parasitic
data that would impact the timing of the signal. The tool reads in
the repeater information and populates the station. The cells that
are not used are filled with decoupling capacitors. Once the cells
are placed, the CCT router is used to complete the hookup. The
layout is then ready for parasitic extraction.

The circuit design loop for the stations is relatively
straightforward. Since the cells themselves are not too
complicated the LBF doesn’t have too much trouble passing all
the design checks such as Static Electrical Rule Checks (ERC),
Decoupling capacitor checks, Reliability checks (EM and SH) etc.
The only major constraint of the repeater station design is that it
gets finalized right before tape release. Therefore the design needs
to be fast and require little rework. This process has been
automated such that 1 designer can spin all 45 repeater stations
through the entire circuit verification flow (including extraction)
in 24 hours using distributed computing

7. Incorporation of repeaters into the physical
integration flow
While pure estimation works fine for a long period of time, there
comes a point where there is a need to insert the repeaters into the
actual floorplan and to extract a new set of netcells that have been
connected to the repeater stations. A Physical Integration (PI) is
the process of rolling up the layout data of the chip into the
fullchip floorplan, completing top level routing, extracting the
netcells and building a fullchip timing model. A PI needs to be
completed in order to generate a complete set of netcells for
repeater analysis. Mars is then used to analyze the netcells and
generate a set of repeater solutions.

This repeater solution then needs to be applied to both the
floorplan and RTL to see if it can be automatically inserted. There

can be many reasons why this insertion process can fail and there
is extensive sharing of data between the RTL and Timing and
floorplan teams on what signals were inserted and what ones were
not. Several rounds of debugging are needed to ensure the highest
success percentage. The complexity and amount of interaction
between these groups rises significantly during the repeater
insertion phase. Once the insertion has been completed in both the
RTL and floorplan, a new set of netcells needs to be extracted.

The process outlined above means it takes additional time to
generate an accurate set of netcells for timing data.

The penalty for repeater insertion is not paid every PI. Since the
PI is a significant feedback mechanism for the designers it is
important to make the turnaround time as fast as possible but on
the other hand it is also important to give the design community
the most accurate data. The Itanium™ processor team devised a
way of meeting both requirements by inserting repeaters in a
parallel floorplan model thereby allowing the basic PI loop to
continue but at the same time inserting repeaters and giving that
data to the timing model a little later. The model for this is shown.

PI #N

PI #N
Repeated

PI #N+1

PI #N+1
Gridded

Tim ing

netcells

The solution is that once a PI is completed the floorplan database
is copied to a directory where it is post-processed to get the
netcell data. The floorplan and the design are free to continue its
work on the “live” database in preparation for the next PI. Net
cells are extracted from the frozen database and sent to the timing
model. The same netcells are used to determine the repeater
placement and they are inserted in the frozen floorplan. Netcells
are once again extracted and sent to the timing model. At time of
the next PI, repeater solutions that haven’t changed can be reused
again which gives the timing model a level of stability. Over a
period of several PIs the timing model gets to see all the nets
inserted into the floorplan.

The final problem that needs to be solved is the case where the
designer wants a different repeater solution but doesn’t change the
functionality of the signal. The new solution could be because of a
tight timing requirement that Mars doesn’t seem to be able to
meet. The methodology allows the designer to generate a user
specification of a repeater solution (a uspec) and this spec
overwrites any solution that Mars generates. The floorplan and

Figure 5: PI plus repeater insertion



99

RTL insertion tools will accept these uspecs and they are treated
just like an automatically generated specification. The uspec
capability is very powerful as it gives the ability to custom design
every net on the chip if necessary and still uses the insertion
automation in the floorplan and timing. It therefore gives a high
degree of flexibility in design to incorporate last minute changes
due to final timing tweaks or robustness fixes. An important
limitation on uspecs is that they can only be used on signals
whose functionality is not being changed.

8. Results
The methodology described in the preceding pages has been used
on the Itanium™ processor

There are about 13k nets routed at the top level of Itanium(tm)
processor™. Of these 11k require a repeater of some type, that is
they route to a repeater station. Of these 11k, about 7.5k need a
buffered repeater and can therefore be implemented in the
automated flow. So over 50% of the nets on the chip will have an
automatic RTL and floorplan insertion flow applied to them.
There are about 3.5k nets that used the manual RTL insertion flow
and these are inserted and working in the design today. The
average number of repeater drop points on a net is about 1.5,
which means that the number of wires that result once the
repeaters are hooked up is around 3x. That would mean the final
count of nets at the top level of the Itanium™ processor would
run in the order of 25k.

The number of RPS on the chip is 45 and these are evenly divided
between vertical and horizontal stations on the floorplan. The
total area consumed by these repeater stations is about 6% of total
die area.

The % utilization of the RPS is also an interesting number and on
the Itanium™ processor it never rises about 80%. The average
utilization for RPS on the chip is around 40%. While this number
is low, it is not clear that area could be given back to the units as
in many cases once the RPS is created it can be lengthened
without impacting the die area.

9. Summary
Repeater insertion is becoming a critical activity for today’s
microprocessor design. The Itanium™ processor team has
developed a comprehensive methodology and tool suite that
allows for insertion into the RTL, Layout, Floorplan and Fullchip
timing databases. The methodology is fully integrated with all
other aspects of the chip design. The advantages of the Itanium™
processor approach are:-

• Hides the repeater problem from the LBF design.

• Allows for the LBF and floorplan designs to proceed
concurrently for most of the design cycle before the repeater
solution gets locked in.

• Allows the designer to craft his or her own solution that can
be easily integrated into the automation flows

• Functional elements such as latches can be inserted along
side buffers.

• Ensures the connectivity information that all design tools use
is current and has repeaters inserted.

• Ensures the RPS stations can be easily modified up until the
last change in routing gets completed and then the circuit and
physical implementation of the stations can be quickly done.

• Successfully pipelines the repeater analysis and insertion
flows in such a way as to avoid slowing down the top-level
floorplan and timing work. This is a critical

10. ACKNOWLEDGMENTS
The authors would like to recognize the following people for their
invaluable contributions, John Benoit, Jim Bergman, Wenliang
Chen, Ravi Eakambaram, Mamun Rashid, David Kidd and
Sudhakar Bhat in contributing to the development of the
methodology.


	Main Page
	ISPD'00
	Front Matter
	Table of Contents
	Session Index
	Author Index


