

that runtimes can be reduced by more than 95% on average

in comparison to the previously presented approach for exact

routing without restrictions concerning the routing model.

The paper is structured as follows: In Section 2 the basic

concepts, i.e. MDDs and detailed routing are introduced.

Additionally, it is shown how to represent routing spaces

by symbolic methods and how to compute all solutions of

the routing problem by �xed point iteration using this tech-

nique. Flexibility requirements to an exact router are dis-

cussed in Section 3 and the issue of Section 4 is search space

reduction by pruning. In Section 5, experimental results are

given to demonstrate the feasibility of the approach. Finally,

a summary is given in Section 6.

2. PRELIMINARIES

2.1 Multi-valued Decision Diagrams
As well-known, each Boolean function f : B

n 7! B can be

represented by an ordered binary decision diagram (BDD)

[1], i.e. a directed acyclic graph where a Shannon decompo-

sition is carried out in each node.

BDDs can be extended to Multi-valued decision diagrams
(MDDs) [10] representing functions f : f0; ::; k � 1gn 7!
f0; ::; l�1g. Each internal node has k outgoing edges. It has
been shown that the e�cient operations known for BDDs

can also be carried out on MDDs using a case-operator in-
stead of the ite-operator [10]. Analogously to Chapter 4 of

[4], we only consider functions f : f0; ::; k � 1g 7! B and

therefore our MDDs like BDDs only contain the terminal

nodes 0 and 1.

2.2 Detailed Routing
The task of detailed routing in layout design is to determine

the exact location of wires connecting some pins belonging

to di�erent cells or blocks. The wires have to be located in a

given routing space in a way that prevents the occurrence of

short circuits, i.e. wires belonging to di�erent nets are not

allowed to intersect. Two additional optimization criteria

are wire length and number of vias. Minimization of the

values for both criteria improves performance of the result-

ing integrated circuit considerably. For modeling the routing

space, we use a matrix M that represents a 3-dimensional

Cartesian grid. In x-direction, there are so-called columns,
in y-direction, di�erent tracks are available and the layers
used can be distinguished by their coordinates in z-direction.
The number of columns, tracks and layers, resp., determines

the size of the routing space M . Grid points may be con-

nected to adjacent points only and as a result, a path in the

routing space is given as a sequence of adjacent grid points.

A routing instance can be de�ned by the routing space M
and a set N = fft11; : : : ; t1k1g; : : : ; ftn1; : : : ; tnkngg of nets.
The elements �N of N describe the nets and the elements tij
of �N the pins or terminals of the net �N . A solution to the

routing problem is a set C of paths. The �rst constraint

that has to be ful�lled means that for two di�erent pins of

the same net there has to be a path in the solution that con-

nects them. A second constraint makes sure that every path

in the solution set starts and ends at a pin location. Finally,

it has to be guaranteed that no grid point belongs to paths

of two or more di�erent nets at the same time, i.e. no short

circuits occur.

In the CRP, all pins are located in the layer with the small-

est index on two opposite boundaries of the grid. Note that,

in contrast to various de�nitions of the CRP that allow in-

sertion of additional tracks in order to guarantee routability

at the expense of larger routing spaces, the channel height

is �xed here.

Typical channel routers assume that there are two additional

restrictions:

1. theMANHATTAN routing model is used. This means

that the term \adjacency" is modi�ed in a way that

only neighbours in y-direction are considered to be ad-

jacent in layers with odd indices and only neighbours

in x-direction are considered to be adjacent in layers

with even indices. I.e. only horizontal wires are al-

lowed in even layers while in odd layers, only vertical

connections are possible.

2. no doglegs are used, i.e. only one horizontal segment

per net is generated.

As can easily be seen, the CRP is a special case of the de-

tailed routing problem.

In the SRP, pins may be located at any grid point on the

side boundaries of the routing space. The routing model

used depends on the application and there are no restric-

tions concerning doglegs. The router presented in this pa-

per allows arbitrary pin location throughout the whole rout-

ing space. In this sense, the routing model is more general

than switchbox routing. The routing model may be chosen

between the MANHATTAN and the (unrestricted) FREE

model. Nevertheless, we call our router a switchbox router,

too, to emphasize that it is a router with a very high exi-

bility embedded in a \switchbox environment".

2.3 Symbolic Representation of Routing Space
For an exact router, it is crucial to provide the possibility

of expressing the set of all solutions to the routing problem.

This means that it must be able to describe alternative rout-

ing solutions completely and at the same time as e�ciently

as possible.

The router presented in this paper like those proposed in [2;

6; 7] uses Boolean functions to describe routing solutions.

DDs are well-known to o�er a good compromise between

representation size and e�ciency of manipulation. For these

reasons, analogously to [7] we represent Boolean functions

by MDDs.

For every grid point (x; y; z) 2 M , a new MDD variable

mxyz is introduced. Let the netlist N = f �N1; : : : ; �Nng. The
set of legal values for the MDD variables is f0; : : : ; ng then.
mxyz = 0 means that (x; y; z) is not occupied by any net

whereas that point contains a wire segment that belongs to

net �Ni i� mxyz = i. In this way we are able to express

each speci�ed wiring situation in the channel by giving just

the values of the set of MDD variables corresponding to the

appropriate points of M .

Furthermore, a path p = (p1; : : : ; pl) in M that belongs to

some net �Nj can be described as a Boolean function ~p by

(1):

~p = (m1 = j) ^ : : : ^ (ml = j) (1)

where the mi denote the MDD variables that correspond to

the grid points pi for i 2 f1; : : : ; lg. In Figure 1, an example

for an MDD representation of a path p in a given routing

space is shown.

0 1

20 20

2

0

2
0

1
1

1

1

m

m
m

m

311

321

421

431

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

t

t12

11

p

Figure 1: Example of a symbolic representation of a path

As can easily be seen, at the symbolic level the representa-

tion of a path can be obtained by carrying out conjunction

operations. The same holds for a routing solution. Since

such a solution C = fc1; : : : ; cmaxg consists of a set of paths
that exist in the routing space at the same time, the Boolean

function ~c for C can be computed according to (2):

~c = (~c1) ^ : : : ^ (~cmax) (2)

Given net �Nj , the functions ~ci can be computed by (1). Fi-

nally, a set of routing solutions obviously can be represented

by an MDD using disjunction operations. Given the MDD

representations of the solutions s1; : : : ; smax, the function ~s
corresponding to the set of these solutions is given by:

~s = (~s1) _ : : : _ (~smax) (3)

The order in that MDDs for single paths are combined to the

�nal result, i.e the MDD representing the set of all routing

solutions, is slightly di�erent in the method described in the

following sections, but logic operations used are the same.

Conjunction and disjunction are basic operations in MDDs

and thus the necessary MDD operations can be carried out

e�ciently. This is one reason why symbolic representation

of routing space is well suited for this approach. Another

advantage is that occurrences of short circuits are prevented

elegantly. A short circuit is generated if the same grid point

is used for paths belonging to di�erent nets. At the symbolic

level this means that two di�erent values are assigned to one

single MDD variable. This ambiguous assignment is not

possible since the attempt in doing so is detected during

MDD minimization and thus \solutions" with short circuits

are conveniently avoided.

2.4 Exact Routing using Fixed Point Iteration
Computation of the Boolean function ~s representing the set
of all solutions to a given routing problem is the issue of this

section. The approach is based on adaption of the ideas in

[7] to the more general context in this paper. We present

the main points. First of all, so-called connectivity predicates
are computed by a �xed point iteration. After all predicates

for a net have been determined, an MDD representing all

possible connections for this net is generated. Finally, con-

straints for di�erent nets resp. the corresponding MDDs are

combined to one MDD representing the set of all possible

solutions to the routing problem. In the following, the single

computation steps are considered more detailed. For this,

the following de�nition is necessary:

Definition 1. For a given net �Ni 2 N and a selected
grid point t 2 M a connectivity predicate Ci;t : M 7! B is
introduced by

Ci;t(p) :, p is connected with t via net �Ni (4)

In the routing approach that is proposed here, t is chosen
to be an arbitrary2 pin of net �Ni (notice that the pins of �Ni

are contained in any legal routing solutions).

Ci;t(p) is represented by an MDD and for computation of

this MDD, we make use of a close relationship (5) between

the truth values of the predicates for adjacent points in M .

This relationship is also illustrated in Figure 2. For p =

(x; y; z) 2M , we have:

Ci;t(p) , (mxyz = i) ^ (9p0 : Ci;t(p
0
) _ (p = t)) (5)

where p0 and p are adjacent

In order to generate MDDs for the connectivity predicates

for all p 2 M , we start an iteration with C0

i;t(t) = (t = i)

2W.l.o.g. we choose pin ti1.

���
���
���
���

p’p

t

xyzm =i
i,tC (p’)

obstacle

Figure 2: Relationship between connectivity predicates for

adjacent points in M

and C0

i;t(p) = false for all p 6= t. In iteration j, we compute

C
j

i;t
(p) for all p = (x; y; z) 2M according to (6).

C
j

i;t
(p) = C

j�1

i;t
(p) _ (

_

p0

(C
j�1

i;t
(p

0
) ^ (mxyz = i))) (6)

where p0 and p are adjacent

This iteration is continued until after iteration jmax the fol-

lowing holds:

8p 2M : C
jmax

i;t
(p) = C

jmax�1

i;t
(p)

This means that there has been no change during the last

iteration or in other terms, that a �xed point has been

reached. At that time, we have:

8p 2M : C
jmax

i;t
(p) = Ci;t(p) (7)

An MDD ~ni representing all possible sets of paths that con-
nect net �Ni can now easily be derived from the Ci;t's that

have been computed during the previous �xed point itera-

tion. Since net �Ni is completely connected i� from each pin

tij a path to ti1 exists, ~ni can be generated according to (8):

~ni =

j �N
i
j^

j=2

Ci;t
i1
(tij) (8)

Finally, the MDDs representing routing solutions for single

nets can conveniently be combined by (9) resulting in an

MDD ~s that represents the set of all solutions to the routing
problem.

~s =
^

�N
i
2N

~ni (9)

Given the MDD ~s, routability for a problem instance I can

be decided very e�ciently since

I is routable , ~s 6� 0 (10)

Checking if an MDD is equal to 0 can be done within con-

stant time.

3. FLEXIBILITY REQUIREMENTS
It has been mentioned in previous sections that the exact

router presented in this paper is suitable to be used in com-

bination with one or some of the various well-known heuris-

tics that exist for the routing problem. The task of the

exact router in this cooperative routing process is routing

some small regions that are dense and therefore di�cult to

route since |if at all| only few solutions exist. If no so-

lution exists, this can also be detected by the exact router

and in those cases, one or some nets may be ripped up and

rerouted by the heuristics.

The regions passed to the exact router are cut out of the

three dimensional grid that forms the routing region of the

original problem instance. Thus, the input of the exact

router in such cases does not always have the typical char-

acteristics of an input to a conventional routing problem

as described in Section 2.2. Therefore, there are some ad-

ditional requirements to the exibility of the exact router

concerning

1. location of pins

2. obstacle handling and shapes of routing regions

3. consideration of pre-routed nets

4. routing models

In the following sections, we subsequently describe in detail

what kind of exibility is required for the single items listed

above and how the approach described in Section 2.4 can be

adapted to provide this exibility.

3.1 Arbitrary Pin Location
In the CRP, pin location is restricted to certain grid points.

Only points that belong to one of two opposite boundaries

of one layer may contain pins. The SRP is less restrictive,

but pins are still allowed only at the side boundaries of the

routing space. However, in the context described above,

connections to pins of the original problem may be brought

up to the small routing region passed to the exact router

at any grid point on the surface of the boundaries of this

region. The end points of these connections are the pins

of the routing subtask that is solved by the exact method.

Thus, pins may also be located not only in any arbitrary

layer at the side boundaries of the routing region, but also

in the inner part of the top or bottom layer. This is shown

in Figure 3 a) for some pins. The input region for the exact

routing subtask is illustrated as a grey cuboid and pins and

wires are represented by balls and cylinders, resp.

While generating the set of solutions, the constraints for all

paths of one net �Ni are combined in one MDD by collecting

the connectivity predicates for all the terminals except ti1
according to (8). If the pin locations are given by their 3

coordinates, the SRP can be solved exactly since Ci;t
i1
(p)

has been already been computed for all p 2M during �xed

point iteration. Even more, also pins that are located inside

the routing space can be handled in that case.

3.2 Handling of Obstacle and Non-Cuboidic
Shapes of Routing Regions

In some cases, single points in the grid or even subregions of

the routing space e.g. due to some technical constraints or

�xed power and ground location are forbidden to be used for

wires. These grid points or subregions are called obstacles
and may be included arbitrarily in the routing space of prob-

lem instances given as input to the exact router presented

here. Routing then has to be accomplished by �nding paths

a) b)

Figure 3: a) Possible pin locations for problems solved by

the exact router b) Routing space containing obstacles

that lead around these obstacles. Figure 3 b) shows an ex-

ample where the grey cuboids do not represent subareas of

the routing space but cells that are obstacles.

Channels and switchboxes have always cuboidic shape. But

subregions that are most suitable to be cut out of the rout-

ing region and solved exactly may also have di�erent shapes.

Therefore the exact router should be able to route regions of

non-cuboidic shape. For modeling such regions, again obsta-

cles can be used. A cuboidic routing space M that encloses

the region �M that is about to be routed (i.e. �M � M)

is given as input to the exact router and all grid points

p 2 Mn �M are declared to be obstacles. Figure 4 a) illus-

trates this. Here, di�erent from Figure 3 b), �M that contains

all the pins corresponds to the grey area while the obstacles

placed around this area are transparent.

Computation of the connectivity predicates is di�erent if

obstacles exist in the routing space. Still �xed point iter-

ation can be used, but when for a grid point p constraints

due to neighbours p0 are added by (6), then only those neigh-
bours may be considered that are not obstacles. For obstacle

points, no connectivity predicates are computed. Further-

more, obstacle points reduce computation time since they

cannot be part of a legal routing.

a) b)

Figure 4: a) A non-cuboidic routing space b) Net pre-routed

in a subregion of the routing space

3.3 Handling of Pre-routed Nets
When dense regions are passed to the exact router, heuris-

tics that have been used before may have already routed

several nets in this region that have to remain unchanged,

e.g. high-performance nets. The exact router then has to

�nd connections for the remaining nets without using grid

points that are already occupied by one of the pre-routed

nets. Furthermore, the pre-routed wires must be included

in the set of all routing solutions. A routing task containing

a subregion with a pre-routed net is shown in Figure 4 b). To

avoid usage of points that are occupied by pre-routed nets,

the router considers such points as obstacles and hence they

are not used for routing due to the neighbour selection that

has been described in Section 3.2. For a pre-routed net �Ni,

instead of computing the set of all possible connections, an

MDD ~p representing the given paths has to be generated.

This can be done according to (1). The set of all routing

solutions ~s then can be computed by (9) using ~p instead of

~ni for net �Ni.

3.4 Routing Models
The routing model for routing a subregion is determined

by the routing model of the original problem. Besides the

FREE model that is used by default the exact router also

works for the MANHATTAN model that normally is used

for solving the CRP. By this, interaction with typical chan-

nel routers is possible.

Again, the changes that have to be made during computa-

tion of routing solutions concern the generation of MDDs

representing the connectivity predicates. For a grid point

(x; y; z) belonging to a layer z where only vertical wires

are allowed, (x+ 1; y; z) and (x� 1; y; z) that are horizon-
tally adjacent to p are not considered during computation

of (6). Analogously, the vertical neighbours (x; y+1; z) and
(x; y� 1; z) do not directly a�ect the connectivity predicate

for (x; y; z) if only horizontal wires are allowed in z.

4. SEARCH SPACE REDUCTION FOR EX-
ACT ROUTING

The most expensive step for the computation of an exact

solution ~s to an instance of a routing problem is the gen-

eration of the connectivity predicates for a net �Ni by �xed

point iteration. This iteration is expensive in computation

time as well as in memory requirement. The connectivity

predicates Ci;t(p) are needed in (8) to compute ~ni, i.e. the
set of all wiring possibilities connecting �Ni completely. In

many cases, most of the possible paths for connecting �Ni

are not part of a valid routing solution since they prevent

the successful generation of connections for some other net.

Such paths are removed again when ~s is computed by (9).

At that time, constraints between di�erent nets are consid-

ered by MDD reduction techniques and invalid solutions are

eliminated.

However, a considerable amount of time and memory is

spent in computation of such useless paths by the approach

described in Section 2.4. In this section, a pruning method is

introduced that especially in dense routing regions is able to

detect points that are needed to place wire segments with-

out which certain nets cannot be connected. Hence, it in

advance eliminates many of the paths that make a complete

routing of all nets impossible. This technique is applied be-
fore the �xed point iteration is carried out and thus time

and memory consumption for computation of the connec-

tivity predicates can be reduced. In special cases, exact

solutions even can be generated only by this preprocessing

and without any �xed point iteration.

For explanation how this reduction of the search space for

exact routing proceeds, we need the following

Definition 2. A forced cell of net �Ni is a point p 2 M
that belongs to a path connecting �Ni in any of the solutions
represented by ~s. p is called a forced cell if it is a forced cell
for one of the nets. FC(i) denotes the set of all forced cells
of �Ni and FC the set of all forced cells in M .
For any p 2 M that is forced cell of �Ni, q 2 M is called
available for p i� q is adjacent to p and q is neither occupied
by an obstacle nor by a pre-routed wire segment, a pin or a
forced cell.

Obviously, pins are forced cells. But also grid points that are

not pins may be forced cells and the task of pruning is to �nd

as many of them as possible. Complexity of computation of

the Ci;t is reduced by forced cells for �Nj ; j 6= i in two ways:

�rst of all, we do not need to compute Ci;t(p) if p 2 FC(j)
since p in that case cannot be connected with any point

via �Ni without causing a violation of routing constraints.

Furthermore, when applying (6) in order to compute Ci;t,

adjacent points q with q 2 FC(j) for some i 6= j need not

be considered. I.e. forced cells for di�erent nets are treated

like obstacles in this context. Thus, by forced cells, many

MDD operations can be saved. Detection of forced cells is

based on the following

Lemma 1.

(p 2 FC(i); j �Nij > 1 ^ jfq j q is available for pgj = 1)

) q 2 FC(i)

Figure 5 shows an instance of a routing problem that con-

tains 6 forced cells. Besides the pins, (1; 2; 0) and (3; 2; 0)
are forced cells since (1; 2; 0) is the only point available for

(1; 3; 0) and for (3; 1; 0), only (3; 2; 0) is available.

x

y

1 2 3

3

2

1

∋

∋

1 2

21

FC(2)

FC(1)

Figure 5: Routing example containing forced cells

The algorithm by which we detect forced cells is given in Fig-

ure 6. First, the FC's are initialized with the set of pins of

the appropriate nets and afterwards, forced cells are added

iteratively. In iteration j, all the forced cells that have been

detected until iteration j � 1 are considered and if exactly

one point q is available for one of them, q is detected to

be a forced cell, too. This forced cell detection can also be

Forced Cell Detection:

for all nets �Ni

j = 0 ;

FC�1
(i) = ;;

FC0
(i) = ftij j 1 � j � j �Nijg;

while [ni=1(FC
j
(i)nFCj�1

(i)) 6= ;
j++;
for all nets �Ni (j �Nij 6= 1)

FCj(i) = FCj�1(i);

for all p 2 FCj�1(i)
A = fq j q is available for pg;
if jAj = 0

return no solution possible;
else if jAj = 1

FCj(i) = FCj(i) [A;

Figure 6: Algorithm for detection of forced cells

viewed as a movement of pins in the routing space. The

points the pins visit during this movement may not be con-

sidered during the following �xed point iteration that now

has to connect pins with modi�ed locations. Afterwards,

the constraints of the forced cells have to be added to the

routing solution by (2). If a pin runs into a deadlock during

the preprocessing step, then we know that no solution to the

routing problem exists and therefore can abort computation

before starting the time consuming �xed point iteration.

Finally, in Figure 7 an example is given to demonstrate how

forced cells are detected and to show characteristics of the

routing space that favor occurrences of forced cells. At the

beginning, only the pins are forced cells. In the next itera-

tion 4 further forced cells are detected. Two further forced

cells can be found and afterwards, connectivity predicates

are computed by the �xed point iteration introduced in Sec-

tion 2.4. Pin locations moved forward during preprocessing

and thus the pins of net 2 now are located at (2; 3; 0) and
(3; 2; 0). For carrying out the �xed point iteration for one

net, the originally 16 points to be considered can be reduced

to 6 (the 2 pins of the nets and the 4 empty cells). If ob-

stacles or pre-routed nets are included, the probability for

detection of forced cells increases since the routing space

gets more dense. E.g. if there is an obstacle at (3; 3; 0),
all the other 15 points become forced cells. And if an ad-

ditional obstacle is added at (4; 4; 0), the router recognizes
without �xed point iteration that net 3 is not routable and

that therefore no solution to the routing problem exists.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

1 2 3

3

2

1

x

y

4

4

j=0 j=1 j=2

21

1 2

3

3

1

3

1 2

2 3

1

3

2

1 2

3

Figure 7: Detection of forced cells

5. EXPERIMENTAL RESULTS
We implemented the method described in the previous sec-

tions in C++. MDDs are simulated on top of BDDs and for

realization of BDDs the state-of-the-art CUDD package [9]

has been used. The experiments have been carried out on

two workstations, one Sun Ultra 4 with 1.5 GB memory

(Table 1+3) and one Sun Ultra 2 with a main memory of

1GB (Table 2). Runtimes are measured in CPU seconds.

The following experiments have been conducted. First of

all, we compare our method to the preliminary results of

[7]. Further on, we use routing problems with pins that are

distributed at random throughout the whole routing space

to show that e�ciency of our approach is closely related to

the density of the routing space. Additionally, the practi-

cability of using the exact routing method in combination

with traditional routing heuristics has been examined. Re-

sults for a small channel containing a cyclic VCG (Vertical

Constraint Graph) conclude this section.

In [7], the routing problems unsolvable, solvable and easy

have been introduced and their properties have been de-

scribed in detail. Runtimes and sizes of solution MDDs

of the approach presented there have been given for these

examples. Table 1 compares the runtimes of the method

presented in this paper with (FC) and without (NFC) com-

putation of forced cells to the results given in [7]. In ad-

dition, we give the peak size during MDD construction for

solvable (notice that �nal sizes are small in comparison to

peak sizes). The parameter n denotes the number of tracks

for unsolvable and solvable and the number of columns

for easy. In solvable, there are only few forced cells and

for this, results for routing with or without preprocessing,

resp., are only slightly di�erent. Therefore, only the results

including forced cell detection are shown in the table. For

easy and unsolvable, the number of detected forced cells is

given in the columns denoted by \fc".

As can easily be seen, the approach presented here outper-

forms the method proposed in [7] by far. For unsolvable

and easy, the whole routing space consists of forced cells and

all of them are detected during preprocessing. This means

that due to search space reduction no �xed point iteration is

necessary and hence runtimes for method FC are reduced by

more than 95% on average in comparison to those obtained

when no preprocessing is used. When comparing computa-

tion times with those of the previously presented approach,

a reduction by more than 99% in any case can be reported.

For this, the maximum size of the problem instances that

can be handled by the new method is increased by more than

factor 10 on average. For solvable, node sizes and hence

memory consumption become large if the size of the routing

space is increased. The reason for this is that solvable is

not dense.

To show that the exact router performs better if the den-

sity of the routing region is high, we generated problem in-

stances with 3 nets, 3 layers and varying number of columns

pin dens.: 90% 70% 50%
#c. #t. time fail time fail time fail

6 3 0.06 100% 0.61 90% 3856 50%
6 4 0.10 100% 0.62 100% | |
8 3 0.10 100% 2.57 100% | |
8 4 0.13 100% 12.57 100% | |
10 3 0.10 100% 27.70 100% | |
10 4 0.16 100% 54.82 100% | |

Table 2: Results for routing in regions with varying density

Figure 8: Routing in a channel with cyclic VCG.

and tracks, resp., with pin densities 90%, 70% and 50%. A

density of 50% means that 50% of the grid points are occu-

pied by pins. For each size and density, 10 instances have

been generated and average runtimes are shown in Table

2. Columns denoted by \fail" provide information about

how often the result \no legal routing possible" occurred.

In examples with a pin density of 50%, 3� 6 � 3 grids can

be handled. A legal routing solution is found for half the

instances while for the rest, the router detects that such a

solution does not exist. When the size of the routing space

is increased, time and memory requirements get too large,

i.e. computation time exceeds 6000s, and therefore no re-

sults can be obtained then. If the pin density is increased

to 70%, routing is no longer possible in almost all cases and

this is detected by exact routing for 4 � 10 � 3 grids. For

a pin density of 90%, search space reduction is even more

pro�table and thus runtimes are much lower then, i.e. results

can be computed within less than 1 second.

Table 3 shows computation times, peak sizes of MDDs and

numbers of forced cells detected during preprocessing when

the exact router is applied to the example vcgcycle that is a

channel with a cyclic VCG, (i.e. traditional channel routers

are not feasible for this example). It contains 3 nets that

have to be connected in the MANHATTAN model within

2 layers. Numbers of tracks and columns have been varied

to make the example more general. Figure 8 illustrates a

legal routing solution (4 columns, 4 tracks). Two of the

nets may be generated by a conventional channel router, but

the net connecting the pin on the lower left boundary with

the one on the upper right boundary includes a dogleg and

therefore it must have been generated by another technique

like e.g. exact routing. The exact router is able to solve

this problem standalone, but if 1 or even 2 nets are pre-

routed by a channel routing heuristic, MDD node sizes and

therefore computation time are reduced by more than factor

10 on average as can be seen in the table. Situations given

in vcgcycle often occur in parts of routing spaces during

channel routing and in that cases, e�cient routing becomes

possible by cooperative use of channel routers and the exact

router.

6. CONCLUSIONS
We presented an exact switchbox router that is suitable to

be applied to dense routing regions and to be combined with

traditional routing heuristics thus solving routing problems

unsolvable solvable easy

[7] NFC FC [7] FC [7] NFC FC

n time time time fc time time size time time time fc

2 0.06 0 0 6 0.13 0 2044 0.06 0.01 0 9
3 0.09 0 0 8 4.58 0.02 7154 0.08 0.04 0 12
4 0.20 0 0 10 195.18 0.10 24528 0.50 0.11 0 15
5 0.58 0 0 12 11702.30 0.29 66430 25.42 0.32 0 18
6 2.53 0.01 0 14 | 0.68 84826 | 0.83 0 21
7 8.75 0.02 0 16 | 1.83 180894 | 2.73 0.01 24
8 30.53 0.03 0.01 18 | 3.24 249368 | 6.50 0.02 27
9 106.11 0.04 0.01 20 | 5.73 379162 | 15.96 0.02 30
10 490.01 0.05 0.01 22 | 9.45 581518 | 82.76 0.02 33
20 | 0.16 0.01 42 | 214.27 7054866 | | 0.06 63
60 | 18.21 0.01 122 | | | | | 0.58 183
100 | 91.82 0.05 202 | | | | | 1.93 303

Table 1: Comparison to [7]

no pre-routing 1 net pre-routed 2 nets pre-routed
#col. #tr. time size fc time size fc time size fc

4 4 0.25 42924 12 0.09 11242 13 0.02 2044 13
5 4 3.04 216664 12 0.45 74606 13 0.08 10220 13
6 4 28.05 968856 12 4.51 342370 13 0.54 85848 13
7 4 233.91 5376742 12 58.94 2650046 12 3.67 243236 12
4 5 1.91 156366 12 0.41 64386 13 0.07 10220 11
5 5 28.29 896294 12 4.55 359744 13 0.68 112420 11
6 5 335.50 8121834 12 50.17 1976548 13 10.14 776720 11
7 5 5670.73 36852298 12 1205.7 39924430 12 90.12 4995536 10

Table 3: Routing in a channel with cyclic VCG

that neither can be solved by heuristics nor by exact routers

standalone. It has been shown that the routing approach

proposed here provides the exibility required for interac-

tion with other routers. The set of all possible solutions is

computed by a �xed point iteration and represented by an

MDD. In a preprocessing step, paths that cannot be part of

a legal solution are pruned and by that, search space for the

time-consuming �xed point iteration is reduced.

Experimental results demonstrate that by the new tech-

nique, runtimes are reduced by up to 95%. Additionally,

it has been shown that the exact router performs particu-

larly well in routing regions with high density and that it

is well suited to be used in combination with existing rout-

ing heuristics. Future work focuses on further search space

reduction, e.g. by integration of more sophisticated implica-

tion based learning of forced cells and application of branch

and bound methods. Further on, we plan to develop a router

that realizes the idea of interaction between heuristics and

exact routing.

7. ACKNOWLEDGEMENT
The authors like to thank Rolf Drechsler for helpful discus-

sions on this work.

8. REFERENCES

[1] R. Bryant. Graph - based algorithms for Boolean func-

tion manipulation. IEEE Trans. on Comp., 35(8):677{
691, 1986.

[2] S. Devadas. Optimal layout via Boolean satis�ability.

In Int'l Conf. on CAD, pages 294{297, 1989.

[3] N. G�ockel, R. Drechsler, and B. Becker. A multi-layer

detailed routing approach based on evolutionary algo-

rithms. In Int'l Conference on Evolutionary Computa-
tion, pages 557{562, 1997.

[4] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-

Vincentelli. Multi-valued decision diagrams: Theory

and applications. Multiple Valued Logic - An Interna-
tional Journal, pages 9{62, 1998.

[5] T. Lengauer. Combinatorial Algorithms for Integrated
Circuit Layout. Teubner, Wiley, 1990.

[6] G.-J. Nam, K. Sakallah, and R. Rutenbar.

Satis�ability-based layout revisted: Detailed rout-

ing of complex fpgas via search-based boolean sat.

In Int'l Symp. on FPGAs for Custom Computing
Machines, pages 167{175, 1999.

[7] F. Schmiedle, R. Drechsler, and B. Becker. Exact rout-

ing using symbolic representation. In Int'l Symp. Circ.
and Systems, pages VI:394{VI:397, 1999.

[8] N. Sherwani. Algorithms for VLSI Physical Design Au-
tomation. Kluwer Academic Publishers, Norwell, Mas-

sachusetts, second edition, 1995.

[9] F. Somenzi. CUDD: CU Decision Diagram Package Re-
lease 2.3.0. University of Colorado at Boulder, 1998.

[10] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algo-

rithms for discrete function manipulation. In Int'l Conf.
on CAD, pages 92{95, 1990.

[11] T. Szymanski. Dogleg channel routing is NP-complete.

IEEE Trans. on CAD, 4(1):31{41, 1985.

[12] R. Wood and R. Rutenbar. FPGA routing and routabil-

ity estimation via Boolean satis�ability. IEEE Trans.
on VLSI Systems, 6(2):222{231, 1998.

[13] T. Yoshimura and E. Kuh. E�cient algorithms for

channel routing. IEEE Trans. on CAD, CAD-1(1):23{
35, Jan. 1982.

	Main Page
	ISPD'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

